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Abstract: Due to the inherent characteristics of synthetic aperture radar (SAR) imaging, SAR ship
features are not obvious and the category distribution is unbalanced, which makes the task of ship
recognition in SAR images quite challenging. To address the above problems, a two-level feature-
fusion ship recognition strategy combining the histogram of oriented gradients (HOG) features with
the dual-polarized data in the SAR images is proposed. The proposed strategy comprehensively
utilizes the features extracted by the HOG operator and the shallow and deep features extracted
by the Siamese network in the dual-polarized SAR ship images, which can increase the amount of
information for the model learning. First, the Siamese network is used to extract the shallow and
deep features from the dual-polarized SAR images, and then the HOG feature of the dual-polarized
SAR images is also extracted. Furthermore, the bilinear transformation layer is used for fusing the
HOG features from dual-polarized SAR images, and the grouping bilinear pooling process is used
for fusing the dual-polarized shallow feature and deep feature extracted by the Siamese network,
respectively. Finally, the catenation operation is used for fusing the dual-polarized HOG features
and dual-polarized shallow feature and deep feature, respectively, which are used for the recognition
of the SAR ship targets. Experimental results tested on the OpenSARShip2.0 dataset demonstrate
the correctness and effectiveness of the proposed strategy, which can effectively improve the recog-
nition performance of the ship targets by fusing the different level features of the dual-polarized
SAR images.

Keywords: synthetic aperture radar (SAR); two-level feature-fusion; SAR ship recognition; histogram
of oriented gradients (HOG) features; dual-polarized SAR ship images

1. Introduction

The synthetic aperture radar (SAR) plays a significant role in remote sensing, geo-
sciences, reconnaissance, and surveillance applications, which has gained wider attention in
recent years [1–3]. Ship target recognition based on SAR images has important value in the
field of ocean remote sensing because it can assist military and civilian departments in mon-
itoring and managing marine vessels, as well as managing marine resource extraction [4,5].
However, due to the working principle of the SAR system, the imaging effect of the ship
targets is affected by many factors, such as the imaging distance, imaging environment,
imaging algorithm, etc., which makes the differences between the categories of the ship
target in the acquired SAR images small, thus rendering SAR ship recognition difficult and
challenging [5]. Figure 1 shows the examples of the SAR images of the several ship targets
in the publicly released SAR image dataset, i.e., the OpenSARShip 2.0 dataset [6].

Traditional ship target recognition in the SAR image usually includes three steps:
image preprocessing, feature extraction and selection, and classification [7]. The feature
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extraction and selection are key steps in traditional SAR ship target recognition. The tra-
ditional methods typically require manual analysis of the target features and the use of
various operators designed manually to extract them. Generally speaking, the geometric
structure features, electromagnetic scattering features, transform domain features, and
local invariant features of the target are the key features that traditional target recognition
methods will focus on [7]. For example, the geometric mechanism features of the SAR ship
targets, such as the area, perimeter, integral optical density, Euler numbers, length, main
axis bearing angle, slenderness, etc., have been extracted for recognition [8]. Reference [9]
gives a method of fitting the electromagnetic scattering peak characteristics using the two-
dimensional Gaussian function, and then uses the peak detection algorithm to extract its
position, width, amplitude and other parameters, which can be used to identify the target
categories. The commonly used transform domain methods include wavelet transform,
principal component analysis, independent component analysis, Radon transform, etc. By
analyzing the SAR image data features from another perspective through these transforma-
tions, the relevant feature extraction methods are designed for subsequent recognition. The
scale invariant feature transform (SIFT) is a commonly used feature description operator,
which is often used to extract the features of SAR image targets. Therefore, the traditional
ship target recognition in SAR images usually achieves the goal of recognizing the SAR
ship targets by manually designing the features (such as geometric structure features,
electromagnetic scattering features, transform domain features, local invariant features,
etc.); however, the generalization capability is usually weak.
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Figure 1. Example of the SAR ship targets. (a) Cargo with the VV polarization; (b) Tanker with the
VV polarization; (c) Tug with the VV polarization; (d) Cargo with the VH polarization; (e) Tanker
with the VH polarization; (f) Tug with the VH polarization.

The powerful feature extraction ability of deep learning technology has gradually
made the SAR ship target recognition methods based on deep learning a mainstream
choice in this field. The research experience accumulated in the optical image classification
technology based on deep learning provides rich reference experience for the ship target
recognition tasks in the SAR image. However, due to a lack of significant feature differences
between the SAR ship target classes, a small number of the SAR ship images, and severe
class imbalance, SAR ship recognition remains very challenging. With the public release of
the relevant SAR image datasets, research on SAR ship recognition based on deep learning
has developed rapidly. The relevant research can usually be divided into methods based on
the convolutional neural network (CNN) and the combination of the CNN and traditional
algorithms. Based on the CNN methods, the improvements are usually made from two
aspects: improving the network structure and integrating multi-source information. As
shown in references [10–13], the Siamese network architecture is used for the information
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fusion of the multi-polarized SAR ship images to improve the network performance.
Reference [10] adopts an information fusion method of element-by-element multiplication,
while references [11,12] respectively propose the Bernoulli pooling and grouping Bernoulli
pooling methods to fuse the information in the SAR images with different polarization
methods. Reference [13] proposes the use of the cross-attention mechanism to fuse the
multi-polarized information and enhance the network’s attention to the key features.

The SAR ship recognition method, which combines traditional methods and a CNN,
aims to integrate and utilize both advantages of them. This type of SAR ship recognition
method generally uses traditional feature extraction operators to enhance the features of the
SAR ships, and then integrates and utilizes the feature learning ability of the neural networks
to achieve better performance. According to reference [14], even though the neural networks
have strong feature extraction capabilities, the traditional manually designed features should
be utilized to improve the recognition accuracy. The HOG-ShipCLSNet model has been
proposed [14], which includes four mechanisms: the multi-scale classification mechanism,
global self-attention mechanism, fully connected equilibrium mechanism, and the HOG
feature fusion mechanism. This model performs the global attention mechanism operations
on the features at different levels, and then feeds each level of the feature into the classifier,
averaging the results of each classifier. At the same time, the features extracted by the HOG
operator are subjected to principal component analysis, and finally sent to the final classifier
to obtain the final classification result. Based on the same idea, the MSHOG operator has
been proposed in [15], which can extract the SAR ship features and integrate them into
neural networks. As the transformer enters the field of the visual images, there is great
exploration and research value in applying the transformer to SAR ship target recognition.
However, there is currently no release of the relevant representative research results. With the
development of deep learning technology, the CNN gradually replaces the traditional ship
recognition method and becomes the mainstream choice. However, ship recognition based
on deep learning is also faced with great challenges, due to a lack of clear details of the SAR
ship targets and unbalanced distribution of the categories. The SAR images have different
polarization modes and data forms in the different domains; therefore, researchers are
gradually shifting their perspective to integrating the SAR image data from different sources
in order to improve the performance of the ship target recognition, such as integrating the
SAR image data with the different polarization modes, fusing the complex domain SAR
image data, fusing the manual features and neural network features, etc.

To address the above problems, a two-level feature-fusion ship recognition strategy
combining the HOG features with the dual-polarized data in SAR images is proposed. The
proposed strategy comprehensively utilizes the features extracted by the HOG operator and
the shallow and deep features extracted by the Siamese network in the dual-polarized SAR
ship images, which can increase the amount of information for the model learning. First, the
Siamese network is used to extract the shallow and deep features from the dual-polarized
SAR images, and then the HOG feature of the dual-polarized SAR images is also extracted.
Furthermore, the bilinear transformation layer is used for fusing the HOG features from
dual-polarized SAR images, and the grouping bilinear pooling process is used for fusing
the dual-polarized shallow feature and deep feature extracted by the Siamese network,
respectively. Finally, the catenation operation is used for fusing the dual-polarized HOG
features and dual-polarized shallow feature and deep feature, respectively, which are used
for the recognition of the SAR ships. The content of this paper is organized as follows. In
Section 2, the two-level feature-fusion ship recognition strategy is proposed. First, the HOG
features of the dual-polarized SAR ship images are extracted, and then the Siamese network
is used to extract the deep and shallow features from the dual-polarized SAR ship images.
Then, the HOG features of the dual-polarized SAR ship images are fused respectively with
the deep and shallow features through a feature fusion module. Finally, the fused features
are used for the classification and recognition of the SAR ship targets. In Section 3, the
experiment is conducted on the OpenSARShip2.0 dataset. Finally, a conclusion is presented
in Section 4.
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2. Two-Level Feature-Fusion Ship Recognition Strategy

SAR ship target recognition has become a challenging task due to the unbalanced
distribution of the data categories and unclear differences in the ship targets between the
different categories. It can be said that the characteristics of the information and images are
one of the important foundations for ensuring the effective recognition of SAR ship targets.
Therefore, to improve recognition performance it is necessary to use the multiple sources
of information as much as possible. Inspired by [14], this paper presents a recognition
method based on the Siamese network architecture that integrates the HOG features with
dual-polarized SAR ship images, which can be referred to as the HOG-SiamShipCLSNet.
The overall process of this algorithm is shown in Figure 2.
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Figure 2. Data fusion diagram of the HOG-SiamShipCLSNet model.

The main idea of the proposed model is to fuse the features extracted by the HOG
operator with the deep-level features and shallow-level features extracted by the CNN,
respectively. Furthermore, it also fuses the deep-level features extracted by the CNN for
the dual-polarized SAR images, and then fuses the shallow-level features extracted by the
CNN for the dual-polarized SAR images. Then, several sets of the fused data are all fed
into the classifier for the predictive classification, and the average value is used as the final
output result. This is equivalent to providing multiple decision criteria for the classifier,
enabling it to better avoid producing incorrect classification results and then improve the
model performance.

2.1. HOG Feature Extraction

The proposed model aims to integrate the image features from the multiple sources
to enhance the model ability of SAR ship recognition. Inspired by the reference [14], the
manual features obtained by the HOG operator are also utilized. The HOG features are the
extraction of the gradient statistical information from the images, which can describe the
contour and local changes of the targets and are widely used in the field of images. Thus
far, some scholars [15] from the SAR automatic target recognition community have applied
the HOG feature to perform ship recognition, which has achieved reasonably fair results
(although their methods were all traditional hand-crafted feature-based techniques) [14].
Thus, we will fuse the HOG features into abstract CNN-based features to further improve
the SAR ship recognition performance by realizing the mutual complementarity of tradition
and modernity. The brief process of the HOG feature extraction algorithm is shown in
Figure 3.
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First, the input SAR image is converted to a grayscale image, and then the normal-
ization processing is conducted. The input SAR image size in this paper is set to 64 × 64.
Then, the gradient of the pixel point is calculated using the pixel by pixel, including the
amplitude and direction, which is given by

G(x, y) =
√

G2
x(x, y) + G2

y(x, y) (1)

α(x, y) = arctan
(

Gx(x, y)
Gy(x, y)

)
(2)

Gx(x, y) = H(x + 1, y)− H(x− 1, y) (3)

Gy(x, y) = H(x, y + 1)− H(x, y− 1) (4)

where, G(x, y) and α(x, y) represent the final calculated gradient amplitude and direction
of the point, Gx(x, y) and Gy(x, y) represent the gradient amplitude in the horizontal and
vertical directions, and H represents the pixel grayscale value of the point. Besides, the
image is divided into the multiple grids, and then the gradient histograms within each grid
is counted. In this paper, the grid size is set to 16 × 16 (i.e., containing 64 pixels), where
16 × 16 is an experimental optimal value for the optimal performance. The number of the
angles for the gradient histograms within each grid is set to 6 bins, that is, each bin is 60◦

(i.e., 360◦/6). Besides, 2 × 2 grid sliding window is used to form the multiple modules
on the image from top to bottom and from left to right, with a grid length as a step size.
Within each module, the grayscale histograms of each cell are normalized to reduce the
noise interference. Then, the grayscale histograms of each grid are concatenated to obtain
the feature descriptors of the module. Finally, the feature descriptors of each module are
concatenated to form the HOG features of the entire image. On the entire image with the
size of 64 × 64, 16 cells and 9 modules are set, and the number of the gradient directions
of each cell is 6, then the final output HOG feature length is 216. From the reference [14],
the HOG features obtained in this paper have a shorter length, which it is a near-optimal
value to achieve the best recognition performance of the SAR ship target, thus the principal
component analysis step used to reduce the data dimension can be omitted.

2.2. Network Structure

The structure of the proposed HOG-SiamShipCLSNet model for ship recognition is
shown in Figure 4. The specific data processing flow of the model is as follows. Step 1:
The Siamese network is used to extract the features of the paired SAR ship images in
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two polarization modes, and then the features at the depth of the backbone network are
extracted for subsequent use. Step 2: For the image features of the two polarization modes,
grouping bilinear pooling processing is used separately and crosswise to obtain six sets
of the features. On the one hand, the goal is to reduce the data dimension, and on the
other hand, the effect of fusing the two-polarization data is achieved. Step 3: Six sets of the
features extracted in Step 2 are passed through a fully connected layer to obtain six sets of
features with a length of 64. Step 4: The HOG operator is also used to extract the features
from two-polarization images, and then the bilinear transform layer is used to preliminarily
fuse the dual-polarization HOG features to obtain the features with a length of 64. Step 5:
The HOG features obtained in Step 4 with the six sets of the features obtained in Step 3
have been catenated; this means they can obtain the final six sets of the fused features with
a length of 128. Step 6: The fused features are fed into the same classifier to obtain six sets
of the outputs. In the test stage, the average value of the six groups of the outputs is taken
as the overall output of the model, while in the training stage, the six groups of the outputs
are used to calculate the loss values, respectively, and then add them together to obtain the
overall loss function value, which is used to supervise the model training.
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2.2.1. Backbone Network

A Siamese network refers to a model with two identical subject networks, and the pa-
rameters of the Siamese subjects are shared. It is often used in the fields of face recognition,
image registration, etc. It determines whether the image pair belongs to the same category
by measuring the difference between the pairs of the inputs.

The main body of the proposed model also adopts a Siamese network architecture,
as shown in Figure 5, but does not use the one-shot learning method commonly used
in tasks such as facial recognition to identify the ship categories. The proposed HOG-
SiamShipCLSNet model uses a Siamese network to fuse the dual-polarized SAR ship image
data. After obtaining the features of the dual-polarized SAR images through the main
feature extraction network, grouping bilinear pooling is used for the fusion. The useful
information in the dual-polarized SAR images is fully utilized, thereby improving the
recognition ability of the network. The structure of the feature extraction backbone network
is shown in Figure 6, which follows the design of the hop layer connection of the residual
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networks (ResNet). The backbone network mainly consists of three layers. The first layer
consists of a convolution layer and a pooling layer, with a lower sampling rate of 4. The
second layer contains three skip-layer-connected convolutional blocks, among which the
left bypass of Block1 contains three convolutional layers, and the right bypass contains
one convolutional layer, which is merged through the skip-layer connections. The same
applies to Block2, except that the right-side bypass merges directly with the left-side bypass
without passing through the convolutional layer. For the proposed model in this section,
the features with the dimensions of (256, 16, 16) and (512, 8, 8) output at levels 1 and 2 are
extracted for fusion processing, which can achieve the goal of two-level fusion.
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2.2.2. Feature Fusion Processing

The feature fusion processing in the proposed model mainly involves the bilinear
transformation layer, grouping bilinear pooling process and concatenation operation. First,
the bilinear transformation layer is used for fusing the dual-polarized HOG features; then,
the grouping bilinear pooling process is used for fusing the shallow and deep features
extracted by the Siamese network; and finally, the concatenation operation is used for fusing
the HOG features and features extracted by the neural network. The bilinear transformation
layer can fuse two input features, and its mapping relationship is shown in the following

Y = X1 AXT
2 + b (5)

where, X1 and X2 represent the two inputs of the bilinear transformation layer, they
represent the HOG features of the two polarization images in this section. A and b represent
the learnable weights and biases of the layer, and Y represents the output of the bilinear
transformation layer.

The grouping bilinear pooling used in this section is an adjustment to the method
proposed in [12], which is also an extension of the initial version of bilinear pooling [16].
The specific formulas for the bilinear pooling are shown as follows:

Y1 = B(F, F) =
1

H ×W
X× XT (6)

Y = Norm
(

Sign(Y1)× (|Y1|) 1/2
)

(7)

where F is the pending features with dimensions of D × H ×W. H and W respectively
represent the height and width of the two-dimensional feature map corresponding to the
certain channel of the feature F, and D is the number of the channels. X represents the
two-dimensional matrix with the dimensions D× H ∗W, which is obtained by flattening
the feature map with the size of H×W corresponding to each channel of the input feature F.
Y represents the vector after the final bilinear pooling, Norm represents the normalization,
and Sign represents the Sign function, whose expression is as follows

Sign(x) =

{
1 x ≥ 0
0 x < 0

(8)

According to Formulas (6) and (7), the feature length of D channels after the bilinear
pooling is D2. If the number of the input feature channels is large, the pooled feature length
will greatly increase the number of the parameters in the subsequent full connection layer.
The idea of grouping bilinear pooling is consistent with the idea of reducing the number of
the parameters in the grouping convolution, which is to group the input features according
to a certain number of channels, then perform the bilinear pooling processing within the
group and finally concatenate them. The output data length after the grouping bilinear
pooling processing is shown as follows:

l = (D/N)2 × N (9)

where N represents the number of the groups.
Compared to directly performing the bilinear pooling, it can greatly reduce the length

of the output features, thereby reducing the number of parameters in the subsequent
connection layers. The processing formulas for the grouping bilinear pooling fusion of the
dual-polarization image features used in this paper are as follows:

Ydual_pol = Cat
[

Func(Fi
1, Fi

2), i ∈ [1, N]
]

(10)
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Ypol1 = Cat
[

Func(Fi
1, Fi

1), i ∈ [1, N]
]

(11)

Ypol2 = Cat
[

Func(Fi
2, Fi

2), i ∈ [1, N]
]

(12)

where, Func represents the bilinear pooling processing, and Cat represents the vectors
calculated by concatenating each group. Equation (10) represents the cross grouping
bilinear pooling processing of the dual-polarized data to achieve the purpose of the fusion.
Splicing is the most basic fusion operation, which involves concatenating two feature
tensors together in the channel dimension (or other dimensions) to form a new larger tensor
for the subsequent processing.

2.2.3. Loss Function

As explained in Section 2.2.2, the specific operation process of the model involves
fusing data from the multiple sources to obtain six sets of fused features that are fed into
the classifier, resulting in six sets of output values in a single forward propagation process.
This paper calculates the loss function between the six sets of output values and the real
value respectively, and then takes the average value as the overall loss value, which is
then used for the back propagation to update the network parameters, which are shown
as follows:

Lossall =
1
6

6

∑
i=1

Criterion(Outi, gt) (13)

where, Outi refers to the i-th output, gt refers to the label, and Cross entropy Loss function
is used for the calculation of each sub Loss function. Its formula is as follows

L = −
n−1

∑
i=0

yi × log(pi) (14)

where, yi represents the label value, pi represents the predicted value, corresponding to the
likelihood of the current image belonging to that category, and n represents the label length
representing the number of categories.

3. Experimental Results and Analysis
3.1. Experimental Setup

In this paper, the OpenSARShip2.0 dataset released by Shanghai Jiao Tong Univer-
sity [6] was adopted as the experimental data, which includes 34,528 SAR ship image slices,
mainly obtained from the Sentinel-1 satellite SAR system. It includes two interference
wideband modes: single look complex (SLC) and ground range detected (GRD). Each ship
SAR image slice is verified by a maritime traffic website or automatic identification system
(AIS) to ensure the accuracy of the label. The resolution of the GRD mode is 20 × 22 m,
while the resolution of the SLC mode is from 2.7 × 22 m to 3.5 × 22 m. The imaging area
of the SAR image slice includes many port regions such as Shanghai and Shenzhen, and
there is no interference such as land background. The same ship contains sliced pairs of
the VV and VH polarization modes. There are more than 10 types of ship categories in the
entire dataset, but the distribution of the category numbers is extremely uneven. Usually,
several of them are selected for the experiments and analysis. In this paper, a relatively
large number of cargo (with the chip number 21241), tanker (with the chip number 6343),
fishing (with the chip number 454), and other type (with the chip number 5224) [6] have
been selected for ship recognition and classification in the experiments.

The number of SAR images in the training set and test set was divided in the ratio of
3:1, and the input SAR image size was adjusted to 64 × 64. An Adam optimizer was used
for the model training. For the neural network trained in this experiment, the batchsize was
set to 32, and the learning rate was set to 0.0001. In the above dataset, the experiment uses
a server equipped with a graphics card of the NVIDIA GeForce 3090 and central processing
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unit (CPU) of the Intel (R) Xeon (R) E5-2678 v3 @ 2.50 GHz model. The operating system
is ubuntu 22.04 LTS, and the software development uses the Pytorch 1.13 framework and
accelerates the model using the CUDA11.7.

3.2. Evaluating Indicator

In this paper, the common evaluation indicators in the field of general image recog-
nition are used to evaluate the recognition performance of the models involved in the
experiment, mainly including the precision, recall rate, and F1 score. The recognition
precision, recall rate and F1 score of the single category SAR images can be given as follows:

Precisioni =
TP

TP + FP
(15)

Recalli =
TP

TP + FN
(16)

F1i = 2× Precisioni × Recalli
Precisioni + Recalli

(17)

where TP represents the number of correctly classified targets in this category, FP represents
the number of falsely identified targets in this category, and FN represents the number of
falsely negative targets in this category that are only recognized as the other categories.
Due to the uneven distribution of the number of targets on the various types of ships, for a
fair evaluation we use the proportion of the number of ship images as a weighting factor
to calculate the weighting value as the overall evaluation index. The specific formulas are
as follows:

Precision =
C−1

∑
i=0

Ni
N

Precisioni (18)

Recall =
C−1

∑
i=0

Ni
N

Recalli (19)

F1 =
C−1

∑
i=0

Ni
N

F1i (20)

where, N represents the number of all SAR images, Ni represents the number of the SAR
images of this category, and C represents the number of the categories. The weighted recall
rate is equal to the accuracy, which is the proportion of all correctly predicted samples to
the total number of samples.

3.3. Experiment and Analysis
3.3.1. Recognition Performance

To verify the effectiveness of the proposed HOG-SiamShipCLSNet strategy, the experi-
ment compared the models with the multiple paradigms. The mainstream classification
network based on the CNN selects the ResNet (including 18, 34 and 50 depths) [17],
densely connected convolutional network (DenseNet) (including 121 and 161 sizes) [18],
VGG16 [19], MobileNet-v2 [20], and AlexNet [21]. The classification network based on
the visual transformer selects the ViT [22] and ResNet50ViT. ResNet50ViT is the fusion of
the CNN and ViT, which first uses the backbone network of the ResNet50 to extract the
image features, then sends the features to the ViT for further learning and finally gives the
classification results. In order to verify the effectiveness of the Siamese network used to fuse
the dual polarimetric SAR image data, this paper also builds a comparative experimental
model based on the network architecture shown in Figure 5 and the backbone network
shown in Figure 6. To facilitate the differentiation, these two networks are respectively
called the SiamShipCLSNet (Mul) and SiamShipCLSNet (group bilinear) in this paper.
The data fusion mode (element-by-element multiplication, and group bilinear pooling) is
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indicated in parentheses. The comparative experimental results are summarized in Table 1.

Table 1. Recognition performance of the different modes.

Methods Modes Precision Recall F1

Mainstream
classification network

ResNet18 0.6267 0.6590 0.6331
ResNet34 0.6212 0.6545 0.6312
ResNet50 0.6210 0.6597 0.6152

DenseNet121 0.6332 0.6630 0.6389
DenseNet161 0.6371 0.6706 0.6436

VGG16 0.6319 0.6670 0.6306
MobileNet-v2 0.5989 0.6438 0.5974

AlexNet 0.6332 0.6653 0.6258

Transformer
ViT 0.6078 0.6434 0.5826

ResNet50ViT 0.6213 0.6586 0.6261

Siamese network
architecture

SiamShipCLSNet (Mul) 0.6582 0.6816 0.6612
SiamShipCLSNet (Group-bilinear) 0.6658 0.6905 0.6707

Proposed method HOG-SiamShipCLSNet 0.6787 0.7017 0.6822

Based on the experimental data, it is not difficult to see that the proposed HOG-
SiamShipCLSNet model, which integrates the HOG and dual polarization SAR ship image
data, achieved the best results in the precision, recall, and F1 score of 0.6787, 0.7017, and
0.6822, respectively. Secondly, two experimental models based on the Siamese network
architecture, the SiamShipCLSNet (Mul) and SiamShipCLSNet (Group bilinear), which fuse
the dual polarization SAR ship image data, perform better than the other models. Among
them, the SiamShipCLSNet (Group bilinear) model achieves the scores of 0.6658, 0.6905,
and 0.6707 in precision, recall, and F1 scores, respectively, which is second only to the
performance of the proposed HOG-SiamShipCLSNet model. Therefore, it can be considered
that the proposed recognition network and design scheme based on the Siamese network
fusion of the multiple polarization SAR image data are very effective. This phenomenon
is in line with the reports of [14], because ships generally exhibit different backscattering
values in the dual-polarized SAR images in the OpenSARShip2.0 dataset, which is helpful
for ship recognition and classification. Therefore, introducing the multiple data sources and
carefully designing the network can effectively improve the performance of the proposed
HOG-SiamShipCLSNet model.

Further analyzing the experimental data, it can easily be found that the experimental
model of the transformer architecture performs the worst. One of the important reasons
is that the transformer needs more training data than the traditional CNN, and the small
amount of SAR ship image data is not conducive to the transformer’s excellent performance,
such as the optical image classification tasks. For the mainstream CNN - classification
network used in the experiment, the DenseNet161 achieved the best performance, while
the lightweight design of the Mobillenet-v2 network produced the worst performance, with
an F1 score of only 0.5974, which may be due to its poor learning ability.

3.3.2. Model Parameter

The model parameter quantity is also one of the important evaluation indicators for
evaluating the resource utilization demand of the models. When the performance difference
of the model is small, the strong advantages of the model with the small parameter quantity
will be demonstrated during the deployment. Although the performance of the CNN in the
various tasks is improving day by day, the network size is also starting to rise; therefore, its
model parameters must be evaluated.

Table 2 shows the mode parameter size of the experimental model in this paper, and
the unit of the data is M. According to the data, it can be seen that the proposed HOG-
SiamShipCLSNet model integrating the multi-source features and achieves the optimal
recognition performance while only occupying a parameter size of 7.81 M. Although some
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experimental modes (such as the SiamShipCLSNet, Mobillenet-v2 and DenseNet121) have
a small parameter size, their recognition performance is worse compared to the proposed
HOG-SiamShipCLSNet model in this paper.

Table 2. Model parameter quantity of the different modes.

Methods Modes Model Parameter

Mainstream classification network

ResNet18 11.80 M
ResNet34 21.29 M
ResNet50 23.52 M

DenseNet121 6.96 M
DenseNet161 26.48 M

VGG16 134.28 M
Mobillenet-v2 5.64 M

AlexNet 57.02 M

Transformer
ViT 12.76 M

ResNet50ViT 9.95 M

Siamese network
architecture

SiamShipCLSNet (Mul) 2.23 M
SiamShipCLSNet (Group-bilinear) 1.97 M

Proposed method HOG-SiamShipCLSNet 7.81 M

4. Conclusions

Firstly, due to the lack of clear features and small inter-class differences in SAR
ship images, SAR ship recognition has become a challenging task. Secondly, the existing
SAR ship image dataset has limited data and unbalanced class distribution, which is
not conducive to learning the deep learning models. Finally, SAR imaging has different
polarization modes, and the images under the different polarization modes contain different
information about the same target, which should be comprehensively utilized to improve
the recognition ability of the network.

This paper presents a two-level feature-fusion ship recognition strategy combining
the HOG features with the dual-polarized data in the SAR images, which comprehensively
utilizes the features extracted by the HOG operator and dual-polarized SAR ship images,
thereby increasing the amount of information for the model learning. First, the Siamese
network was used to extract the shallow and deep features from the dual-polarized SAR
ship images, and then the HOG features of the dual-polarized SAR ship images were also
extracted. Subsequently, the HOG features of the dual-polarized SAR ship images were
fused respectively with the shallow and deep features through a feature fusion module.
Finally, the fused features were used for the classification and recognition of the SAR
ship targets. The ship recognition experiment was conducted on an OpenSARShip2.0
dataset, which shows that the proposed strategy can effectively improve the recognition
performance of SAR ships by fusing the dual-polarized SAR images at different levels,
thereby proving the effectiveness of the proposed strategy. In further work, more effective
information (such as the prior information like SAR imaging characteristics) and more
effective fusion methods should be conducted [23].
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