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Abstract: The acquisition of building structures has broad applications across various fields. How-
ever, existing methods for inferring building structures predominantly depend on manual expertise,
lacking sufficient automation. To tackle this challenge, we propose a building structure inference net-
work that utilizes UAV remote sensing images, with the PIX2PIX network serving as the foundational
framework. We enhance the generator by incorporating an additive attention module that performs
multi-scale feature fusion, enabling the combination of features from diverse spatial resolutions of
the feature map. This modification enhances the model’s capability to emphasize global relationships
during the mapping process. To ensure the completeness of line elements in the generator’s output,
we design a novel loss function based on the Hough transform. A line penalty term is introduced that
transforms the output of the generator and ground truth to the Hough domain due to the original
loss function’s inability to effectively constrain the completeness of straight-line elements in the
generated results in the spatial domain. A dataset of the appearance features obtained from UAV
remote sensing images and the internal floor plan structure is made. Using UAV remote sensing
images of multi-story residential buildings, high-rise residential buildings, and office buildings as
test collections, the experimental results show that our method has better performance in inferring
a room’s layout and the locations of load-bearing columns, achieving an average improvement of
11.2% and 21.1% over PIX2PIX in terms of the IoU and RMSE, respectively.

Keywords: building structure inference; mapping relationship; additive attention module; line
penalty term; UAV remote sensing image

1. Introduction

The building structure plays a crucial role in applications such as building strength
assessment and controlled demolition [1–4]. In certain situations, such as with very old
buildings [5] or buildings that cannot be entered, often their architectural drawings are
missing, or it is not possible to directly obtain information about the building’s structure.
In these situations, practitioners may manually infer the building’s structure from the
building’s outward appearance. With the development of remote sensing technology,
unmanned aerial vehicles (UAVs) with high-resolution images have been widely used in
different fields [6–9], making it easier to obtain the appearance features of buildings, which
makes it possible to use UAV images to infer the structure of buildings.

Currently, there is relatively little research on inferring building structures. More
attention is focused on the semantic segmentation and recognition of building floor plans,
which involves extracting more information about the rooms, such as their categories and
areas, based on the structural form of the building. Such methods involve designing a
specific set of rules to process the input building floor plan. Traditional methods mainly
use line detection to determine the boundaries of the building and then recognize the
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contours of the rooms based on different rules. Macé [10] used a combination of Hough
transforms and image vectorization for the line detection of houses and then used the
polygonal approximation convex decomposition method to divide and extract the rooms
based on the extracted results. Ahmed et al. [11] processed building floor plans using
graphic and text segmentation methods, classified wall thickness, and achieved the precise
segmentation of building floor plans to extract houses. De las Heras [12] established wall
hypothesis rules to model parallel line elements in building floor plans, deduced wall
features based on probability, and extracted walls. Additionally, introducing topological
relationships in traditional methods can also help recognize the contours of building floor
plans. Gimenez et al. [13] formulated recognition rules for building outlines based on
the topological relationships between points and used a heuristic algorithm to identify
the discontinuous parts of walls in 2D planes, generating 3D models that comply with
the industry rules. Jang [14] preprocessed planar building maps, separated semantic
symbols from the map, and then performed vectorization operations on the map to find
the topological relationship of the map and used the adjacency matrix method to obtain
the relationship of the building structure skeleton. Methods that reduce data complexity,
such as distribution analysis [15], have brought new research perspectives to the semantic
recognition and segmentation of architectural floor plans.

With the in-depth research of deep learning methods, the research on architectural
structures mainly includes two parts: semantic recognition and the segmentation of archi-
tectural floor plans, as well as the automatic generation of architectural floor plans. In the
field of semantic recognition and segmentation, deep learning methods are data-driven
and can improve the robustness of the method in extracting rooms, which helps researchers
decrease the difficulties of designing extraction rules. Dodge et al. [16] used a fully convolu-
tional network (FCN) for wall segmentation and used the faster R-CNN network to detect
six types of objects (doors, sliding doors, gas stoves, bathtubs, sinks, and toilets) in building
floor plans. Then, OCR was used to extract numbers from the floor plan to calculate the
area of the house. Liu et al. [17] proposed the raster-to-vector algorithm, which uses a
CNN-based vectorization operation to extract the outline structure of the building and then
extracts deep constraints through the network. Lee et al. [18] proposed the Roomnet, which
performs convolutional encoding–decoding operations on input house photos, extracts
a series of layout key points such as corners, beams, and columns from the image, and
then connects them in a logical order to obtain a house layout. Huang et al. [19] used a
Generative Adversarial Network (GAN) to generate building floor plans with different
color markings for different rooms as the input, and both the generator and discriminator
were trained using CNN networks to recognize and generate floor plans. In the same
year, Yamasaki [20] proposed the Maximum Common Subgraph (MCS) algorithm based
on the idea of semantic segmentation. The algorithm extracts vertices from the graph
in the form of an adjacency matrix, rearranges duplicate vertices through matrix multi-
plication to determine the best MCS, and then uses the FCN network to train and learn
the segmented building floor plan. In the field of automatic generation, computer-aided
automatic spatial layout design methods have been proposed in the field of architecture for
a long time [21–23], with the main goal of generating spatial layouts of buildings based on
certain constraints. With the proposal of the Generative Adversarial Network (GAN) [24]
and the research of related methods, more data-driven spatial layout design networks
have been proposed, such as House-GAN [25], Building-GAN [26], House-GAN++ [27],
and ESGAN [28], which utilize generative adversarial networks to extract regularities and
automatically design spatial layouts based on constraint conditions.

From the above methods, we can see that it is challenging to use appearance features to
infer building structures. The building structure inference process can be seen as an image-
to-image translation problem that needs to establish a mapping relationship between
appearance features and the internal structure of the buildings. Based on the fact that
UAV remote sensing images contain rich appearance features, a specialized database
is established. The external features of buildings such as the distribution of doors and
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windows as well as the location of entrances are used to build input images, and the
ground truth is established according to the real CAD floor plan. By learning the mapping
relationship between the two using a generator, the structure of the building can be inferred
from the UAV remote sensing images. With the widespread application of deep learning
in image processing, especially with the use of a PIX2PIX network [29], it is possible to
establish a mapping relationship between images, which can be beneficial for inferring the
structure of buildings from its appearance features. As a result, we chose PIX2PIX as the
framework for our method. For establishing the mapping relationship, the generator of
PIX2PIX focuses on extracting local features and does not effectively extract global features
such as symmetry in building structures. To improve this limitation, an additive attention
module is added to the generator that takes in the downsampling and upsampling feature
maps from different layers and generates an attention map to replace the downsampling
layers in the original generator for concatenation. By fusing multi-scale features, the
module achieves the goal of extracting the global features of building structures. At the
same time, we designed a novel loss function to ensure the completeness of line elements
in the generated results. The loss function of PIX2PIX can effectively enhance the high-
frequency information of the results, improving their resolution. However, it does not
consider the relationship between pixels at different positions. Therefore, in our method,
the existing loss function of the PIX2PIX network may result in incomplete straight-line
features, such as walls, in the generated images. To better characterize the completeness of
line elements, the output of the generator as well as the ground truth are transformed into
the Hough domain, where the number of intersections is used to represent the completeness
of the lines. By minimizing the loss function, we make the two images as close as possible,
ensuring the completeness of the line elements in the images.

In summary, the following are our contributions:

1. In response to the limited research on inferring internal building floor structures using
UAV remote sensing images, we propose an architecture inference network based on
a PIX2PIX network backbone. The network takes the building appearance outline
images as input and utilizes a trained generator for inference, achieving the specific
task of inferring building structures.

2. In response to the characteristics of the dataset for this task, we introduce an adaptive
attention module into the network. The inclusion of this module enhances feature
extraction in the interested region, thereby avoiding the problem of global feature
loss during downsampling to some extent and improving the accuracy of inference.
At the same time, the introduction of the spatial attention mechanism improves
computational efficiency and saves computing resources.

3. In order to address the issue of the original loss function’s inability to effectively
constrain the integrity of the results, we design a dedicated loss function that includes
a penalty term for wall integrity in addition to the original loss function. Through
measuring the number of intersection points after transformation in the Hough do-
main, this loss function can effectively constrain the results, giving sufficient attention
to the integrity of the lines and walls, thereby improving the integrity of the walls in
the results and increasing the accuracy of the inference.

2. Backgrounds

The Generative Adversarial Network (GAN), proposed based on the zero-sum game
theory, consists of a generator and a discriminator, both of which are deep learning net-
works. The generator is trained to map the noise vector (z) to an output (y), as shown in
Equation (1):

G : z→ y. (1)

The objective of the generator is to make the data distribution of the output, pY(y),
approximate the distribution of real data, pX(x), as closely as possible. The discriminator
is used to determine the authenticity of the generated output (y). The goal of a GAN is to
train the generator such that the discriminator cannot distinguish between the generated
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output and real data. To achieve this objective, it is necessary to find the optimal mapping
function, as is given in Equation (2):

G∗ = argmin
G

max
D

LGAN(G, D), (2)

where LGAN(G, D) is the objective function of the GAN, as shown in Equation (3):

LGAN(G, D) = Ex∼px(x)[log D(x)] +Ez∼pz(z)[log(1− D(G(z)))]. (3)

where x is the real data, px(x) is the probability distribution of real data, z is the random
noise, and pz(z) is the probability distribution of noise data.

During the training process of the GAN, each training round consists of two parts:
discriminator training and generator training. In the discriminator training phase, the
generator parameters are fixed, and the discriminator is trained using both the generated
results and real data to maximize the probability of a correct classification and distinguish
the generated results from the real ones as much as possible. In the generator training
phase, the discriminator parameters are fixed, and the generator is trained using generated
data to make it as close to the real data as possible. These two phases are alternated until
an equilibrium point is reached where the generator can generate realistic data and the
discriminator can accurately distinguish between the real and generated results.

Based on the GAN proposed by Goodfellow, Isola proposed a general solution to the
image-to-image translation problem using GANs known as the PIX2PIX network [24,29]. To
obtain the mapping relationship between images, this network takes a pair of images as the
input, with one image being used as the input to the generator and the other one being used
as the real result, which is input together with the generator’s output to the discriminator for
discrimination, thus completing the training process. The network combines the distance
loss function and the loss function of the generative adversarial network to improve the
quality of the output image, as shown in Equation (4):

G∗ = argmin
G

max
D

LcGAN(G, D) + λLd(G), (4)

where LcGAN(G, D) is the loss function of the conditional GAN [30], as shown in Equation (5).
Ld(G) is the L1 distance loss function [31], as shown in Equation (6). λ is the weight of the L1
distance loss function.

LcGAN(G, D) = Ex∼px(x)[log D(x, y)] +Ez∼pz(z)[log(1− D(G(z, y)))], (5)

Ld(G) = Ex,y,z[‖y− G(x, z)‖1]. (6)

In PIX2PIX, the L1 distance loss function is used to measure the difference between
the generated image and the real image, which can effectively preserve the high-frequency
details of the image and make the generated image clearer. Additionally, a smaller distance
loss, according to Equation (6), means that the generated result is closer to the true value,
ensuring the consistency between the generated image and the real result and the unity of
the style.

3. Proposed Method
3.1. Building Structure Inference Network

The overall process of the building structure inference network is shown in Figure 1.
The method is divided into two parts: training and implying. During the training process,
we extract features from UAV remote sensing images and corresponding CAD drawings to
obtain a training set, including the network inputs and the corresponding inferred ground
truth. We use PIX2PIX as the framework of the building structure inference network and
introduce a specialized loss function for the additive attention gates. Through network
training, we obtain a generator with inference capabilities. Its function is to infer the
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internal layout of the building based on the exterior contour and the location of the entrance
captured by the drone during the inference process, thus achieving the goal of this method.
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3.1.1. Generator

The generator of the building structure inference network uses U-net [32] as the
basic framework. The U-net consists of symmetric downsampling and upsampling layers,
and this symmetrical structure can be viewed as a learning/inference process, which is
the key to the inference ability of our method, shown in Figure 2. During training, the
network takes the exterior contour feature map of the building as the input. The encoder
extracts its appearance features, and the decoder uses the extracted feature maps to perform
inference and generate a building plan with the internal structure as the output of the
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generator. Additionally, the U-net network adds skip connections between the encoding
and decoding stages, connecting corresponding feature distributions. This allows the
network to preserve detailed feature information at different scales, and the information
can be directly transmitted through the skip connections, reducing the information loss
during downsampling and ensuring the comprehensiveness of feature extraction.
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Figure 2. Composition of the generator of the building structure inference network.

In the inference of architectural structures, the internal structure of a building needs
to be determined not only based on external features but also by considering the global
relationship of the building, such as the layout of symmetric structures. However, in the
downsampling process of the U-net network, the feature extraction process can lead to the
partial loss of global information as the number of convolutional layers increases, which
makes it difficult for the generator to reason about the global features of the building. In
addition, according to the form of the dataset, the external contour features of the building
and the layout of the floor plan are expressed in the form of lines, so the information
extraction of the internal blank area is not the focus of the research. Therefore, the network
needs to focus more on the relationships between lines when learning the rules to increase
the attention on the regions of interest.

Considering the above two factors, we introduced an additive attention module that
can enhance attention on regions of interest while maintaining the correlation of global
features through the additive gate. This module improves the accuracy of the inference
results while improving the calculation efficiency. The specific structure of the module is
shown in the Figure 3.

In the original U-net architecture, the skip connections directly concatenate the feature
maps of the encoding and decoding paths at the same spatial resolution. After introducing
the attention module, as shown in Figure 3, the connection layer is modified to multiply the
feature maps obtained through downsampling with the interest feature maps generated by
the additive gating mechanism, which is represented by the attention map, as shown in
Equations (7) and (8).

Ql
a = CT(σ1(CTxl

i + CT gi + bg)) + bC, (7)

αl
i = σ2(Ql

a(xl
i , gi; θa)). (8)

where σ1 represents the ReLU activation function. σ2 = (xi,c) = 1
1+exp(−xi,c)

represents
the Sigmoid activation function. θα is a set of trainable parameters. C is a 1 × 1 × 1
convolutional layer that maps different feature maps into the same vector space. bg ∈ R
and bC ∈ RFint represent different biases, which are set as the initial parameters of the
attention module.
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During the upsampling process, the input of the attention module comes from different
convolutional layers. For example, the input of the first attention module is the output
feature maps of the last two layers of the encoder, while for the second attention module
and beyond, the input is the output feature maps of the current decoder layer and the
previous decoder layer. Therefore, this module links the features of adjacent layers together,
as shown in Figure 3. Attention modules are incorporated into all five upsampling layers,
which ensures the inter-correlation of features across the entire network, maintains the
feature association from local to global, and reduces the loss of global features, thereby
achieving cross-scale feature correlation.

Meanwhile, due to the fact that the RGB pixel values of the uninterested regions are
[0,0,0], the attention scores of these regions are significantly reduced after a series of hidden
layer computations in the additive gating mechanism. Therefore, after the multiplication of
the feature maps, the feature values of these uninterested regions are small, which can help
the network capture the features better.

Overall, the addition of the attention module helps the generator extract the regularity
of building planar structures and reduces the impact of uninterested regions on feature
extraction. At the same time, the attention module reduces the loss of global features during
downsampling and strengthens global correlation, which has significant implications for
building structure inference.

3.1.2. Discriminator

In the building structure inference network, the discriminator adopts a fully convolu-
tional network and shares the same network skeleton as that used in PatchGAN [33]. The
input to the discriminator is the generator’s output and the ground truth image, and the
features are extracted and compared by the fully convolutional network. In GANs, features
are obtained by a multi-layer convolution, and the difference between the generated and
ground truth images is compared to output a binary result of 0 or 1. A result of 1 denotes
that the generated image conforms to the probability distribution of the ground truth,
while 0 indicates that it does not meet the requirement. However, this binary classification
method has limitations when dealing with complex generated results, such as those in this
method for building structure inference. The convolution process can cause the disappear-
ance of global features, resulting in a decrease in the discriminator’s discriminative ability.
When the generated results are not accurate enough, they are still classified as 1. Therefore,
we need to adjust the structure of the discriminator to enhance its discriminative ability.
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To address this issue, we chose PatchGAN as the discriminator skeleton. PatchGAN’s
output is not binary (0 or 1) but a matrix, with each element representing a part of the
original image. This approach allows for a more detailed description of the generated
results, thereby facilitating a better comparison between the generated and real images.
The objective function is given as follows:

D∗ = argmax
{

Ex,y∼Pdata(x,y)[log D(x, y)] + Ex∼Pdata(x),z∼Pz(z)[log(1− D(x, G(x, z)))]
}

. (9)

The network architecture of the discriminator is shown in Figure 4. After passing
through four convolutional layers, a 30 × 30 feature matrix is obtained, with each element
corresponding to a part of the original image, i.e., a patch. By comparing the two matrices,
the discriminator can compare more features and thus has stronger discriminative ability.
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3.2. Loss Function

Based on Equation (4), the loss function of the PIX2PIX network is mentioned above.
However, in this task, using Equation (4) alone does not accurately represent the accuracy of
the inference results. This is because the loss function of PIX2PIX places more emphasis on
the overall image quality of the generated results. However, in this task, we need to better
measure the accuracy of the inference results, including their accuracy and positional deviation.
Therefore, we introduce Dice loss [34] into the loss function to quantify the degree of deviation
between the inference results and the ground truth. Dice loss measures the overlap between
the predicted and ground truth results and is particularly effective for pixel-level tasks. By
combining Dice loss with the loss function of PIX2PIX, we obtain a more comprehensive and
accurate loss function that can better measure the accuracy and positional deviation of the
building structure inference and improve the quality of the inference results.

LDice = 1− 2|G(x) ∩ y|
|G(x)|+ |y| , (10)

During the experiment, we found that the generated results often have incomplete
straight elements, such as walls. To address this issue, we propose to introduce a penalty
term to constrain the completeness of the walls. Considering that the Hough transform [35]
is a commonly used method for detecting straight lines, we propose a penalty term based
on a Hough transform to constrain the completeness of walls. The Hough transform detects
straight lines by counting the number of intersection points between curves in the Hough
space, which does not require the position of the straight lines in the image. Therefore, we can
use the number of intersection points to constrain the completeness of the generated straight
lines, which can effectively improve the quality of the generated results. This penalty term
not only serves as a constraint but also helps to improve the expression of the loss function.
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The derivation of the penalty term is shown below. First, the image is transformed
into the Hough space, as shown in Equations (11) and (12).

δ(I) = {∀(x0, y0) ∈ I|I(x0, y0)→ H(ρ, θ)}, (11)

ρ = x0 cos θ + y0 sin θ, (12)

Then, based on the values of ρ and θ ∈ [0, 2π], we determine the curve corresponding
to a certain point in the image space and search for the intersection points of the curve.
The number of curves passing through the intersection point is denoted as N(x0, y0). We
then compare the value of the generated image, NG(x)(xi, yj), with that of the ground truth
image, Ny(xi, yj), for the same place. A smaller difference in the number of points indicates
that the straight lines in the two images are closer together and more complete, as shown
in Equation (13):

LHough =
1

M× N
×

M,N

∑
i = 1
j = 1

log
∣∣∣NG(x)(xi, yj)− Ny(xi, yj)

∣∣∣, (13)

According to the Hough transform, when the image is transformed into the Hough
space, each point in the original image can be represented as a cluster of curves in the
Hough space for different values of ρ and θ, and the intersection points of the curves
represent the straight lines in the original image. Therefore, using the complete straight
lines in the ground truth image as a reference, we compare the number of intersection points
obtained after the Hough transform with that of the inferred results. If the numbers are
close, it indicates that the inferred straight lines are relatively complete; if not, it indicates
that the inferred results are not complete enough. To match the scale of the penalty term
with the original loss function, we take the logarithm and calculate the mean of the penalty
term, ensuring that all terms in the loss function are on the same scale. The process of the
straight lines penalty term is shown as Algorithm 1.

Algorithm 1. Straight Lines Penalty Term

Input: Ground truth X and generator result Y
Step 1. Converting X and Y into binary images Xb and Yb.
Step 2. Transforming Xb and Yb into the Hough domain.

- Select an arbitrary pixel point pi from Xb.
- Compute the calculation according to r = xi cos θ + yi sin θ, where the value of θ ranges

from 0 to 2π. θ ∈ [0, 2π]
- Each pixel point corresponds to a curve r in the Hough domain. With m pixel points in Xb,

there is a collection of curves RX including m curves.
RX = {r ∈ R : 0 ≤ θ ≤ 2π, (xi, yi) ∈ Xb, r = xi cos θ + yi sin θ}

- Select an arbitrary pixel point qi from Yb.
- Similary, RY can be computed.

RY = {r ∈ R : 0 ≤ θ ≤ 2π, (xi, yi) ∈ Yb, r = xi cos θ + yi sin θ}
Step 3. Calculate the number of curves at the intersection point.

- Select an intersection point gi(ri, θi) from RX . The number of the curves at gi is Ni
X .

- If Ni ≥ T (T means the threshold of the shortest line which can be detected), calculate the
number of curves in RY passing through point gi(ri, θi). The number of the curves at gi
is Ni

Y .

Step 4. Calculate the straight lines penalty term

- Iterate through all the intersection points, then calculate the straight lines penalty term by

LHough = 1
N

N
∑

i=1
log
∣∣∣Ni

X − Ni
Y

∣∣∣
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Therefore, the loss function, L, for the building structure inference network is:

L = λ1LPIX2PIX + λ2LDice + λ3LHough, (14)

where LPIX2PIX is defined as Equation (4), LDice is defined as Equation (9), and LHough is
defined as Equation (12). λ1, λ2, and λ3 are the weights assigned to each term to balance
their contribution to the overall loss function.

By adjusting the weights, λ1, λ2, and λ3, a more balanced result can be obtained,
which ensures image clarity while also improving the accuracy and completeness of the
inference, leading to an optimal result.

4. Experiments and Results
4.1. Dataset

Our method combines the exterior features of buildings, such as the layout positions
of windows, balconies, entrances, and traffic cores, to infer their internal floor plan struc-
tures. However, existing datasets [36,37] suffer from the problem of unclear entrances and
inadequate correspondence between exterior features and internal structure. To address
the information requirements of building structure inference, we construct a dataset named
RoomLayout based on CAD drawings of real buildings, including multi-story residential
buildings, high-rise residential buildings, and multi-story office buildings. This dataset
covers different building types with various functions and structural features, thereby im-
proving the robustness of the network. The process of creating the training set is illustrated
in Figure 5.
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Firstly, to produce the input for the generator in the network, the building’s external
outline and features, such as window and balcony positions and entrances, need to be
extracted from the CAD floor plan. Based on expert knowledge of building structural
design, it is known that the entrance of a building is connected to its internal vertical
traffic core, which has a depth ranging from 1/2 to 1/3 of the building’s overall depth.
Therefore, the building’s external outline and the position of its internal traffic core can
be extracted as information for structural inference, which are used as inputs for the
generator, as illustrated in the figure. During testing, the generator’s outline is extracted
from UAV remote sensing images, and the building’s external features are further extracted
accordingly. The input during testing is generated by following the drawing method used
in the network’s training dataset.

Secondly, the ground truth images are drawn. The training dataset for the building
structure inference network is paired, so the internal floor layout of the building is drawn
based on the CAD floor plan, and the load-bearing columns in the floor plan are specially
marked. The purpose of marking the load-bearing columns during training is to discrimi-
nate them from other inference results in the final output, which helps to obtain a clearer
result. As shown in the Figure 5, the white lines represent the external outline and the
position of the vertical traffic core, the cyan color represents the external features, the blue
color represents the position of the internal walls and load-bearing columns, the red color
represents the doors, and the pink color represents the position of the horizontal traffic core.

The self-made RoomLayout dataset contains a total of 400 images, including 125 images
of multi-story residential buildings, 134 images of high-rise residential buildings, and 116
images of office buildings. The data sources are real buildings and their corresponding CAD
drawings. The size of the images is 256 × 128, with 320 images (4/5 of the total) used as the
training set and 80 images (1/5 of the total) used as the test set. Some examples from the
dataset are shown in the Figure 6.
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4.2. Evaluation Metrics

In this experiment, two metrics were used to evaluate the inference results, namely
Root Mean Square Error (RMSE) and Intersection over Union (IoU) [23]. The calculation
formulas for these two metrics are shown below:

dRMSE =

√√√√ N

∑
i=1

(∆Xi
2 + ∆Yi

2)/N, (15)

dIoU(X, Y) =
n

∑
i=1

(
xi ∩ yi
xi ∪ yi

)× 1
n

, (16)

where RMSE measures the degree of layout displacement in the inference results by
calculating the deviation distance between each pixel in the inference results and its
corresponding pixel in the ground truth. N is the total number of pixels in the inference
results. IoU evaluates the accuracy of the inference results by calculating the overlapping
degree between the walls in the inference results and those in the ground truth. n is the
total number of walls.

4.3. Experiment Settings

The experiment was conducted on the Python 3.7 platform with PyTorch 1.13.1.
The hardware used for the experiment was an NVIDIA RTX3060 GPU and a 12th Gen
Intel(R) Core(TM) i7-12700 CPU. According to Equation (13), the weights of the loss
function were set to λ1 = 0.3, λ2 = 0.2, and λ3 = 0.5. In the training parameter settings,
we set the epoch to 2000 and the batch size to 4. The learning rates for the generator and
discriminator were set to 0.0002 and 0.0005, respectively. This learning rate setting was
designed to better train the generator and prevent the discriminator from becoming too
strong due to differences in the complexity of the generator and discriminator networks.
The weight of the penalty term was maximized as much as possible while ensuring that
the generator and discriminator converged easily in order to ensure the integrity of the
walls in the inference results.

4.4. Results and Analysis

From Figure 7, we can see that the cGAN network, which uses a CNN-based dis-
criminator, has lower image generation quality and accuracy compared to the PIX2PIX
network with a PatchGAN discriminator and L1 loss function. Furthermore, our proposed
method, which incorporates attention modules to enhance the correlation of global features
and designs a specialized loss function to constrain the integrity of walls, achieves more
accurate inference results than PIX2PIX method. Our method performs well on both resi-
dential buildings with relatively symmetrical room layouts and office buildings with more
complex interiors.

Comparing the experimental results, we can see that our method achieves higher
accuracy in inferring symmetrical building structures. This is because in the process of ex-
tracting regularities, symmetry information relies more on the extraction of global features,
which has a better extraction effect after the introduction of attention modules. Therefore,
compared with the PIX2PIX method, our method achieves higher accuracy in inferring
symmetrical structural layouts, which confirms the feasibility of attention modules.

Based on Table 1, it is evident that our method has a better performance than the
compared method in all three categories of multi-story residential buildings, high-rise
residential buildings, and office buildings. RMSE measures the deviation between the
inferred results and the ground truth in pixels, and the spatial resolution of the image is
determined by the exterior contour scale of the building. By converting the building size, we
can estimate that the deviation for residential buildings is approximately between 350 and
550 mm, and for office buildings, it is approximately between 500 and 600 mm. Compared
to PIX2PIX, our method achieves a 12.3%, 13.6%, and 7.6% improvement in multi-story
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residential buildings, high-rise residential buildings, and office buildings, respectively.
Moreover, the IoU results demonstrate that our method outperforms PIX2PIX by 21.9%,
20.2%, and 21.2% in multi-story residential buildings, high-rise residential buildings, and
office buildings, respectively. This is because most residential buildings have symmetrical
structures and fewer internal inference elements compared to office buildings, resulting in
higher IoU for both types of residential buildings as compared to office buildings.
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Table 1. Evaluation indicators for different types of buildings.

Multi-Story
Residential

High-Rise
Residential Office Building

RMSE (Pixel) IoU RMSE (Pixel) IoU RMSE (Pixel) IoU
cGAN 2.093 ± 0.214 0.525 ± 0.066 2.017 ± 0.196 0.549 ± 0.062 1.708 ± 0.202 0.408 ± 0.059

PIX2PIX 1.461 ± 0.158 0.682 ± 0.054 1.433 ± 0.147 0.677 ± 0.058 1.115 ± 0.136 0.495 ± 0.050
Our method 1.281 ± 0.135 0.832 ± 0.051 1.238 ± 0.129 0.814 ± 0.049 1.030 ± 0.095 0.682 ± 0.051

By calculating the trainable parameters of the network, we can estimate the complexity
of the method. According to Table 2, our method has more trainable parameters compared
to PIX2PIX and cGAN. When running for 2000 epochs with the same batch size and learning
rate, our method takes a longer time. However, our method achieves higher accuracy in
the task of building structure inference. From the results of the inference, the investment in
model complexity and training time is justified.

Table 2. Network parameters (params) and the training time of different methods.

Method Params Training Time (min)

cGAN 25.7 M 19.3
PIX2PIX 44.6 M 44.1

Our method 101.1 M 129.6

From Table 3 and Figure 8, it can be observed that after introducing the Dice loss
function, the improvement in IoU for the three types of buildings were 5.9%, 9.1%, and
24.9%, while the improvement in RMSE were 1.6%, 1.6%, and 10.0%, respectively. The
improvement in IoU is more significant than that in RMSE because the Dice loss function
also measures the overlap between the inferred and ground truth results. The reason
for the more significant improvement in IoU for office buildings compared to residential
buildings is that the internal layout of office buildings is more uniform, allowing for better
inference of repeated elements after introducing the Dice loss function. After introducing
the Hough domain-based penalty term, the improvement in RMSE for residential buildings
was more pronounced, with an increase of 8.7% and 12.5%. This is because the penalty
term emphasizes the integrity of the walls, which leads to an increase in the number of
pixels in the walls and a decrease in the RMSE, resulting in better results. From the results
in Figure 8, it is evident that after introducing the penalty term, the completeness of the
walls has improved compared to the PIX2PIX method, indicating that the loss function we
designed has the ability to constrain the completeness of the walls.

Table 3. Evaluation indicators for different types of loss.

Multi-Story Residential High-Rise Residential Office Building

RMSE
(Pixel) IoU RMSE

(Pixel) IoU RMSE
(Pixel) IoU

LPIX2PIX 1.426 ± 0.145 0.707 ± 0.069 1.415 ± 0.139 0.692 ± 0.065 1.096 ± 0.098 0.513 ± 0.050
LPIX2PIX + LDice 1.403 ± 0.143 0.749 ± 0.072 1.392 ± 0.136 0.755 ± 0.068 0.986 ± 0.090 0.641 ± 0.061

LPIX2PIX + LDice + LHough 1.281 ± 0.135 0.832 ± 0.051 1.218 ± 0.129 0.814 ± 0.049 1.030 ± 0.095 0.682 ± 0.051
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5. Conclusions and Discussion

In this paper we propose a deep learning method for building structure inference
based on the external key information of buildings, aiming to address the lack of deep
learning methods for building structure inference. Our method extracts the building outline
and external features from remote sensing images obtained by drones and uses a building
structure inference network based on the PIX2PIX network as the backbone. An additive
attention module is introduced in the generator, which not only improves computational
efficiency but also effectively extracts global features and enhances the inference capability
of the network. In addition, a new loss function is proposed, which introduces the Dice
loss and a penalty term based on the Hough domain combined with the PIX2PIX loss
function. The Dice loss is used to optimize the accuracy of inference, while the penalty term
emphasizes the integrity of straight-line elements in the inference results. The experimental
results show that the proposed method has high accuracy in inferring the structures of
three types of buildings: multi-story residential, high-rise residential, and office buildings.
The deviation of the inferred results is within 600 mm after conversion, and the highest
IoU of the images can reach 0.832, demonstrating the potential of the proposed method as
an automated solution for building structure inference.

Although the building structure inference network can accurately infer the building
structure based on UAV images, there are still some limitations to this method. Firstly,
it does not perform well in inferring complex architectural structures. Since the dataset
is manually made, the data volume is not large enough to cover all architectural design
patterns comprehensively. Additionally, the majority of samples in the dataset are residen-
tial and office buildings, requiring a greater diversity of complex architectural samples
in the dataset. Secondly, the computational speed is limited. While our method provides
more accurate results compared to existing methods such as CGAN and PIX2PIX, the
training time of the model remains a significant challenge. Therefore, further research is
needed to simplify the model and reduce its computational complexity while maintaining
its accuracy.
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