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Abstract: This paper addresses the estimation of the target translational motion by using a multistatic
Inverse Synthetic Aperture Radar (ISAR) system composed of an active radar sensor and multiple
receiving-only devices. Particularly, a two-step decentralized technique is derived: the first step
estimates specific signal parameters (i.e., Doppler frequency and Doppler rate) at the single-sensor
level, while the second step exploits these estimated parameters to derive the target velocity and
acceleration components. Specifically, the second step is organized in two stages: the former is for
velocity estimation, while the latter is devoted to velocity estimation refinement if a constant velocity
model motion can be regarded as acceptable, or to acceleration estimation if a constant velocity
assumption does not apply. A proper decision criterion to select between the two motion models is
also provided. A closed-form theoretical performance analysis is provided for the overall technique,
which is then used to assess the achievable performance under different distributions of the radar
sensors. Additionally, a comparison with a state-of-the-art centralized approach has been carried out
considering computational burden and robustness. Finally, results obtained against experimental
multisensory data are shown confirming the effectiveness of the proposed technique and supporting
its practical application.

Keywords: inverse synthetic aperture radar; translational motion estimation; multistatic radar systems

1. Introduction

As well known, radar images of man-made targets can be obtained by means of Inverse
Synthetic Aperture Radar (ISAR) techniques, [1,2]. Compared to other methods, ISAR
imaging has the advantage of generating all-day, all-weather maps of target reflectivity. This
strength makes it an important system for target classification and recognition applications.

Nevertheless, conventional (i.e., single channel and single sensor) ISAR systems show
the following inherent drawbacks: (i) conventional ISAR images provide a two-dimensional
projection of targets having a 3D structure; (ii) achievable cross-range resolution depends
on the intrinsic characteristics of the target motion and therefore, depending on the spe-
cific conditions, can be very poor; and (iii) the formation of an ISAR image requires the
knowledge of the target motion parameters (both translation and rotation). Since generally,
the targets are non-cooperative, these parameters must be estimated directly from the
received signal.

Regarding the 3D target reconstruction, point (i), interferometric ISAR (InISAR) sys-
tems offer a solution by applying interferometric technology to the ISAR images of multi-
antenna systems. The traditional InISAR imaging usually employs three antennas to
construct two perpendicular baselines [3]. However, in practical applications, it is not a
simple matter to guarantee the complete orthogonality of the baselines due to the existence
of factors such as system errors or environmental constraints. In [4], a practical maneu-
vering target 3D imaging algorithm based on the InISAR of an arbitrary three-antenna
configuration is investigated.
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The use of multistatic, or even Multiple Input Multiple Output (MIMO), ISAR systems
with multiple sensors observing the same target with different acquisitions geometries
and the joint exploitation of the acquired data allow much richer information to be gar-
nered, overcoming limitations (ii) and (iii) imposed by conventional systems due to their
single perspective. Over the last decade, researchers investigated the potentialities of
multistatic/MIMO ISAR configurations for different tasks, see [5] and references therein.

In particular, distributed ISAR techniques have been also proposed to address the
issues specified in (ii). For example, to enhance the cross-range resolution of rotating
targets, multiple transmitters-receivers can synthesize a wider observation angle than the
single sensor, bringing to a higher resolution [6-8]. Such approaches rely on a proper
coherent combination of the received signals and, therefore, are effective in the case of
limited angular separations among the individual sensors so that a stable behavior of the
scattering mechanism can be assumed. In the case of a wider separation among the sensors,
such an assumption does not hold. As the target e.m. response varies when observed
by significantly different observation angles, incoherent combination approaches must be
considered (e.g., [9] shows that enhanced target classification can be obtained by incoherent
summation of single-sensor images acquired by spatially distributed sensors).

Finally, point (iii), even if motion compensation and image scaling are possible also
with a conventional single sensor (limitations may be present for scaling), multistatic
systems can be exploited for an enhanced estimation of the motion of the target. Specifically,
in this respect, the main advantage of the multistatic systems compared to the monostatic
(conventional single sensor) ones is the possibility to recover the complete target motion,
namely:

e  Velocity and acceleration (x, y) components for translation motion while in contrast,
at the most, a single sensor could allow us to estimate the radial velocity and the
modulus of the cross-range velocity (i.e., indeterminate sign).

e  Roll, pitch, and yaw rates for rotation motion while only the overall effective rotation
rate, or at the most, the vertical and horizontal rotation components could be estimated
by single-sensor techniques.

It could be noticed that complete information regarding translation is of paramount
importance for maritime surveillance purposes and, in general, estimated kinematic pa-
rameters could be exploited also for classification/recognition. A few contributions can
be found in the literature for rotational motion estimation (relevant for image scaling, if
needed) [10,11] and for the estimation of the target trajectory (relevant also for motion
compensation) [12-15]. This work fits into the latter category, addressing the estimation of
the target translational motion capitalizing on the spatial diversity offered by multistatic
ISAR configurations.

In this framework, in general, two different data fusion strategies can be followed,
namely centralized or decentralized. In the former, the kinematic parameters are obtained
directly from the fusion of the multi-sensor signals. This can be obtained in two different
ways as follows:

(a) By fusing at image level, i.e., single-sensor images in a single multi-sensor image.
Along this line, a preliminary proof of concept for the case of two platforms with
constrained geometry, considering only the slow-time domain, was shown in [14,15].

(b) By fusing at the cost function level, i.e., a combination of multiple cost functions, each
evaluated at the single-sensor level. Fusion at the cost function level was considered
in [12,13] for multistatic autofocus.

However, decentralized data fusion architectures are often preferred in multistatic
radar systems because of their larger robustness and scalability under different operative
conditions. Noticeably, unlike centralized procedures, they do not require wideband
communication links between the sensors [16]. Therefore, as an alternative to centralized
approaches, we propose here a decentralized technique to accomplish the translational
motion estimation task in multiplatform imaging systems; some preliminary results along



Remote Sens. 2023, 15, 4372

30f28

this line were previously described in [17,18]. The proposed decentralized multistatic
technique estimates the kinematic parameters via a two-step procedure: (1) first estimate the
single-sensor signal parameters (Doppler centroid and Doppler rate); (2) then jointly exploit
the estimated signal parameters to estimate the kinematic of the target. The second step is
organized into two stages: the first stage is for velocity estimation, while the second one is
for velocity estimation refinement (if a constant velocity model motion can be regarded
as acceptable or, for acceleration estimation, if a constant velocity assumption does not
apply). The selection between the two motion models is ruled by a decision criterion
properly defined. It could be noticed that a decentralized approach could be suitable
as a stand-alone technique (providing the estimates of the target motion parameters)
or to initialize centralized techniques (providing the initial guess of the target motion
parameters that can then be refined by centralized estimation approaches). The theoretical
performance is analytically derived in terms of the covariance matrices of the estimates
parameters (i.e., the single-sensor target signal parameters, Doppler frequency and Doppler
rate, and the target kinematic parameters, velocity, and acceleration); theoretical results are
completed and confirmed by using synthetic data. Performance is then assessed against a
number of varying conditions and compared to the performance of alternative approaches
from the literature. Particularly, the impact of the spatial diversity among the sensors on
the achievable performance is investigated. Regarding the comparison, the performance of
the proposed technique is also compared to that achievable by a centralized approach at
the cost function level. This alternative approach has been selected as it can be suitable for
both co-located and widely separated sensors, as the proposed decentralized technique,
whereas the centralized technique at the image level is suitable for the co-located case only.
Finally, to further prove the effectiveness and demonstrate the practical applicability of the
proposed techniques, results obtained by applying them to live multistatic ISAR data are
also shown.

The remainder of the paper is organized as follows: in Section 2, the multi-sensor
system geometry and the echo model are introduced; in Section 3, the proposed multistatic
estimation techniques are presented and their performance is theoretically analyzed in
Section 4 and assessed in Section 5; Section 6 shows the results achieved against live
multistatic data sets; and Section 7 concludes the paper. Analytical details are reported in
the appendices.

2. Geometry and Signal Model

In this work, we mainly refer to maritime scenarios. Figure 1 shows a pictorial view of
the selected reference scenario comprising a coastal multistatic ISAR system and a vessel
sailing in its field of view. However, it is worth underlining that the work could be easily
generalized to cope with other scenarios and/or different targets.

Sensor i

Figure 1. Coastal multistatic ISAR system.
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Specifically, a formation of N sensors is considered; sensor 1 is a monostatic active
radar system transmitting and receiving while the remaining N — 1 are receiving only
devices. In this case, N acquisitions are provided by the sensor network; one monostatic ac-
quisition, from sensor 1, and N — 1 bistatic acquisitions, each arising from the transmission
from sensor 1 and reception from sensor i (i = 2,...,N). The ship is modeled as a rigid
body; therefore, as usual in ISAR literature, its motion is decomposed as the translation of
an arbitrary reference point and the rotation of the body around that point (hereafter named
target fulcrum). Figure 2 shows the considered acquisition geometry in a fulcrum-centered
reference system.

Sensor N

Sensor i

Sensor1
o

Figure 2. Multistatic acquisition geometry.

In such a system, r;(t) represents the position vector, changing with time, of sensor i,
being ;i (t) and {;(t), respectively, which are the grazing angle and the angle between the
projection on the X-Y plane of the line-of-sight (LOS) and the y-axis (measured counter-
clockwise from the y-axis). At image time (i.e., the synthetic aperture center here assumed
as t = 0 without loss of generality), the position of sensor i is specified by:

x) sin g0 cos )
r(0) = y? = r? — Cos C? cos gb? D
z? sin 1[]?

The target translation motion is taken into account by introducing the velocity vector
v and the acceleration vector a. As we are dealing with ship targets, the vertical component
of both velocity and acceleration is assumed negligible so that we can write v = [v; v, 0]
and a = [ay ay 0] T however, the approach could be easily generalized to cope with situa-
tions where a vertical motion component also has to be included. As usually performed,
the distance of the target fulcrum from sensor i as a function of the slow-time ¢ can be
approximated in second order as:

2

. ot
nt) ~ 4t S @

where i’? and ?? are the distance first and second derivatives evaluated att = 0, and A is
the wavelength. It is easy to show that, for the assumed geometry and target motion, these
derivatives can be written as [19]:

i’? = cos ¢! (—Ux sin¢? + v, cos é?) 3)
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. . 1 . 1 . 2
r? = —cos ) (ax sing) — a, cos §?) + 0 sin? ) (vi + vi) + 0 cos? ) (vx cos g + v, sin Cio) 4)
i i

On this basis, the two-way Doppler centroid and Doppler rate at the i-th sensor are
.0

.0 .0 . .0
written as f; = — (rj + r;\) and f; = — (rj + rAl), respectively.

3. Multistatic Translational Motion Estimation Technique

Considering the availability of a multistatic ISAR system, in this work, we address the
estimation of the target translation motion parameters by means of a two-step procedure:

Step 1: The first step is aimed at estimating the signal parameters (basically Doppler
centroid and Doppler rate) at the single-sensor level;

Step 2: The second step is aimed at estimating the target motion parameters by invert-
ing their analytical relationship with the target signal parameters. This step comprises
two possibilities as the specific analytical relation depends on the assumed model for the
target motion (the choice between the two is driven by a proper target motion model
selection criterion).

The complete decentralized processing scheme is shown in Figure 3. Details con-
cerning the two steps and the adopted selection criterion are provided in the following
sub-sections.

Acquisition of :"Kéaﬁfs_iiféﬁ_b-f“\. Acquisition of
sensor 1 \.__sensori ./ sensor N

Estimation of signal parameters _(f?[‘i?[_i}_i
(sensor 1) '

Step 2 - Stage 1 f

Velocity estimation
(Doppler frequency)

Selection of
motion model

Velocity refinement
(Doppler + Doppler Rate)

f Vs

v f
A9

Stop criterion

True i

: Cinal velocity estimatD
o ) Lo

Acceleration estimate
(Doppler Rate)

Final velocity and
acceleration estimate
vy, d

Step 2 - Stage 2 Step 2 - Stage 2
(Constant velocity model ) (Constant acceleration model )

Figure 3. Decentralized processing scheme.
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3.1. Single-Sensor Signal Parameters Estimation Technique

From the geometry and signal model introduced in Section 2, it is apparent that,
depending on the values of the integration time (T) of the vessel-specific motion, the
transmitted signal bandwidth (B), and the relative position of the sensor with respect to
the target, both the range and Doppler cell migration might be observed in the acquired
single-sensor raw data; particularly, range migration is highly dependent from the Doppler
centroid (range walk component), while Doppler migration is basically due to the Doppler
rate. Therefore, these two single-sensor signal parameters, Doppler centroid and Doppler
rate, are thus estimated as those values providing the single-sensor target image with
the highest quality. In this work, as common in the ISAR literature, we resort to contrast
maximization [20] but also other cost functions could be adopted (for example, entropy
minimization [21]).

Since, for the application under consideration, the target size is limited to say about
one hundred meters and we are not dealing with very high resolution, we consider
here a processing technique that exactly compensates the migration through the range
and Doppler cells for the ship fulcrum and then it images the target via Fourier trans-
form (i.e., rectangular format). Specifically, starting from single-sensor data in the range-
compressed, slow-time domain, the range migration correction is performed by compensat-
ing at slow time instant (t) for a fast-time delay given by ”T’t, where v, is the generic radial
velocity, and c is the speed of light. By expressing the generic radial velocity in terms of the

generic value for the Doppler centroid (f), such a delay can be rewritten as e _ft with

c fe’
fc being the carrier frequency. Therefore, the correction is performed in the fast-frequency
and slow-time domain by multiplying the transformed data by:

D (fT,t,f> =exp (—janT£t> 5)

with f; being the fast-frequency. The following step is a range inverse Fourier transform

to map back the data in the range-compressed and slow-time domain, where they are
multiplied with a reference chirp signal (i.e., data dechirping):

@, <t,? ) — exp (—jn}tz) ©)

with f being the generic value for the Doppler rate. Finally, an azimuth Fourier transform
is performed to obtain the data in the image domain. Let I; <j?, f ) be the intensity value of

this i-th single-sensor complex image by defining the image contrast as:

P LR
R )

where the operator E{-} represents the image spatial mean. The final Doppler and Doppler
rate estimates at sensor i are obtained by maximizing the contrast.

I ) -

3.2. Kinematic Parameters Estimation Technique

The second step is organized into two stages: the first stage is for velocity estimation,
while the second one is for velocity estimation refinement. If a constant velocity model
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motion can be regarded as acceptable, or for acceleration estimation, a constant velocity
assumption does not apply. The decision between the two motion models is performed
according to the criterion described in Section 3.3.

3.2.1. Kinematic Parameters Estimation Technique—Stage 1

Starting from the first stage, considering the formation of N sensors and using a matrix
notation and results in Section 2, we can write:

f=Go 9)

where fis the N x 1 vector collecting the N estimated Doppler centroids, v = [vx vy ] T and
G is a N x 2 matrix taking into account the specific acquisition geometry:

2cos ¥sin ) —2cos ¢ cos ¢9
1| cos 4)? sin é(l] +cosyysing)  —cos 1/)? cos C? — cos §9 cos {9
A o .
cos Y9sin¢¥ + cos ¢ sin ¢ — cos ¥ cos Z§ — cos Y cos IY

G= (10)

Exploiting the Doppler frequencies estimated in step 1, and assuming the knowledge
of the acquisition geometry, the target velocity is obtained as the least square (LS) solution
of the system in Equation (9), thus obtaining:

—1 A A
o = (GTG) G'f = G*F (11)
where ()" denotes the pseudo-inverse operator.

3.2.2. Kinematic Parameters Estimation Technique—Stage 2

As stated above, in the second stage, if a constant velocity motion model can be re-
garded as acceptable, the velocity estimated at the previous step is refined by incorporating
the Doppler rate information, otherwise, the velocity estimated at stage 1 is retained as the
final estimate, and the Doppler rate information is exploited to estimate the acceleration.

Starting from the case of constant velocity, the exploitation of the Doppler rate mea-
surements requires the solution of a system of N non-linear equations in two unknowns:

fl- = —r%)\ {sinzlp? (v,zc + vﬁ) + cos? ¢ (vycosl) + vysingg)z}
1

fi= - {sinzlp? (v,% + vﬁ) + cos?y? (vxcosC + vysing(l’)ﬂ
1

) N2
- rg))\ [stqJ? (v,% + vﬁ) + cos?y? (vxcosZ? + vysing?) } (12)

b . . . 2

fn = —ﬁ {SIHZIP? (v% + vﬁ) + cos?p? (vxcosg? + vysing?) }
1

—% [sinng?\] (v% + vﬁ) + cos?y%, (vxcosld + vysing(}\])z}

The system in Equation (12) can be linearized by using a first-order Taylor series

T
approximation around a generic target tentative velocity, 8° = [vg vﬂ :

Fe f(ao) = H (ﬂ - 190) (13)
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where f is the N x 1 vector collecting the N estimated Doppler rates, f(t?o) isthe N x 1

vector collecting the N Doppler rates evaluated for the tentative velocity, 8 = [vx v, | T and
a matrix notation has been adopted based on the following definition:

It
00y dvy

H=|: (14)
iy Ay

00y vy |9=80

The initial tentative value in this second stage could be chosen equal to the estimate
provided by the first stage (i.e., initial 8° = 0y), and the overall system to be solved is
obtained by augmenting Equation (9) with the one in Equation (13), namely:

Onx1

B - [

where 0p«1 is a vector of N x 1 with all elements set to 0 and U is a 2N X 2 block matrix

—u (1? - 190> (15)

T
equal to U = {GTHT} . It is worth underlining that this joint use allows us to refine the

estimate of the target velocity using both measured Doppler centroids and rates. The LS
solution is thus given by:

& =0+ u (P(a) - F(ﬂo)) (16)

Then, through Equation (16), the target kinematic parameters are updated with respect
to the tentative value (190), and the procedure is reiterated until, at the generic iteration,
the displacement , /602 + (57)5 is within the requirements on the velocity accuracy or the
maximum admitted number of iterations is reached. In the hypothesis of error-free mea-
surements, this algorithm converges to the true target velocity components.

In case a constant velocity assumption does not apply, the second stage is instead
devoted to the estimation of the acceleration, again by exploiting the Doppler rate informa-
tion estimated in the first step. Using previous results and definitions and adopting, again,
a matrix notation, we can write:

}— f(or) = Ga (17)

where a = [ax, ay} T The target acceleration is then estimated as:

a=G"(f~1,(2) (18)

3.3. Automatic Motion Model Selection Criterion

The automatic selection of the motion model is based on a comparison between the
Doppler rate measurements and the Doppler rate values evaluated, assuming the velocity is
equal to that estimated at stage 1 and null acceleration. Similar values imply the acceptable
hypothesis of null acceleration so that the constant velocity motion model is selected. The
other schema is selected in the opposite case. The similarity is assessed by means of the
Mahalanobis distance by evaluating the distance between the error vector, collecting the
differences of the Doppler rate values measured and theoretically evaluated, and a Normal
distribution characterized by zero mean value and proper covariance matrix. Specifically,

let Af be the error Doppler rate vector defined as:

Af =~ f(op,a=0) (19)
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This error vector has zero mean. Additionally, since the Doppler rate measurements
and ¥y are independent variables, it is possible to write the covariance matrix of the Doppler
rate error vector as follows:

L. =X+ZX 2
Af f + f(o7,a=0) (20)
where the two matrix components are specified in the following Equations (23) and (25)

for Z}, and Equation (B8) for f(opa=0) ° For decision-making purposes, the Mahalanobis

distance is compared to a threshold K, i.e.,
.T -1 . <
Af (): Af) Af = K 1)

and the constant velocity model is selected in case the distance is below the decision
threshold. The K value is set in order to achieve a fixed probability value that, in case
of actual constant velocity, the error Doppler rate vector lies within the corresponding
ellipsoid. In Section 4.3, it is explained in detail how to set the value of K.

4. Theoretical Performance Analysis

In this section, the theoretical performance of the proposed technique is analytically
derived. Furthermore, theoretical derivations are validated by comparison with simulated
analysis. Performance achievable at the single-sensor level in the estimate of the signal
parameters is considered first (Section 3.1). Following this, the performance in the estimate
of the target kinematics parameters (Section 3.2) and the impact of the motion model
selection (Section 3.3) are addressed.

4.1. Theoretical Performance Analysis—Step 1: Single-Sensor Signal Parameters

The performance in the estimate of the signal parameters is derived under the follow-
ing assumptions: (i) statistical independence among the sensors; (ii) target described by
a single dominant scatterer globally, taking into account the overall target Radar Cross
Section (RCS); and (iii) negligible rotation motion. Particularly, assumption (ii) allows a
closed-form performance derivation, and assumption (iii) allows to derive a benchmark for
the achievable performance. These two limitations are then removed in section V where
performance is assessed for an extended target and in the presence of 3D rotation motions.

Starting from the Doppler frequency measurements collected in the N x 1 vector f, it
can be demonstrated (see Appendix A) that the error of the estimates e 7, can be modeled as

a zero-mean Gaussian random variable, i.e., e o N (0, o2 ) , with a standard deviation
1

fi
72 6 12

(Zn)ZTZSNRinti<J%)2 - (ZH)ZTZSNRmti | (%)2

where T is the aperture time, B is the bandwidth of the transmitted signal, f; is the
carrier frequency, and SNR;, is the integrated signal-to-noise ratio (SNR) at sensor i
(i.e., SNR evaluated in a single-sensor image domain). Interestingly, it can be noticed that

equal to:

Gfi_

(22)

. . 6
Equation (22) can be decoupled as the product of two terms, the first one ( @A T25NR, )

representing the Cramer Rao bound for the performance achievable in the estimate of the
frequency of complex signals having constant amplitude and polynomial phase, [22], and

the second one (12/ (%) 2) representing the impact on the performance of the estimation
performed via optimization of the range migration correction.

Moving to the Doppler rate measurements collected in the N x 1 vector f, the per-
formance can be easily evaluated by recalling that the contrast optimization technique
can achieve the Cramer Rao bound in selected conditions (i.e., when a single scatterer
is exploited or when the multiple exploited scatterers share a similar SNR value) and in
any case shows an efficiency very close to one, [23]. On this basis, the error in the esti-
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Doppler rate - Sensor 1 [Hz/s]

mate of the Doppler rate e: can be modeled as a zero-mean Gaussian random variable,

i

ie., e} ~N (O, 02 ), with a standard deviation equal to (Appendix A)
i fi

1 90
L B L 23
%F, = 7\| SNRyy, T @3)

Furthermore, since the measurements at the different sensors are independent, the
Doppler and Doppler rate covariance matrix are, respectively:

X, = diag(sflz,...,crfN2> (24)

Y. =dia ?2,..., b 2> 25
i g(afl *hy )

and due to the decoupling between Doppler frequency and Doppler rate [22], the covariance
matrix of the measurements as a whole has a diagonal block structure and can be easily
derived from the two above matrices.

To verify the theoretical derivations, a comparison against synthetic data is shown
here. For this purpose, we define the following reference scenario used from now on
(any modification will be duly mentioned): a formation of two sensors is considered with
distances r) = ) = 10 km and aspect and grazing angles equal to {J = 2°, {9 = —6°,

9 = ¢ = 0°. In agreement with the study cases presented in [14,15], the active system is
assumed to transmit a bandwidth of B = 100 MHz with a center frequency of f. = 10 GHz,
a Pulse Repetition Frequency of PRF = 600 Hz, and 2048 pulses in the Coherent Pro-
cessing Interval (CPI). The target moves with translational motion according to velocity
v =[840] T'm/s, negligible acceleration, and a constant yaw rotation motion wy = 1deg/s.
The SNR is set to 33 dB (image domain).

Figure 4 shows the obtained results for 1000 independent trials. Particularly, the red
and green ‘X’ markers represent the Doppler and Doppler rate measurements at sensor 1
and sensor 2, respectively. For comparison, the figure shows also the theoretical ellipse
as achievable from Equations (22)—(25), and the ellipse derived from the measurements,
both associated with a probability value equal to 0.99. A very good agreement is observed
between theoretical and simulated results for both measured signal parameters, thus
validating the analytical results.

-0.38 T T T T T T
——Theoretical ellipse —.-036 " — Theoretical ellipse
04+ *  Doppler and Doppler rate estimates| | % Doppler and Doppler rate estimates
’ Simulated ellipse T Simulated ellipse
: -0.38 ¢
0421 5
g 04
-0.44 - UIJ
L -042¢
046 | o
7}
- -0.44 ¢
048} &
O 046+
-0.5 * : * * * * *
-252 -250 -248 -246 -244 -288 -286 -284 -282
Doppler centroid - Sensor 1 [Hz] Doppler centroid - Sensor 2 [Hz]
(a) (b)

Figure 4. Step 1 performance analysis: (a) Sensor 1 and (b) Sensor 2.
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4.2. Theoretical Performance Analysis for Step 2
4.2.1. Step 2—Stage 1: Velocity Estimation

The covariance matrix of the velocity estimated at stage 1 can be derived by combining
Equations (11) and (24):
o = G'GY (26)

Again, Figure 5 shows the estimated velocity components for 1000 independent
trials and the same study case in Figure 4. Particularly, the blue markers represent the
velocities as estimated at stage 1, the continuous black ellipse is the theoretical iso-level
curve, and the blue one is the ellipse derived from the simulations, both referred to 0.99
probability. The statistics (the mean value and the standard deviation in x and y-directions,
respectively) are shown in Table 1. Firstly, we observe, once again, a very good agreement
between the theoretical predictions and the simulated results. Moreover, we notice how
the accuracy in the estimation is higher for the y-component than for the x-component.
This is a consequence of the exploitation of the Doppler frequency measurements that, in
the considered case study (limited angular diversity between the two sensors), are highly
dependent on vy, but scarcely sensible to vy.

4.1 T T

Stage 1 - Theoretical ellipse
408l *  Stage 1 - Velocity estimates

Stage 1 - Simulated ellipse
4.06 F *  Stage 2 - Velocity estimates

Stage 2 - Simulated ellipse
4.04 = = =Stage 2 - Theoretical ellipse

4.02

4}

v, [mfs]

=

3.98 -

3.96 1

394 4

3821 T

39 I I I I I
x 8.5 9 9.5

8
Vi [mis]
Figure 5. Estimated velocity—Theoretical and sampled ellipses.

Table 1. Mean and standard deviation—Stage 1 velocity.

Statistics Target Kinematic Theoretical Values Decentrall.zed
Parameters Approach Estimates
mean vy [m/s] 8.000 8.001
vy [m/s] 4.000 3.999
q vy [m/s] 0.269 0.289
st vy [m/s] 0.009 0.010

4.2.2. Step 2—Stage 2: Velocity Refinement

The covariance matrix of the velocity estimated at stage 2 can be proven equal to (see
Appendix B):

T
L) = A(K) | O2nx2 |:0NxN Zf] A(k)" + By BT 27)
where matrices A and B are defined as:
k—1 u# O iu#
A=Y (1-u*,_ ~ )8
(k) 1;0 ( = [Hw:oJ ) = (28)
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B = (I - u#|19:170 |:13|11\9]X§0:|> -

I is the identity matrix, k is the iteration at which the refinement is stopped, and the initial
velocity (dp) is the value provided by Equation (11). In order to analyze the impact of the
refinement process on the estimation accuracy, Figure 6 shows the area of the theoretical 1o
ellipse associated with the covariance matrix in Equation (27) as a function of the iteration
number for three geometry configurations: (i) narrow angular separation in blue (7 = 2°
and {3 = —6°), corresponding to the case previously discussed, (ii) medium angular
separation in red (é(l) = 6° and {;, = —18°), and (iii) wide angular separation in green
(€9 =12° and {9 = —36°).

Sensor A = 2° Sensor B = -6°
V¥ Minimum value
Sensor A = 6° Sensor B =-18°

0.9r
V¥ Minimum value
Sensor A = 12° Sensor B = -36°
W Minimum value
0.8

Ellipse area
=}
-~
T

o
=]
T

05

0.4 . . . . . . I .
0 2 4 6 8 10 12 14 16 18 20

lteration number in the refinement process

Figure 6. Area of the theoretical 1o ellipse versus the number of iterations.

From the figure, for all configurations, it can be observed a rapid improvement in
the first iterations until a minimum value (identified in the figure with a triangle and
named k,,;, in the following) is reached. After this value, it is observed a slight increase.
This characteristic is used to define a further stop criterion: based on Equation (27), the
refinement process finishes after k,,;, iterations.

The red crosses in Figure 5 represent the refined estimates corresponding to points
coming from stage 1 (blue crosses). These results have been obtained by stopping the
iterative procedure at k,,;,. Table 2 compares the theoretical mean value and standard
deviation of the stage 2 estimated velocity components to the values achieved by sim-
ulations. Again, the simulated results are well in line with the theoretical predictions.
As expected, the exploitation of the Doppler rate measurements (highly sensitive to the
velocity x-component) greatly increases the performance with respect to stage 1 for the
x-component, whereas almost unvaried performance is obtained for the y-component.
Overall, the joint exploitation of Doppler centroid and Doppler rate measurements allows
the achievement of considerably high accuracy for both components.

Table 2. Mean and standard deviation of the estimated stage 2 velocities—Point-like target.

Statistics Target Kinematic Theoretical Values Decentrah'zed
Parameters Approach Estimates
mean vy [m/s] 8.000 8.001
vy [m/s] 4.000 3.999
std Uy Fn/s] 0.038 0.040

vy [m/s] 0.009 0.010




Remote Sens. 2023, 15, 4372

13 of 28

4.2.3. Step 2—Stage 2: Acceleration Estimation

The covariance matrix of the acceleration estimated at stage 2 can be proven equal to
(see Appendix B):

_ # s ) #7
Y, =G (Zf—i— Zf(@ﬁa:o) >G (30)

with X | =C Zf;fCT and C being the N x 2 matrix defined in the Appendix. In

(9r,a=0)
this cas{e,fto compare the theoretical predictions to the simulations, the previous reference
scenario is maintained, but an acceleration a = [0.45 0.225 O]T m/s? is also included. For
this case, Figure 7 shows the estimated velocity (Figure 7a) and acceleration (Figure 7b)
components with the superimposed corresponding ellipses, while Table 3 compares the
theoretical and simulated mean values and standard deviations. The shown results once
again confirm the validity and correctness of the theoretical derivations. Moreover, we
can appreciate the high accuracy achievable by the proposed approach in the estimate of
the acceleration components. This very good result is enabled by the exploitation of the
Doppler rate measurements that are directly proportional to the acceleration showing high
sensitivity with respect to its variations.

4.1 T T T i i 0.23 T T :
——Theoretical ellipse —Theoretical ellipse
% Velocity estimates Acceleration estimates
4.05} Simulated ellipse 0.228 ——— Simulated ellipse
) NE 0.226
E 4} 1 E
>~ w 0.224
3.95} 1 0.222 -
3.9 . . . . . 0.22 - . .
6.5 7 7.5 8 8.5 9 9.5 0.44 0.445 0.45 0.455 0.46
2
v [m/s] a [m/s®]
(a) (b)

Figure 7. Estimated (a) velocity and (b) acceleration with theoretical and sampled ellipses.

Table 3. Mean and standard deviation of the estimated velocity and acceleration-Point-like target.

Statistics Target Kinematic Theoretical Values Decentrali.zed
Parameters Approach Estimates
vy [m/s] 8.000 7.986
mean vy [m/s] 4.000 4.001
ay [m/s?] 0.450 0.450
ay [m/s?] 0.225 0.225
vy [m/s] 0.269 0.289
vy [m/s] 0.009 0.010
std ay [m/s?] 0.002 0.002
ay [m/s? 0.000 0.000

4.3. Automatic Motion Model Selection

As stated in Section 3.3, the motion model is selected by means of the decision rule
in Equation (21). The constant velocity model is selected in case the distance is below the
decision threshold, otherwise, an acceleration is estimated. The K value is set in order to
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achieve a fixed probability value that, in case of actual constant velocity, such a condition
is correctly detected so that the velocity undergoes the refinement foreseen at stage 2. In
particular, when the target is actually uniformly moving, the distance in Equation (21) is
a random variable following a chi-square probability density function with N degrees of
freedom. Therefore, the probability of correctly detecting this condition is provided by the
chi-square cumulative distribution function:

where (%, *) is the lower incomplete gamma function and I'(N/2) is the gamma func-
tion, [24]. For the special case of two sensors (N = 2), the P; simplifies as follows:

K
2

Py(K, N=2)=1—e" (32)

The threshold value (K) has to be set in order to guarantee a reasonably high P; value,
while at the same time keeping a good sensitivity to the presence of small acceleration
values. In order to prove the effectiveness of the proposed approach, for the study case
comprising two sensors, Figure 8 shows the probability of selecting an accelerated model
for a target moving with a velocity equal to [8 4 0] m/s and variable acceleration (ay, ay)
having set K so that P; = 0.99. Figure 9 shows the probability of deciding on a uniform
motion as a function of the acceleration in (a) x-direction and (b) y-direction for different
P;(K) values. As evident from the results, the proposed approach is quite effective at
discriminating between the two conditions; particularly in Figure 8 where the presence
of an acceleration is correctly detected even in the presence of low values. Concerning
the transition between the two decision regions, as expected, the higher the P; value, the
larger the transition region is as it can be appreciated by inspecting Figure 9 which shows
the cuts of Figure 8 along the a, and 4 directions around a = 0 m/s?. Nevertheless, it is
easy to observe that even in the presence of P; values close to 1 (i.e., 0.99), the decision test
maintains a very good performance, assuring a high sensitivity.

o x10° -
-4 109
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2F g 107

— -1 i 1 406

o

L

E o 05

>

©
1F » 1 04
2k 1 03
3+ 1 02
4 0.1
5 1 1 1 0
-0.01 -0.005 0 0.005 0.01

2
a, [m/s7]

Figure 8. Motion model selection performance for variable acceleration and P; = 0.99.
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Figure 9. Probability to detect uniform motion as a function of the acceleration in (a) x-direction and
(b) y-direction for different P; (K) values.

5. Performance Assessment
5.1. Performance Assessment with Respect to SNR Conditions and Spatial Diversity

The performance for different SNR conditions is first investigated. Specifically, Figure 10a
shows the standard deviation of stage 1 velocity in the x-direction (red curve) and the y-
direction (blue curve) as a function of integrated (i.e., integrated over both fast and slow time
and over the target scatterers) SNR values. When a constant velocity model is acceptable,
the refined velocity of stage 2 exhibits the accuracy illustrated by the dashed curves in
Figure 10a. Conversely, if a constant acceleration model is selected, the estimated acceleration
demonstrates the performance indicated by the curves in Figure 10b.

10° Velocity of stage 1 - x-direction | N: Acceleration - xdirection
Velocity of stage 1 - y-direction E Acceleration - y-direction
£ \felocity of stage 2 - x-direction 'E'
- \elocity of stage 2 - y-direction .g
o
)
T
8
Lo <
5
107 R =
- FaY %
A 2z
v, k=
4 B o £ 493
! g
®
™
=
=
©
5]
107} 2
1 1 F 1 1
20 25 30 35 20 25 30 35
Integrated SNR [dB] Integrated SNR [dB]
(a) (b)

Figure 10. Performance assessment with respect to SNR: (a) estimated velocity, both stage 1 and
stage 2, and (b) estimated acceleration.

As expected, higher integrated SNR values lead to improved estimation accuracy. Nev-
ertheless, even for low/medium values of the SNR (we have to recall that the considered
values refer to an integrated SNR and the ship has been already detected, so 20 dB is quite a
low value for imaging purposes), good performance is achieved also by the stage 1 velocity
estimation (that represents the initial value when the refinement in stage 2 is applied).
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The performance of different sensor positions is now investigated. Particularly, for
the study cases previously introduced, Figure 11a,b refers to the uniform motion case
and shows the theoretical standard deviation of the estimated velocity as a function of
the angular separation in aspect between the two sensors for different separations in
grazing. Both stage 1 and stage 2 are shown. Figure 11c regards instead the performance in
estimating the accelerations for the non-uniform case.

T T T T T T T 107" T T

Stage-1 Ay=0° Stage-1 Ay=0°

Stage-1 Ay= Stage-1 Ay=5°

10%¢ Stage-1 Ay=10° | 7 Stage-1 A¢=10°
— — — Stage-2 Ay=0° — — —Stage-2 Ay=0°

— — —Stage-2 Ay=5° — — —Stage-2 Ay=5°
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Estimated velocity standard deviation (m/s)
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Figure 11. Performance assessment with respect to angular diversity: (a) estimated velocity
x-direction, (b) estimated velocity y-direction, and (c) estimated acceleration both x- and y-direction.

Starting from the case of uniform motion, from the curves shown in Figure 11a,b, it is
possible to make the following observations: (i) in general the performances improve as the
angular diversity in aspect increases and remain unchanged as the grazing diversity varies.
This is a consequence of having assumed the target motion on the (x, y) plane (actually, the
angular diversity in grazing would play a fundamental role in the estimation of the velocity
along z); (ii) the improvement is marked in particular for stage 1, which, by exploiting
only the Doppler information, fails to adequately estimate the cross velocity (x-direction)
in the case of small diversity; and (iii) the estimate of the component in y reaches minimum
standard deviation when both sensors observe the same radial component. In the case of ac-
celerated motion, the performance improves as the diversity increases for both components.
Consistently with the results shown above, the performance in estimating the component
in y is in any case better than the estimation of the component in x as a consequence of
the direct impact of component in y on the radial acceleration. In any case, even in the
presence of limited angular diversity, good performance is obtained.
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5.2. Performance Assessment with Respect to Extended Targets

The assumption of a target described by a single dominant scatterer globally, taking
into account the overall target RCS, is now removed and the analysis is generalized consid-
ering the case of an extended ship target characterized by a number of dominant scatterers.
The considered target model is shown in Figure 12. As in the previous analysis, the SNR
is set to 33 dB (image domain) and the same motion conditions have been considered.
Particularly, concerning SNR, to allow a comparison with the results for a point-like target,
the contribution from each scatterer is scaled so that the integration among the different
scatterers would result, again, in the same SNR value. This is obtained by considering the
single scatterer reflectivity equal to a fraction (1/20) of the point-like reflectivity.

[ *  Scatterers = Fulcrum|

5t 4
| e | i E " - -
.g- or . E I 2 . -
- . * 9 .
- * " .
5 -
-20 =15 =10 -5 0 5 10 15 20
x [m]
15 T T T T T T
10 . . .
E
(=1 . .
N | |
5r . . . . . . 1
0 f 1 1 1 L ) 1
=20 =15 =10 -5 0 5 10 15 20
x [m]

Figure 12. Multi-scatterer ship model. Top and side views.

For the first tested case (uniform motion, velocity v = [8 4 0] T'm/s, and negligible
acceleration), Figure 13 shows the obtained results for 1000 independent trials. As in the
previous analyses, the blue crosses represent the estimated velocities at stage 1, while
the red ones represent the estimates after the refinement at stage 2. For comparison, the
same figure shows also, for both stages, the theoretical iso-level curves corresponding
to 0.99 probability level and the corresponding ellipses containing 99% of the estimates.
In addition, Table 4 compares the theoretical (point-like target) and simulated (extended
target) mean value and standard deviation for both velocity components and both stages.
From the shown results, it is easy to observe that, when moving from the ideal point-
like to the extended target case (keeping fixed the overall SNR), the estimates are still
unbiased but a slight degradation in terms of error standard deviation is observed. This is a
consequence of more dispersed estimates of the Doppler frequency and Doppler rate at the
single-sensor level, due to the interferences and also to the approximated procedure used
in distributing the overall RCS among the scatterers. A similar degradation is observed on
both the components.
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Figure 13. Initial and final estimated velocity—Extended target.

Table 4. Mean and standard deviation of the estimated velocity—Extended target and uniform motion.

Stage 1 Velocity Stage 2 Velocity

. _Target . Theoretical (S];;l:u::;eg Simulated Theoretical (S;(r:url;;(eg Simulated
Statistics ~ Kinematic Values Tar :t w?th (Extended Values Tar Zt w‘iath (Extended
Parameters (Point like 8 Target with (Point like & Target with

Constant Yaw . Constant Yaw .

Target) Rotation) 3D Rotation) Target) Rotation) 3D Rotation)
vy [m/s] 8.000 8.009 7.689 8.000 8.001 8.047
mean

vy [m/s] 4.000 3.999 4.033 4.000 3.999 4.033

wd vy [m/s] 0.269 0.416 0.403 0.038 0.056 0.071

s vy [m/s] 0.009 0.014 0.014 0.009 0.014 0.014

For the second tested case (velocity v =

[840]" m/s and acceleration a =

[0.45 0.225 O}T m/s?), Figure 14 shows the obtained results for 1000 independent trials.
Particularly, Figure 14a represents the velocity components as estimated by the first stage,
while Figure 14b shows the acceleration components as estimated using the first stage
velocity and exploiting the Doppler rate information. Additionally, the theoretical ellipses
are superimposed on the figures to compare the point-like and extended target performance.
Table 5 shows the estimated statistics. From the shown results, also in this case, a small
degradation is observed and similar considerations as those already performed for the
uniform case can be applied.

Finally, the impact of the presence of a 3D rotation motion is analyzed. For this purpose,
again, a simulated analysis has been carried out by also including sinusoidal pitch and
roll motion with amplitudes of 0.25° and 1.25° and frequencies of 0.178 Hz and 0.091 Hz,
respectively, [25]. The obtained results are reported in Table 4 for the case of uniform
motion and in Table 5 for the case of accelerated motion. From the shown results, we can
observe that the inclusion of a three-dimensional rotation introduces a slight polarization
in the velocity and acceleration estimates, while the standard deviations remain almost
unchanged. Anyway, despite the small degradation, in both cases we observe that very
good performance is maintained.
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Figure 14. Extended target-Constant acceleration model: (a) velocity and (b) acceleration.
Table 5. Mean and standard deviation of the estimated velocity and acceleration-Extended target
and accelerated motion.
Decentralized Decentralized
. Target Kinematic . Approach Estimates Approach Estimates
Statistics Parameters Theoretical Values (Extended Target with (Extended Target with
Constant Yaw Rotation) 3D Rotation)
vy [m/s] 8.000 8.007 7.611
mean vy [m/s] 4.000 3.999 4.025
ay [m/s?] 0.450 0.451 0.448
ay [m/s?] 0.225 0.225 0.226
vy [m/s] 0.269 0.373 0.397
wd vy [m/s] 0.009 0.013 0.014
S ay [m/sz] 0.002 0.002 0.003
ay [m/sz] 0.000 0.001 0.001

5.3. Performance Assessment with Respect to Centralized Approach

The performance of the proposed decentralized technique is now compared to that
of a centralized approach at the cost function level that can be derived along the same
line in [12,13]. In this case, the fusion of the multi-sensor signals is implemented at the
cost-function level. Specifically, the single-sensor image contrast values are combined in
a new multistatic cost function defined as the product of the individual cost functions,
as illustrated in Figure 15. This centralized approach has been selected for performance
comparison being, as the proposed one, suitable without restrictions with respect to the
angular separation among the sensors.

The optimization problem to be solved for the multistatic case is therefore:

i=1

N
0,0 = argmaxv,u{n ICi(v,a)} (33)

where IC; denotes the contrast of the image at the i-th sensor when motion is compensated
according to the generic (v, a).
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Figure 15. Centralized processing approach.

A drawback of this approach resides in the increased dimension of the space over
which optimization has to be carried out. In our case, four parameters have to be estimated
(two velocity and two acceleration components), thus resulting in a 4D optimization
(2D when a constant velocity model is acceptable and 6D in a more general case, if also the
vertical direction has to be included). This can represent a severe issue since the multistatic
cost function can be expected to be multimodal, which generally represents a problem for
the optimization algorithms to converge on the true solution.

To analyze the performance of the centralized and decentralized approaches, results
against synthetic data are shown here. The same scenario explained in Section 4.1 is
considered by testing two angular separations: (a) narrow angular separation (NAS),
with aspect and grazing angles equal to {{ = 2°, {3 = —6°, ¢) = ¢J = 0°; (b) wide
angular separation (WAS), with aspect and grazing angles equal to {J = 10°, {J = —30°,
¥ =y9 =0°.

The extended target is assumed to be moving again with velocity being v = [8 4 0] Tm/s
and acceleration being a = [0.45 0.225 0] T m/s?. The multistatic cost function maximization
in the centralized approach is implemented using the deterministic algorithm Nelder—
Mead [26]. This algorithm requires an initial point as input and it is not guaranteed to
converge to a global minimum/maximum. To deal with this problem, first, a range of
possible velocity and acceleration values are defined. In our case, [vx| = |v,| < 15 [m/s]
and |ay| = |ay| < 0.5 [m/s?]. Then, random velocity and acceleration values are generated
within the allowed range and used as input parameters by the Nelder-Mead algorithm
to maximize the multistatic cost function in Equation (33), obtaining the estimated target
kinematic parameters as a result. The process is repeated for 200 randomly generated
points. The final estimated values are selected as those that generate the highest value of the
contrast product. Additionally, to also study the bound of performance achievable by means
of the centralized approach, the case of an initial point equal to the true value of velocity
and acceleration is also considered. Table 6 compares the mean value and the standard
deviation of the estimated values for the decentralized technique, centralized technique
with randomly selected initial point, and centralized with initial point coincident with the
true value.



Remote Sens. 2023, 15, 4372

21 of 28

Table 6. Comparison between centralized and decentralized approaches-Estimates statistics.

Narrow Angular Separation-NAS Wide Angular Separation-WAS
Target Centralized Centralized Centralized Centralized
Statistics  Kinematic Approach Approach Decentralized Approach Approach Decentralized
Parameters (Random (Real Value Approach (Random (Real Value Approach
Initial Points) Initial Point) Initial Points) Initial Point)
vy [m/s] 8.007 8.007 8.007 7.953 7.950 7.950
mean vy [m/s] 3.999 3.999 3.999 4.007 4.007 4.007
ay [m / 52] 0.451 0.451 0.451 0.450 0.450 0.450
ay [m / 52} 0.225 0.225 0.225 0.225 0.225 0.225
vy [m/s] 0.376 0.376 0.374 0.815 0.078 0.078
td vy [m/s] 0.013 0.013 0.013 0.143 0.014 0.014
S Ay [m/sz] 0.002 0.002 0.002 0.021 0.001 0.001
ay [m/sz} 0.001 0.001 0.001 0.005 0.000 0.000

From the results for both velocity and acceleration, the following observations apply:
(i) in all considered conditions, the decentralized technique achieves the same performance
as the centralized one initialized with the true motion parameters; (ii) in WAS conditions,
the decentralized approach outperforms the centralized technique with randomly selected
initial values (this likely happens when the optimization over the 4D space, despite the
high number of random initial points, does not converge to the good solution). These
results confirm the effectiveness and robustness of the proposed approach which also has
lower requirements from an implementation point of view (N 2D optimizations instead of
a 4D optimization over an N factor function).

6. Experimental Results

In order to demonstrate the practical effectiveness of the proposed technique and
validate the previous theoretical performance analysis, we apply both the decentralized
and centralized techniques to multistatic ISAR data acquired in an experimental campaign
carried out in an anechoic chamber at the SELEX Galileo facility in Caselle (Turin, Italy) [11].

The setup is based on the use of a single reflector Compact Range System which
generates a planar wave front in the test zone. This includes the parabolic reflector, the feed
system, and the positioner of the target under tests (TUT). The reflector (Figure 16a) is an
offset parabolic reflector P/N 5755 made by Scientific Atlanta that, when illuminated by a
spherical wave front transmitted by an antenna located into its focus (feed), generates a
planar wave front on the TUT. Two HP 83622As are used for the transmitter and receiver
signal sources, while the measurement instrumentation is based on an HP 8510C Network
Analyzer. Chamber walls, ceilings, and floors are covered with absorber material (pyramid
and wedge) to minimize unwanted reflections and diffractions. In this manner, a stray
radiation level within the test zone below —-35 dB is ensured.

The system transmits a stepped frequency waveform in the Ku-band (16.5 GHz) with
a fixed pulse-to-pulse frequency increment of Af = 3.75 MHz, resulting in an overall
bandwidth of 3 GHz. The second receiver is located 60 cm from the transmitter, resulting
in a bistatic channel having an aspect angle separation of A = 4.3° with respect to the
monostatic link. The turntable rotation yields an angular separation burst-to-burst of
08 = 0.07°. The considered TUT is an ATR42 aircraft model (shown in Figure 16b) as
representative of an extended target.

An overall illumination angle and bandwidth of A ~ 5.18° and B = 1.5 GHz have
been selected, respectively, resulting in a cross-range resolution (o, = ﬁ =10 cm) and
a range resolution (o, = ¢/2B = 10 cm). Referring to Figure 2, {{ = %A@ = 1.075°,
{9 = —3A7 = —3.225° and ¢! = ¢) = 0°. The experimental facility produces only a yaw
rotational motion. Therefore, an emulated translational motion is superimposed on the
acquired data according to velocity (v = [8 1 0] m/s) and acceleration (a = [0.45 0 0] m/s?).
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Furthermore, appropriately scaled noise is applied to achieve an integrated SNR of 33 dB.
Figure 17 shows the resulting images. The defocusing effect, due to uncompensated
translation motion, is quite visible.

(a) (b)

Figure 16. Experimental setup: (a) compact range reflector and (b) target under test. ATR42 aircraft
model (1:20 scale).
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Figure 17. Defocused and noisy target image at monostatic (a) and bistatic (b) sensor.

These data are provided in input to the processing chain in Figure 3. Table 7 shows
the mean and standard deviation of the estimates of the Doppler centroid and of the
Doppler rate obtained at step 1 of the decentralized approach for 500 independent trails
for both sensors and compares them to the corresponding theoretical performance. It is
easy to observe a very good agreement between the theoretical predictions and the results
obtained against the experimental data.
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v [m/s]

1.004

1.002

0.998

0.996

7.9

Table 7. Mean and standard deviation of Doppler and Doppler rate estimates—Experimental data.

Statistics PaIT:;;g;ters Theoretical Values AppDri)C:cl;:?::iZ;ites
f1 [Hz] —93.535 —93.565
mean f2 [Hz] —126.489 —126.544
f1 [Hz/s] 0.221 0211
fa [Hz/s] ~1.629 1641
fi [Hz] 0.064 0.083
std Afz [Hz] 0.064 0.078
f1 [Hz/s] 0.003 0.003
fa [Hz/s] 0.003 0.003

Figure 18 shows the estimated kinematic parameters. The blue (Figure 18a) and
green (Figure 18b) crosses represent the velocity and acceleration components estimated
by applying the decentralized approach, respectively. Additionally, the same parameters
are estimated for the same 500 independent trails, but by applying the selected centralized
approach with the optimization started from the actual velocity and acceleration values.
The corresponding results are represented by red (Figure 18a) and violet (Figure 18b)
triangles. Table 8 shows the mean and standard deviation as predicted by the theory and
as obtained from the experimental data via the decentralized and centralized approach. We
can observe that the achieved performance against the experimental data is well in line
with the theoretical expectations. Additionally, in agreement with the results presented in
Section 5.3, the proposed decentralized approach provides the same performance as that
provided by the centralized fed with the actual kinematic parameters. Qualitatively similar
results could be shown also for different (and in particular worst) SNR conditions (not
reported here for the sake of compactness). These results further validate the effectiveness
of the proposed technique and support its applicability in practical environments. Finally,
Figure 19 shows an example of target images after motion compensation by using the
estimated kinematic parameters, where the aircraft shape can be easily recognized in
both the monostatic and bistatic ISAR images.

%107
—Theoretical ellipse 1 —Theoretical ellipse
* Velocity estimates - Decentralized technique 47|« Acceleration estimates - Decentralized technigue |]
A Velocity estimates - Centralized technique 4 Acceleration estimates - Centralized technique
2 L
o
0
1 £
= Or
©
20
L L L L ] _4 L L I
7.95 8 8.05 8.1 0.448 0.45 0.452 0.454
2
v, [mis] a, [m/s7]
(a) (b)

Figure 18. Experimental extended target-Estimated (a) velocity and (b) acceleration.
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Table 8. Mean and standard deviation of estimates, aircraft target.

Target Aircraft Target
Statistics Kinematic .
. Centralized Approach .
Parameters Theoretical Values (Real Value Initial Point) Decentralized Approach
vy [m/s] 8.000 8.006 8.006
mean vy [m/s] 1.000 1.000 1.000
ay [m/s? 0.450 0.450 0.450
ay [m/s?] 0.000 9x107° 9x107°
vx [m/s] 0.022 0.028 0.028
vy [m/s] 4x107* 5x 1074 5x 1074
std P 4 -3 -3
ay |m/s 9 x 10 1x10 1x10
ay [m/s?] 4x107° 5x107° 5x107°

Range [m]

0.5
Cross

Range [m]

0 05 1 1. 2 2 -1.5 -1 0.5 0 05 1 15 2
range [m] Cross range [m]

(a) (b)
Figure 19. Target images after motion compensation (a) monostatic sensor and (b) bistatic sensor.

7. Conclusions

In this work, multi-sensor translational motion estimation techniques have been
devised. A network formed by an active sensor and some passive devices has been
considered and a decentralized two-step scheme proposed where the single-sensor, signal
parameters are first estimated, and then this information is used in the second step to
estimate the kinematic of the target. Particularly, Doppler measurements are used to make
an initial velocity estimate, and when a constant velocity model is acceptable, Doppler
rate information is exploited to provide a more accurate velocity estimate. If instead, via a
proper decision rule, it is assessed that an acceleration has to be taken into account, such a
decentralized approach estimates the acceleration by exploiting the initial velocity jointly
with the Doppler rate information.

The performance of the proposed technique has been first analytically derived and then
analyzed and assessed with respect to different conditions and parameters. Additionally,
the proposed technique was compared with a centralized approach. The obtained results
indicate that the decentralized technique provides the same performance as the centralized
one operating in ideal conditions (i.e., the initial point for the optimization coinciding with
the actual values of the parameters), and at the same time, lowering the complexity of
the optimization problem. Finally, the techniques have been tested against experimental
multi-sensor datasets and the results prove the suitability of the proposed approach for
practical applications.



Remote Sens. 2023, 15, 4372

25 of 28

Author Contributions: Conceptualization, D.P. and ES.; investigation, A.T.; software, A.T,;
writing—original draft preparation, D.P.; writing—review and editing, ES. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Data Availability Statement: Not Applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Analytical Derivation of Single-Sensor Target Signal Parameters Accuracy

Considering that the Doppler centroid and Doppler rate are decoupled parameters,
we can separately derive the performance (performance calculation in Doppler assuming
perfectly compensated Doppler rate and vice versa). In addition, for a single point-like
target, it can be demonstrated that maximizing the intensity contrast is equivalent to
maximizing its peak intensity [27]. On this basis, for the estimation of the Doppler centroid,
it is possible to assume the signal in the slow-time range-frequency domain as:

V(P fty) = A PV () (A1)

wherei=1,...,Mandj=1,...,Nandn ( frit ) represents the background contribution
modeled as white normal with zero mean value and variance o2. The estimated value is

thus obtained as: )

f= max (A2)

Zzﬂfﬁ)ﬂ”ﬁ

which can be rewritten as:
N ; Fh i £
f = II}%XZZZZy(}U/fh/t])y* (folfrh/tk)e]znﬂifct]e ]27Tfrhfctk (AS)
i h ok

The estimated value can be found by evaluating the first derivative and setting it equal
to zero

;Z%%X;;;;y(fo,fm) v (P St )e P ot P (JZNJ}”t JZn];Zh ) =0 (A4)

Assuming f = f0 4 §f (small errors) at the first order

6]27-( f’l j frhtk o] 8/27[ fr, j f’htk)

1+]27rff(f,l f,htk)] (A5)

Replacing Equations (A1) and (A5) in Equation (A4) and neglecting the second order
term, we obtain:

;;%% Ae_jznf’h%tkn(frh,fk) +A*ef27rfri)jf’ctin(fri,t]')‘|j2f7:(fritj—frhfk) A6

~ 2

= SELEIAPOF (1) (futy — i)
i j hk

Taking the expected value of both sides yields, < §f > = 0, namely unbiased estimate.
By considering the square of the term at the left side and evaluating its expected value,

we have:
27 B2 T2
20A%02( 25 ) MBNBZ- A7
() w2 (a7)
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while the term on the right side can be expressed as:

257 ( 27\ 22 B2 T
A 5f2(fc> MN? = — (A8)

combining these yields the following result:

2 2 2
2 2]APe2 (%) MANSE T
< (6F) >= 46; 2D (A9)

2 2
2 2 T2
4p2() aene B

c

from which Equation (22) is derived.

For the estimation of f , it is possible to consider the signal in the slow time domain as:

-0 .0 2
y (f ,t]) = 4™ () (A10)
The estimated Doppler rate is thus obtained as:
~ 0 . i 5 2
f=max} y (f ,tj) e/ (A11)
7 i
Using the results of [27], it is possible to demonstrate that:
<8f>=0 (A12)
2 1 90
) =S Al3
<of > 712 SNR;,,; T* (AL3)

Appendix B. Analytical Derivation of Stage 2 Estimated Velocity and Acceleration
Covariance Matrices

Starting from the estimated velocity covariance matrix, from Equations (13)-(16), the
relation between the errors at two successive iterations of the refinement can be written
as follows:

ONx2
o +(I-Uul_ { Av;_4 (A14)
f—fo) ( 0= |Hy_,| )

Using the equation above, at first order, the error at the k-th iteration can be written in
terms of the error at stage 1 (i.e., Avg = 0 — v)

0
Av; = uf;z;[ Nx1

k i k
Onx2 # Onx1 #  |ONx2 Onx1
Avy = <I—U#_ { })U_ Ol + ( I—Uy_ Avy = A |2 . + By Avg (A15)
L\ ooy ]) Yo o =" [Ho— f-flo)
Ay and By are defined as follows:
k 0 i
A=Y (1 ~-uh_, [HN XZD us_, (A16)
i=0 =0
0 k
B, = (I -, [HZ_ZD (A17)

I is the 2 x 2 identity matrix, k is the iteration at which the refinement is stopped, and
the initial velocity (dp) is the value provided by Equation (11). Taking < Avav,{> and



Remote Sens. 2023, 15, 4372 27 of 28

considering the independence of the error at the first stage from the error in the estimate of
the Doppler rates, Equation (27) is obtained.

To evaluate the covariance matrix of the estimated acceleration, we observe that the
term fv (iJf) in Equation (18) has a quadratic dependence on the velocity and, therefore, can
be written as: '

fo.(0f) = C1,0% + Co0;, + Ca,0x0y (A18)

where C parameters depend only on the acquisition geometry. Linearizing the above
equation around the real target velocity, it is possible to write the following approximation:

Forlty) = Fi(2°) + (201,00 + Cof) bvx + (2C005 + Ca00) 60, (A19)

Using a matrix notation, we can write:

fv (i]f) B fl (00) 2Cl1 vg)c + C31 vg 2C21 Ug + C31 U?c
1 dvy 00y
= 5 :C(Sv (A20)
fUN (@f) - fN (UO) 2C1Nv?€ + C3Nvg ZCZNUS + CSNUg]c Y y

From Equations (18), (25), and (B7), and after simple manipulations, we obtain:

# T\ ~#T # #T
X, =G (Z}-f— CZ@f C )G =G <2}+ Ef(i;f,uzo) )G (A21)
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