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Abstract: Vegetation is one of the most important indicators of climate change, as it can show regional
change in the environment. Vegetation health is affected by various factors, including drought, which
has cumulative and time-lag effects on vegetation response. However, the cumulative and time-lag
effects of drought on different terrestrial vegetation in China are still unclear. To address this issue,
this study examined the cumulative and time-lag effects of drought on vegetation from 2001 to 2020
using the Standardized Precipitation Evapotranspiration Index (SPEI) in the Global SPEI database
and the Normalized Difference Vegetation Index (NDVI) in MOD13A3. Based on Sen-Median trend
analysis and the Mann–Kendall test, the change trend and significance of the NDVI from 2001 to 2020
were explored. The Pearson correlation coefficient was used to analyze the correlation between the
SPEI and NDVI at each cumulative scale and time-lag scale and to further analyze the cumulative
and time-lag effects of drought on vegetation. The results show the following: (1) The NDVI value
increased at a rate of 0.019/10 years, and the increased area of the NDVI accounted for 80.53% of
mainland China, with a spatial trend of low values in the west and high values in the east. (2) The
average SPEI cumulative time scale most relevant to the NDVI was 7.3 months, and the cumulative
effect demonstrated a high correlation at the scale of 9–12 months and revealed different distributions
in different areas. The cumulative effect was widely distributed at the 9-month scale, followed by
the 12-month scale. The correlation coefficients of cumulative effects between the SPEI and NDVI
for cropland, woodland and grassland peaked at 9 months. (3) The average SPEI time-lag scale
for the NDVI was 6.9 months, and the time-lag effect had the highest correlation coefficient at the
7-month scale. The strongest time-lag effect for cropland and grassland was seen at 7 months, while
the strongest time-lag effect for woodland was seen at 6 months. Woodland had a lower time-lag
effect than grassland at different scales. The research results are significant for their use in aiding the
scientific response to drought disasters and making decisions for climate change precautions.

Keywords: spatiotemporal cumulative; SPEI; NDVI; terrestrial vegetation; time-lag effect

1. Introduction

Drought is a persistent water shortage phenomenon caused by an imbalance between
regional water balance or supply and demand [1]. It is a common climatic phenomenon
worldwide, affecting a wide range of people, and lasting for a long time, making it one
of the most significant meteorological disasters affecting human production and life [2].
Droughts cause huge losses not only to the national economy but also to agricultural
production, and lead to many negative environmental problems such as water scarcity, dust
storms, and desertification. Therefore, it is necessary to study drought and its mechanism.
Drought indices are one of the most effective tools for studying the evolution of drought
characteristics, such as the Standardized Precipitation Evapotranspiration Index (SPEI),
which is a drought index based on an analysis of the advantages and disadvantages of
the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Index (SPI),
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objectively characterizing the combined effect of precipitation and evapotranspiration on
drought. It is an ideal tool for drought monitoring [3]. The multi-scale SPEI plays an
important role in identifying drought. Stefanidis et al. found [4] that SPEI3 and SPEI6
are more efficient in identifying short-term drought, while SPEI12 and SPEI24 are more
efficient in identifying long-term drought. Moreover, drought can affect the normal growth
of vegetation because of the water shortage, and vegetation growth can also reflect drought
conditions at a regional scale. Thus, many studies have explored the correlation between
drought and vegetation growth due to the high association between them [5–8].

For example, Hua et al. (2017) [9] used correlation coefficients to investigate the
relationship between the NDVI and SPEI and found that drought plays a key role in
vegetation growth during the growing season in Northern China. Vegetation growth is
often driven not by current hydrothermal conditions but by earlier drought events [10],
so determining the timing of vegetation response to drought is critical for enhancing
our understanding of the mechanisms behind vegetation–climate interactions and for
developing effective measures to conserve vegetation.

The time-lag effect demonstrates the sensitivity of vegetation to drought by illustrating
how a previous drought event affects the current growth of vegetation [10]. The cumulative
effect refers to the effect of a water deficit on vegetation growth over time. It relies on time-
lag effects, such as the dynamics of climatic conditions (e.g., precipitation and transpiration)
over a specific period. This measure can be employed to evaluate vegetation tolerance to
drought. Previous authors have extensively studied the cumulative and time-lag effects
on vegetation growth [11–13]. For instance, Zhan et al. (2022) [8] revealed that 40.4% of
vegetation areas in the Yellow River basin were affected by cumulative drought, with the
longest accumulation time (eight months) observed in the semi-humid zone, and 91.8%
of vegetation areas were affected by lagged drought. Zhao et al. (2020) [14] discovered
that vegetation in the arid zone of the Loess Plateau exhibits stronger cumulative and
time-lag effects. Wu et al. (2015) [15] reported significant differences in the time-lag effects
on vegetation growth on a global scale. Zuo et al. (2021) [16] found a one-month time-lag
effect of temperature and precipitation on vegetation in the upstream region of the Yarlung
Tsangpo River basin, a one-month time-lag effect of temperature in the midstream region,
and no time-lag effect of temperature and precipitation on vegetation in the downstream
region. Hu et al. (2020) [17] discovered a one-month time-lag between soil moisture and
climate factors in the northwest of the Yangtze River basin. Ji et al. (2003) [18] revealed a
three-month time-lag between the growing season of vegetation and precipitation in the
Great Plains of the United States. Hua et al. (2019) [5] found that vegetation in Nebraska,
USA, has a 30–45-day time-lag after drought. Jiang et al. (2023) [19] found a time-lag
effect of drought on vegetation growth, and the average lagged time in karst areas was
shorter than that in non-karst areas. Wang et al. (2023) [12] found that 66.41% and 54.57%
of vegetation in China has time-lagged and cumulative responses to drought.

Using NDVI and SPEI data on a time scale of 1–12 months from 2001 to 2020, this
study employed Sen+MK trend analysis, Pearson correlation analysis, and other statistical
analysis methods to explore the cumulative and time-lag effects of drought on regional
vegetation growth in China. The spatial and temporal patterns of these effects were exam-
ined to provide a scientific foundation for drought monitoring, aiding in the development
of appropriate measures to protect the ecological environment and respond to climate
change. The findings of this research are significant for their use in aiding the scientific
response to drought disasters and contribution to the advancement of scientific knowledge
in this area. The objectives of this study were as follows: (1) Are the cumulative and
time-lag effects of drought on vegetation consistent across China, and if not, what are the
differences? (2) Which is the primary effect of drought on vegetation, the cumulative effect
or time-lag effect?
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2. Data and Methods
2.1. Data
2.1.1. NDVI Dataset

The NDVI has become the predominant metric used to measure vegetative cover and
growth state [20]. The MODIS NDVI complements AVHRR NDVI products, providing
continuity for time series applications over this rich historical archive. In this study, we
obtained NDVI data from the MOD13A3 dataset made available by NASA, with a spatial
resolution of 1 km and a temporal resolution of monthly intervals. This is a gridded Level
3 product of sinusoidal projection. We extracted the NDVI bands and subjected the images
to mosaic and cropping procedures over China using the MODIS Reprojection Tool (MRT)
downloaded by NASA.

2.1.2. Multi-Scalar SPEI Dataset

The SPEI [21] is commonly employed for drought assessment. Larger SPEI values
indicate high humidity, while smaller SPEI values indicate more severe drought. In this
study, monthly SPEI data were obtained from the Global SPEI database (version 2.7)
of Consejo Superior de Investigaciones Científicas (https://spei.csic.es/spei_database/
(assessed on 13 January 2023)), with a spatial resolution of 0.5◦ and a time scale ranging
from 1 to 48 months. Based on the estimation of potential evapotranspiration according to
FAO-56 Penman-Monteith, SPEIbase is able to characterize long-term and robust drought
information on a global scale [20]. This study focused on the cumulative and time-lag
effects of drought for a 1–12-month period using the SPEI. The Python programming
language was used for bilinear resampling of the SPEI data in order to match them with
the NDVI data used in this study.

2.1.3. Land Use

The data on land use types were obtained from the Resource and Environment Science
Data Center of the Chinese Academy of Sciences (https://www.resdc.cn/ (assessed on
15 January 2023)), with a spatial resolution of 1 km. In this paper, NDVI data on cropland,
grassland, and woodland [22] were extracted based on the land use dataset in 2005 and
2020 to explore the cumulative and time-lag effects of drought (Figure 1).
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Figure 1. Spatial distribution of woodland, grassland, and cropland in China. Note: NWR (Northwest
Region), NCR (North China Region), NER (Northeast Region), ECR (East China Region), CCR (Central
China Region), SCR (South China Region), SWR (Southwest Region), QTR (Qinghai–Tibet Region).
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2.2. Methods
2.2.1. Trend Analysis

Sen-Median trend analysis and the Mann–Kendall (MK) test were used to analyze the
spatial and temporal evolution patterns of NDVI time series to determine the significance
of NDVI trends. Sen’s slope is a nonparametric test in which the steepness of the trend
is measured by the median of the slope [23]. The MK test, developed by Mann [24] and
Kendall, quantifies trend significance in a time series sample. It does not necessitate adher-
ence to a specific distribution and accommodates missing values [25,26]. The calculation of
Sen’s slope (β) can be described by Formula (1), and the Mann–Kendall (Z) test is calculated
using Formulas (2)–(5).

β = median(
xi − xj

i− j
), ∀i < j (1)

where the median is the median function, and xi and xj are the NDVI in year i and year j,
where i, j = 1, 2, 3,..., n.

Z =


S−1√
var(S)

, S > 0

0, S = 0
S+1√
var(S)

, S > 0

(2)

S =
n−1

∑
i=1

n

∑
j=i+1

sign(xj − xi) (3)

var(S) =
n(n− 1)(2n + 5)

18
(4)

sign(xj − xi) =


1, xj − xi > 0
0, xj − xi = 0
−1, xj − xi < 0

(5)

where sign is a symbolic function, xi and xj are time series data, and n is the length of the
time series data. When the absolute values of Z are greater than 1.64, 1.96, and 2.58, the
trend passes the significance test of 90%, 95%, and 99% confidence [27,28].

2.2.2. Cumulative Effect

Pearson correlation analysis [29] can quantify the image-by-image correlation between
NDVI time series and the SPEI of different time scales in the study area, i.e., the NDVI
and SPEI1, SPEI2,. . ., SPEI12. In this paper, the maximum correlation coefficient is used to
determine the optimal accumulation time between the NDVI and each corresponding SPEI
image pixel. This cumulative effect represents the impact of drought on vegetation and is
calculated as:

rj = corr(NDVI, SPEIj)1 ≤ j ≤ 12 (6)

rmax−cul = max(rj)1 ≤ j ≤ 12 (7)

where rj is the Pearson correlation coefficient between the NDVI and SPEI, j is the ac-
cumulated time from the one- to twelve-month SPEI, and rmax-cul is the maximum value
of rj.

2.2.3. Time-Lag Effect

To explain the time-lag effect of drought on vegetation, Pearson correlation analysis
was used to calculate the correlation coefficients between the NDVI and SPEI. The corre-
lation coefficients (r0, r1,..., r12) between the NDVI and SPEI1 were calculated at each lag
time interval (0 ≤ i ≤ 12). For example, a one-month lag means comparing SPEI1 from
November 2000 to November 2020 with the NDVI from January 2001 to December 2020 for
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correlation analysis. Then, the maximum correlation coefficient ri of each image element
was taken as the optimal correlation, and the number of months for i was considered as the
optimal time lag. This calculation was carried out using Formulas (8) and (9):

ri = corr(NDVI, SPEIi)1 ≤ i ≤ 12 (8)

rmax−lag = max(ri)0 ≤ i ≤ 12 (9)

where ri is the Pearson correlation coefficient with a time lag of i months, where i ranges
from 0 to 12, NDVI is the NDVI time series from MODIS (2001.1~2020.12), and SPEI is the
SPEI1 time series with a time lag of i months (2001.1−i~2020.12−i).

3. Result
3.1. Spatial and Temporal Trends of NDVI

The interannual variation trend of the NDVI in China from 2001 to 2020 was investi-
gated using linear regression analysis, and the slope of the fitted line indicates the annual
growth rate. Figure 2 shows the time series of the annual mean NDVI in China, and the
results show that the annual mean NDVI value ranged from 0.484 to 0.526, and the mean
NDVI value for 20 years was about 0.506, with a minimum value of 0.484 occurring in 2001
and a maximum value of 0.526 occurring in 2018, and the annual variation in the NDVI
showed an improving trend with an interannual growth rate of 0.019/10 years.
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Figure 2. The trend of NDVI from 2000 to 2020.

The slope of the annual NDVI trend is shown in Figure 3a. The slope changes from
−0.049 to 0.055, which indicates a spatial trend of low values in the west and high values
in the east, with a weak trend of vegetation recovery in the central region and Northeast,
South, and Southwest China, and a downward trend in North China and Qinghai–Tibet.
This trend is strongly related to climatic factors such as precipitation [30]. The magnitude
of NDVI change from 2001 to 2020 was stable. The NDVI in Northwest China remained
constant, with 80.53% of the regions showing an improved NDVI and 41.72% of the regions
passing the significance test (p < 0.05) (Figure 3b).
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3.2. Cumulative Effect of Drought on Vegetation
3.2.1. Response of Vegetation to Drought at Different Time Scales

The correlation between the cumulative SPEI and NDVI is shown in Figure 4 and
varies considerably at different time scales. The cumulative SPEI and NDVI showed
an overall pattern of increasing correlation, with the maximum correlation observed at
9 months (r = 0.084) and the minimum correlation at 1 month (r =−0.038), and a significant
association was noted between 9 and 12 months. Additionally, the percentage of area
that was positively associated between the cumulative SPEI and the NDVI displayed a
similar temporal trend, increasing as the number of cumulative months increased and
again peaking at 9 months (80.68%).
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3.2.2. Spatial Distribution of the Cumulative Effect of Drought on Vegetation

The spatial distribution of cumulative effects, which combines two sets of information,
is shown in Figure 5. Figure 5a displays the maximum values of the NDVI and SPEI
correlation coefficients on a 1–12-month scale, while Figure 5b depicts the corresponding
cumulative months. The cumulative effect of drought on the NDVI was positively corre-
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lated with the regions that accounted for 94.82% of the area in China, while the significantly
correlated and low correlated regions accounted for less land area, mostly including the
Qinghai–Tibet Plateau and the Loess Plateau. The optimal cumulative effect showed a clear
geographical pattern: a 9-month scale in Northeast China; a 9–12-month scale mainly in
Northwest China, with southern Xinjiang and Qinghai–Tibet showing greater variability
with a 1–5-month scale and 4–7-month scale, respectively; a roughly 5–9-month scale in
Southwest China; a 1–3-month scale in North and Central China; and a 12-month scale
in Southern China, except for the southern coastal region, which exhibited a 1–5 month
scale. The cumulative effect was most widely distributed across the 9-month scale (24.58%),
followed by the 12-month scale (20.05%). Overall, the mean relevant SPEI time scale for the
NDVI stood at 7.3 months, showcasing the cumulative effect of drought on vegetation cover.
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3.2.3. Cumulative Effects of Drought on Different Vegetation Types

Figure 6a–c show the responses of woodland, grassland, and cropland to the cumula-
tive SPEI at each scale, respectively, where the spatial distribution is consistent with the
national spatial distribution (Figure 5b). Figure 6d shows that the correlations between
different NDVIs and cumulative SPEIs varied widely, and the correlations of cropland and
woodland to the SPEI were positive at the 3–12-month cumulative scale. At a cumulative
scale of 3–12 months, there was a positive correlation between cropland and woodland
and a steady increase in the correlation trend. The correlation between grassland and the
SPEI varied significantly from 1 to 6 months of accumulation, and the cumulative scales
of 1, 3, and 5 months were all negative. In addition, cropland, woodland, and grassland
correlations with the cumulative SPEI peaked at the scale of 9 months (rcropland = 0.081,
rwoodland = 0.088, rgrassland = 0.115), and the cumulative effects from 6 to 12 months followed
the order grassland > woodland > cropland. In addition, the average SPEI time scales most
relevant to woodland, grassland, and cropland were 8.0, 6.3, and 7.4 months, respectively;
that is, the best cumulative time scale followed the order woodland > cropland > grassland.
Numerous studies have highlighted the strong connection between vegetation growth
and the cumulative impacts of climate factors such as temperature, precipitation, and soil
moisture [27,31,32]; such climate factors are the reasons for the correlation coefficient at the
6–12-month cumulative scale and why the optimal cumulative time of grassland was better
than that of cropland and woodland.
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3.3. Time-Lag Effect of Drought on Vegetation
3.3.1. Response of Vegetation to Drought at Different Time Scales

As shown in Figure 7, the correlations between the SPEI and NDVI varied significantly
at different time-lag scales, with positive correlations at the 3–10-month scale and negative
correlations at the 1, 2, 11, and 12-month scales. The overall trend of the correlation between
the NDVI and time-lagged SPEI exhibited an initial increase followed by a decrease, with
the strongest correlation occurring at 7 months (r = 0.085) and the weakest at 12 months
(r =−0.051). Furthermore, the percentage of area positively correlated with the NDVI
and time-lagged SPEI followed the same temporal pattern. The positively correlated area
increased and then decreased with the rising number of time-lagged months, reaching a
maximum at 7 months (81.33%) and a minimum at 12 months (32.64%).
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3.3.2. Spatial Distribution of Time-Lagged Effects of Drought on Vegetation

Based on the analysis of the correlation of the NDVI with the SPEI at a 1-month time
scale, the time-lag effect of drought on vegetation generated with the time-lag month with
the largest correlation is shown in Figure 8. Figure 8a reveals that 99.05% of the regions
showed a positive time-lag effect, while very few showed a significant and low correlation,
and 96.15% showed a weak positive correlation. Figure 8b shows that the optimal time-lag
had strong spatial geographic variations: 6–8 months in the northeast; 7–9 months in
the Loess Plateau region; 5–7 months in northern Xinjiang, with large differences in the
time-lag in southern Xinjiang; 3–6 months in Qinghai–Tibet; 2–6 months in Southwest
China; 8–12 months in Central China; 8 months in Northern China; and 9–11 months in
Southern China. The time-lag interval was mainly 6–8 months (44.85%). In general, the
average SPEI time scale for the NDVI was 6.9 months, which proves that drought has a
time-lag effect on the NDVI.
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3.3.3. Time-Lag Effect of Drought on Different Vegetation Types

The time-lag effects of different vegetation types, shown in Figure 9a–c, are similar to
the nationwide spatial distribution (Figure 8b). Figure 9d shows the correlation between



Remote Sens. 2023, 15, 4362 10 of 15

different vegetation indices and the SPEI. The correlation between the SPEI and NDVI
exhibited significant variability across various time scales in grassland. Notably, at a time-
lag of 4–9 months, a positive correlation emerged between the NDVI and SPEI, with the
strongest time-lag effect observed at 7 months (rgrassland = 0.072). The response amplitude
of woodland to the SPEI at each time-lag time was lower than that of grassland, and the
correlation between the NDVI and SPEI at a time-lag of 2–11 months was positive, and
the strongest time-lag effect was observed at 6 months (rwoodland = 0.064). The response
of cropland to the SPEI at each time-lag time fluctuated greatly, and the response of
the NDVI to the SPEI was positively correlated at 6–9 months and peaked at 7 months
(rcropland = 0.093). In addition, the average SPEI time scales for woodland, grassland, and
cropland were 7.0, 6.7, and 6.6 months, respectively.
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4. Discussion
4.1. The Effects of Drought on Different Vegetation Types

To deeply understand the difference between cumulative and time-lagged effects,
the extreme value phase difference method (∆Rmax = Rmax_cum − Rmax_lag) was used
to explore the difference. As shown in Figure 10a, the regions where the time-lag effect
was greater than the cumulative effect were mainly distributed in northern Xinjiang and
Northeast China. The cumulative effect was stronger than the time-lag effect in the Qinghai–
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Tibet Plateau, Southwest Region, and some eastern regions. Figure 10b shows the statistical
rule of the difference between the cumulative effect and time-lag effect. It was found that
the cumulative effect of drought had a higher time-lag effect in 52.15% of the area. ∆Rmax
fell between −0.10–0 (33.77%) and 0–0.1 (36.36%), followed by −0.2–−0.1 (13.89%) and
0.1–0.2 (10.45%).
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Further research was carried out on the dominance of time-lag and cumulative effects
of drought on the three vegetation types: cropland, grassland, and woodland. Figure 11a
demonstrates that in grassland, as opposed to cropland and woodland, there was a stronger
correlation between cumulative and time-lag effects. All three vegetation types also had a
stronger time-lag effect than cumulative effect. Figure 11b reveals that the cumulative mean
number of months was larger than the mean number of time-lag months for grassland
and woodland, while the cumulative mean number of months was smaller than the mean
number of time-lag months for cropland. Additionally, the cumulative and time-lag mean
number of months was also larger for woodland than for cropland and grassland.
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4.2. Reliability of the Framework

At present, the relationship between climate and vegetation is the research object of
various scholars in different fields. Many different methods have been used to explore the
cumulative effects of drought on vegetation, for example, the SPI, PDSI, and temperature
vegetation drought index (TVDI). The SPI collects and standardizes data from meteorologi-
cal observation sites for hydrological drought monitoring. The PDSI is a meteorological
drought index derived from the water balance principle, which takes into account prior
precipitation, moisture supply, and potential emanation [33]. The TVDI is an index used
for soil moisture inversion in vegetation regions that relies on optical and thermal infrared
remote sensing channel data. However, the PDSI and TVDI have fixed time scales and
do not take into account the characteristics of multi-scale drought [34,35]. The SPEI is
primarily used to monitor meteorological drought [8,14], while the SPI is primarily used to
monitor agricultural drought [36]. The SPEI considers both precipitation and the sensitivity
of the PDSI to potential evapotranspiration changes, integrating multiple time scales of the
SPI [7].

The NDVI and EVI are commonly used to monitor vegetation growth. Matsushita et al.
(2007) [37] showed that the ratio characteristic of the NDVI could eliminate the influence
of atmospheric conditions such as solar angle, terrain, clouds, etc., but supersaturation
would occur in high-value regions [38]. Compared with the NDVI, the EVI eliminates
this effect, but the EVI does not consider the noise generated by terrain as an important
factor affecting the calibration of a vegetation index. Combined with China’s complex
geomorphic units, the NDVI, which has a reduced topographic impact, is more suitable
for large-scale vegetation monitoring, and comprehensive consideration of the NDVI can
better characterize vegetation growth. The indices used in this paper, the NDVI and SPEI,
have been confirmed by previous studies [8,14].

In addition to remote sensing products, satellite datasets are also important for obtain-
ing the NDVI. The existing AVHRR, the Himawari-8 and Sentinel-2 datasets, are widely
used. However, the earlier time range of AVHR-NDVI and the shorter time range of
Himawari-8 would have limited the research. In addition, the high spatial resolution of
Sentinel-2 leads to too much uncertainty in resampling SPEI data to the same resolution.
Therefore, MODIS products were selected in this paper.

4.3. Uncertainty and Future Improvements

The spatial distribution characteristics of the maximum correlation coefficients and
their corresponding time scales in most of China are generally consistent with regional
results, such as those for Loess Plateau grassland [14] and the Yellow River basin [8], in-
dicating that this study accurately reflects the spatial correlation between the NDVI and
SPEI at different time scales. However, there are some disadvantages, such as the simple
correlation analysis and low spatial resolution because of the complex relationships be-
tween vegetation and the environment and regional differences. The relationship between
vegetation growth and drought is nonlinear and complex, and the use of correlation coef-
ficient analysis oversimplifies the cumulative and time-lag effects [39]. The SPEI dataset
has low resolution, leading to uncertainties when resampling to match the resolution of
the NDVI. In addition, the influence of climate and soil moisture on vegetation growth has
been demonstrated [16,40–42], but this paper only considers the influence of the SPEI on
vegetation, ignoring the influence of other factors on vegetation growth, which unavoidably
affected the results. Further research is necessary to investigate the impact of additional
factors on vegetation growth, aiming to enhance clarity and reliability in terms of accuracy.

5. Conclusions

This paper analyzed the spatial and temporal changes in the NDVI and the correlation
between the NDVI and SPEI at various time scales to summarize the cumulative and
time-lag effects of drought on woodland, grassland, and cropland from 2001 to 2020 and
drew the following conclusions:
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1. The NDVI increased at a rate of 0.019/10 years, demonstrating the spatial variation
trend of low values in the west and high values in the east, with an increase in the
NDVI seen in 80.53% of areas.

2. The average SPEI cumulative time scale most relevant to the NDVI was 7.3 months,
and the cumulative effect of drought on vegetation showed a strong correlation at
9–12 months. There were significant regional differences in the cumulative effect’s spa-
tial distribution, with the cumulative scale being most widely distributed at 9 months
and then 12 months, primarily in the northeast and northwest. The cumulative effects
of drought on cropland, woodland, and grassland all showed the maximum correla-
tion and the strongest cumulative effect at 9 months, and the correlation coefficients
were ranked as grassland > woodland > cropland from 6 to 12 months of accumu-
lation, and the average SPEI time scales most relevant to woodland, grassland, and
cropland were 8.0, 6.3, and 7.4 months, respectively; that is, the best cumulative time
followed the order woodland > cropland > grassland.

3. The average SPEI time-lag scale related to the NDVI was 6.9 months, and the time-lag
effect of drought on vegetation showed a maximum correlation at 7 months. The
spatial distribution of the time-lag effect also had obvious territoriality, and the lag
time interval was primarily 6–8 months, with cropland and grassland having the
strongest time-lag effect at 7 months and woodland having the strongest time-lag
effect at 6 months, and the time-lag effect of woodland on all scales was lower than
that of grassland, and the average SPEI time scales related to woodland, grassland,
and cropland were 7.0, 6.7, and 6.6 months, respectively.
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