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Abstract: Solar-induced chlorophyll fluorescence (SIF) has been found to be a useful indicator of
vegetation’s gross primary productivity (GPP). However, the directional SIF observations obtained
from a canopy only represent a portion of the total fluorescence emitted by all the leaf photosystems
because of scattering and reabsorption effects inside the leaves and canopy. Hence, it is crucial to
downscale the SIF from canopy level to leaf level by modeling fluorescence escape probability (fesc)
for improved comprehension of the relationship between SIF and GPP. Most methods for estimating
fesc rely on the assumption of a “black soil background,” ignoring soil reflectance and the effect of
scattering between soils and leaves, which creates significant uncertainties for sparse canopies. In
this study, we added a correction factor considering soil reflectance, which was modeled using the
Gaussian process regression algorithm, to the semi-empirical NIRv/FAPAR model and obtained the
improved fesc model accounting for soil reflectance (called the fesc_GPR-SR model), which is suitable
for near-infrared SIF downscaling. The evaluation results using two simulation datasets from the
Soil–Canopy–Observation of Photosynthesis and the Energy Balance (SCOPE) model and the Discrete
Anisotropic Radiative Transfer (DART) model showed that the fesc_GPR-SR model outperformed
the NIRv/FAPAR model, especially for sparse vegetation, with higher accuracy for estimating
fesc (R2 = 0.954 and RMSE = 0.012 for SCOPE simulations; R2 = 0.982 and RMSE = 0.026 for DART
simulations) compared with the NIRv/FAPAR model (R2 = 0.866 and RMSE = 0.100 for SCOPE
simulations; R2 = 0.984 and RMSE = 0.070 for DART simulations). The evaluation results using in situ
observation data from multi-species canopies also suggested that the leaf-level SIF calculated by the
fesc_GPR-SR model tracked better with photosynthetic active radiation absorbed by green components
(APARgreen) for sparse vegetation (R2 = 0.937, RMSE = 0.656 mW/m2/nm) compared with the
NIRv/FAPAR model (R2 = 0.921, RMSE = 0.904 mW/m2/nm). The leaf-level SIF calculated by the
fesc_GPR-SR model was less sensitive to observation angles and differences in canopy structure among
multiple species. These results emphasize the significance of accounting for soil reflectance in the
estimation of fesc and demonstrate that the fesc_GPR-SR model can contribute to further exploring the
physiological mechanism between SIF and GPP.

Keywords: solar-induced chlorophyll fluorescence (SIF); fluorescence escape probability; soil
reflectance; Gaussian process regression; downscaling

1. Introduction

Solar-induced chlorophyll fluorescence (SIF) is a phenomenon in which chlorophyll
molecules in plants emit light in response to natural light. It is a byproduct of the light
reaction process of photosynthesis [1,2] and has been proven to serve as a proxy for gross
primary productivity (GPP) in numerous studies [2–6]. The light energy absorbed by
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photosynthetic pigments can be dissipated through three main pathways: photosynthesis,
heat dissipation, and fluorescence [2,7]. SIF changes in sync with photochemical quenching
and competes with heat dissipation under natural light conditions without stress, and
it is closely tied to photosynthesis in the basic physiological and biochemical processes
of plants [8,9]. As such, SIF provides a more accurate measurement of photosynthetic
ecological changes and has a more direct relationship with GPP compared with vegetation
indices based on reflectance [10,11].

There are currently many algorithms that can successfully retrieve SIF from ground-
based and satellite-based observations [8,9,12–14]. However, the fluorescence photons
observed at the canopy level only represent a fraction of the total SIF emission due to
the effect of the radiative transfer process. After fluorescence photons are emitted by
photosystems, they are absorbed and scattered by the leaf and canopy components and
then escape to the canopy, where they are detected by sensors [2]. The red SIF is primarily
affected by chlorophyll absorption within leaves, whereas the near-infrared SIF is primarily
impacted by the scattering effect within the canopy [15]. The scattering and reabsorption
effects result in different SIF–GPP relationships due to variations in canopy structure, such
as leaf area, leaf orientation, and leaf clumping [16]. Furthermore, multiple scatterings
inside the canopy during SIF transmission make the SIF observed from different angles vary,
which demonstrates that canopy SIF is directional and not isotropic [17]. As a result, the
canopy-level SIF differs from the leaf-level SIF and cannot be utilized to directly quantify
changes in plant physiology [5,18,19].

To reduce the influence of the canopy structure and directional effect on the SIF–GPP
relationship, it is necessary to downscale the SIF from canopy level to leaf level and obtain
the leaf-level SIF which has a closer physiological coupling relationship with GPP. The
fluorescence escape probability (fesc) represents the probability that the fluorescence emitted
by photosystems escapes from the canopy and is an important bridge connecting the canopy
SIF (SIFcanopy) and the total SIF emitted by photosystems (SIFtotal). Their relationship can
be expressed as follows [20–25]:

SIFcanopy = SIFtotal × fesc = PAR× FAPAR×ΦSIF × fesc (1)

where PAR is the incident photosynthetically active radiation; FAPAR is the fraction of
photosynthetically active radiation absorbed by vegetation; ΦSIF is the fluorescence quan-
tum yield. The weak absorption effect of leaves in the near-infrared band means that the
fluorescence escape probability from photosystems to leaves can be approximated by the
leaf albedo with a value around 1 [26], and the fesc in Equation (1) can be approximated as
the fluorescence escape probability from leaves to the canopy and its unit is sr−1.

In recent years, a number of studies have concentrated on estimating fesc, in other
words, downscaling SIF from the canopy to the leaf level; however, a common problem
in most of these approaches is that they are based on spectrally invariant properties and
the assumption of a “black soil background,” assuming that the soil is a black body with
a reflectance of 0, which absorbs all external radiation signals, regardless of the reflective
property of the soil and the effects of multiple scatterings among soils and leaves. Yang
et al. [27] proposed that fesc could be accurately estimated using near-infrared reflectance,
canopy interception (i0), and leaf albedo in the near-infrared band (ωN), assuming no soil
reflectance (fesc = RefNIR/i0·ωN), which laid the foundation for the study of fesc estimation.
Liu et al. [15] used this model to estimate fesc from canopy reflectance based on random
forest regression, effectively avoiding the difficulties of estimating i0 and ωN in the model.
Zeng et al. [28] further simplified the parameters in the model by developing the near-
infrared reflectance of vegetation index (NIRv) to isolate the contribution of soil and
vegetation to canopy reflectance and using FAPAR to approximate i0 in the denominator.
Similarly, Liu et al. [26] derived fluorescence escape probability formulas for the red and
near-infrared bands based on reflectance and FAPAR, respectively, and applied them to
correct long-term ground observation data of SIF. Yang et al. [29] later showed that it was
challenging to estimate FAPAR and fesc in the near-infrared band separately using canopy
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reflectance alone; however, the product of the two could be well replaced with a new
vegetation index, the fluorescence-corrected vegetation index (FCVI), which was shown to
be in good agreement with spectrally invariant properties.

Among the above-mentioned SIF-downscaling methods, the semi-empirical model
proposed by Zeng et al. [28] is simple and accurate, facilitating the use of current in situ
or remotely sensed NIRv and FAPAR datasets for fesc estimation. As a result, Zeng et al.’s
model has been widely used and can be expressed as:

fesc ≈
NIRv

i0 ×ωN
=

NDVI× RefNIR

i0 ×ωN
≈ NIRv

FAPAR
(2)

where fesc is a dimensionless quantity, different from fesc (unit: sr−1) in Equation (1).
For ease of understanding, the fesc values in the following sections are all expressed as
dimensionless quantities. The canopy interception, i0, is approximated by FAPAR. The leaf
single scattering albedo in the near-infrared band (leaf reflectance + transmittance), ωN, is
taken to be constant and equal to 1. Although the use of NIRv in the model is intended
to eliminate the effect of soil reflectance, in practice, NIRv as a pure vegetation signal is
controversial because soil reflectance impacts the calculation of the normalized difference
vegetation index (NDVI). Additionally, the approximation of i0 with FAPAR relies on the
assumption that soil reflectance is 0 [29]. Hence, the NIRv/FAPAR model proposed by
Zeng et al. does not completely eliminate the impact of soil reflectance, which remains a
key source of uncertainty in fesc estimation, especially for sparse vegetation. The influence
of soil reflectance on fesc estimation can be seen in two aspects: its impact on the calculation
of pure vegetation reflectance and on the scattering process between the canopy and soil.

To thoroughly correct the effect of soil reflectance, we aim to add a correction factor
that includes soil reflectance to the simple NIRv/FAPAR model to increase the precision of
fesc and leaf-level SIF estimation in the near-infrared band. First, we used the Soil–Canopy–
Observation of Photosynthesis and the Energy Balance (SCOPE) model to simulate the
training dataset. Then, we employed the Gaussian process regression (GPR) algorithm to
model the correction factor, obtaining the improved fesc modeling method accounting for
soil reflectance (fesc_GPR-SR model). Finally, we assessed the performance of the fesc_GPR-SR
model using simulated data, including the SCOPE model and the Discrete Anisotropic
Radiative Transfer (DART) model, combined with field-measured data.

2. Materials and Methods
2.1. Simulated Datasets
2.1.1. SCOPE Model Simulations

The SCOPE model [30] is a one-dimensional radiative transfer model that simulates the
interaction between radiative transport, microscopic meteorological processes, spectral re-
flectance, SIF, and photosynthetic and hydrothermal fluxes in leaves and canopies. We used
SCOPE v1.73 to simulate canopy-level SIF, leaf-level SIF, and canopy directional reflectance.

Leaf absorption is primarily influenced by chlorophyll concentration [31], while
canopy scattering is primarily influenced by Sun–target–viewing geometries and struc-
tural parameters such as leaf area index (LAI) and leaf inclination distribution function
(LIDF) [32]. We parameterized the model with a range of leaf chlorophyll a and b content
(Cab), LAI, and five typical LIDFs (excluding Erectophile, which is uncommon) to cover the
most common vegetation states. Since only the soil reflectance at 780 nm is used for model
training, it has nothing to do with the shape of the soil spectra. It is only necessary to ensure
that the soil spectra input of the SCOPE model covers the common soil reflectance range in
the near-infrared band [33] (Figure 1). We selected small LAI values densely to represent
sparse vegetation conditions. The details of the input variables for the SCOPE model
are listed in Table 1. In total, 81,000 distinct samples were generated. To improve model
training efficiency and reduce the processing time, we randomly selected 9000 samples
for training (1500 simulated samples per soil spectral curve, 1500 × 6 = 9000), and another
9000 samples were selected for validation.
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Figure 1. Soil spectral curves used in the SCOPE model. The black dashed line shows the wavelength
position at 780 nm.

Table 1. Main input variables of the SCOPE model.

Variables Definition Values Unit

Cab Leaf chlorophyll a and b content 20, 40, 60, 80 µg/cm2

LAI Leaf area index 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 5, 7 m2/m2

LIDFa Leaf inclination parameter 1, 0, 0, −0.35, 0 −
LIDFb Bimodality parameter 0, −1, 1, −0.15, 0 −
SZA Solar zenith angle 20, 30, 40, 50, 60 Degree
VZA Viewing zenith angle 0, 15, 30, 45, 60 Degree
RAA Relative azimuth angle 0, 90, 180 Degree

Soil spectra Soil reflectance Six soil spectra −

2.1.2. DART Model Simulations

The DART model [34] is a three-dimensional radiative transfer model that simulates
the propagation of radiation across the whole optical domain, from the visible to the
thermal infrared region, for natural landscapes such as forests, grasslands, and farmland,
as well as for urban landscapes with topography and atmosphere. Recently, the FLUSPECT
model was integrated into the DART model to simulate the radiative transfer of SIF within
3-D canopies [35]. In this study, the accuracy of the fesc was verified using DART v5.6.7,
which simulated the SIF at both canopy and leaf levels, as well as the directional reflectance
for fifty various viewing angles for maize canopies. The input variables for the DART
model are listed in Table 2. To simulate sparse maize canopies, the value of LAI was set to
2. The soil spectrum from the DART model database was used (Figure S1). The specific
simulated 3-D maize canopy scene is shown in Figure S2. Figure 2 shows the simulated
multi-angle canopy SIF results in the near-infrared band (760 nm).

Table 2. Main input variables of the DART model.

Variables Definition Values Unit

Vegetation type Vegetation type Maize −
N Structure coefficient 1.5 −

Cab Leaf chlorophyll a and b content 58 µg/cm2

Yield PSI Fluorescence quantum yield for photosystem I 0.002 −
Yield PSII Fluorescence quantum yield for photosystem II 0.008 −

LAI Leaf area index 2 m2/m2
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Table 2. Cont.

Variables Definition Values Unit

Canopy height Canopy height 1.5 m
Soil spectra Soil reflectance loam_gravelly_brown_dark −

SZA Solar zenith angle 30.9303 Degree
SAA Solar azimuth angle 249.1069 Degree
VZA Viewing zenith angle 0–90 Degree
VAA Viewing azimuth angle 0–360 Degree
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Figure 2. Multi-angle canopy-level SIF results of maize canopies in the near-infrared band (760 nm)
using the DART model. The angular coordinate and diameter coordinate represent the viewing
azimuth angles (VAAs, 0–360◦) and the viewing zenith angles (VZAs, 0–90◦), respectively. The red
pentagram indicates the position of the sun (SZA = 30.9303◦, SAA = 249.1069◦).

2.2. Field Dataset
2.2.1. Field-Measured Dataset

The in situ spectral data were collected from four field experiments carried out at
three locations in 2016. The data were employed to assess the performance of the improved
fesc estimation model in canopies with varying structures. The first and second spectral
measurements of winter wheat were taken at the Xiaotangshan Farm (XTS) in Beijing on
8–9 April, 18 April, and 8 December, when the winter wheat was at the stages of jointing,
booting, and tillering, respectively. The third experiment was conducted on 18 December at
the Nanbin Farm (NBF) in Sanya and included vegetables and crops such as sweet potato,
cotton, pumpkin, and maize. The fourth spectral measurement was taken on 18 December
at the Sanya Remote Sensing Satellite Data Receiving Station (SYS) and included gold coin
grass. The details of these four ground measurements are listed in Table 3. According to
the visual judgment of canopies in Figure 3, the LIDF type in XTS was spherical and, in
NBF and SYS, it was planophile. All the spectral measurements were performed using a
custom-made Ocean Optics QE Pro spectrometer (Ocean Optic, Inc., Dunedin, FL, USA).

Table 3. Detailed information of the four ground measurements.

Sites Xiaotangshan Farm Xiaotangshan Farm Nanbin Farm Sanya Station

Location 40◦11′N
116◦27′E

40◦11′N
116◦27′E

18◦22′N
109◦10′E

18◦18′N
109◦18′E

Dates in 2016 8, 9, 18 April 8 December 18 December 18 December
Species Winter wheat Winter wheat Vegetables and crops Gold coin grass

Fractional vegetation cover (FVC) 0.72–0.79 0.21–0.63 0.28–0.91 0.67
Soil reflectance in NIR band * 0.12–0.17 0.13–0.16 0.09–0.16 0.11–0.13

* Soil reflectance in NIR band included that of litters.
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Figure 3. Photographs of canopies at (a) XTS in December (winter wheat), (b) NBF (sweet potato),
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2.2.2. SIF Retrieval

The three-band fluorescence line discriminator (3FLD) method [36] is simple and
reliable for data with 0.3 nm spectral resolution, according to Damm et al. [37] and
Liu et al. [38]. This method was selected in this study for retrieving SIF. The formula
for the 3FLD method is expressed as follows:

SIFcanopy =
(Ileft ×wleft + Iright ×wright)× Lin − Iin × (Lleft ×wleft + Lright ×wright)

(Ileft ×wleft + Iright ×wright)− Iin
(3)

where I is the incident solar radiance reaching the top of the canopy; L is the entire upwelling
radiance; and the weight w, which is inversely proportional to the distance between the left-
and right-side bands and the inner band, is used to average I and L outside the absorption
band. The subscripts in, left, and right denote the bands that are within, to the left of, and to
the right of the absorption band, respectively. As noted by Liu et al. [38] and Liu et al. [22],
the wavelengths corresponding to the left, inner, and right shoulder of the absorption
feature for the O2-A band are 752.92 nm, 760.72 nm, and 768.87 nm, respectively.

2.2.3. Estimation of APARgreen

Because only the green components of the canopy can carry out photosynthesis, the
FAPAR for the entire canopy can be divided into the photosynthetic active green compo-
nents (FAPARgreen) and the non-photosynthetic active components (FAPARnon-green) [39].
Liu et al. [40] proposed an in situ measurement approach of FAPARgreen in the low veg-
etation canopy using a digital camera and reference panel, which has been proven to be
effective. Using this method, FAPARgreen can be calculated as follows:

FAPARgreen =
PARi − PARr − (APARexp _b + APARcov_b)

PARi
(4)

where PARi and PARr are the incident and reflected PAR calculated from the DN values
of digital photographs. APARexp_b and APARcov_b are the PAR absorbed by the exposed
background and the vegetation-covered background, respectively. Consequently, photo-
synthetically active radiation absorbed by green components (APARgreen) can be further
deduced as:

APARgreen = PAR× FAPARgreen (5)

2.3. Correction Factor Accounting for Soil Reflectance

The NIRv/FAPAR model, proposed by Zeng et al. [28] (Equation (2)), is currently a
popular method for downscaling SIF in the near-infrared band. However, this method
is limited by the fact that it does not explicitly consider the impact of soil reflectance,
which can result in errors in fesc estimation, particularly for sparse vegetation. Therefore, a
correction factor is necessary to optimize the estimation of fesc in Zeng et al. [28] to reduce



Remote Sens. 2023, 15, 4361 7 of 18

the impact of soil reflectance. The contribution of soil background to fesc estimation is not
only related to its reflectance but also to vegetation coverage, which can be represented
by the vegetation index. Hence, the correction factor can be expressed as a function of soil
reflectance in the near-infrared band and vegetation index—f (Refsoil, VI). In this study,
four vegetation indices (NDVI, simple ratio (SR), two-band enhanced vegetation index
without the blue band (EVI2), and perpendicular vegetation index (PVI)) were selected
to characterize vegetation structure (Table 4). The correction factor was added to the
widely used NIRv/FAPAR model by multiplying and adding functions, resulting in two
improved models:

fesc =
NIRv

FAPAR
× f1(Ref soil , VI) (6)

fesc =
NIRv

FAPAR
+ f2(Ref soil , VI) (7)

where f 1 (Refsoil, VI) and f 2 (Refsoil, VI) are the two correction factors for multiplicative
correction and additive correction, respectively.

Table 4. VIs used for the calculation of the correction factor (R780, R710, and R678 represent the
reflectance at 780 nm, 710 nm, and 678 nm, respectively).

VIs References

NDVI = (R780 − R678)/(R780 + R678) [41]
SR = R780/R678 [42]

EVI2 = 2.5×(R780−R710)
R780+2.4×R678+1

[43]

PVI =
√
(Rsoil

780 − Rveg
780 )

2
+ (Rsoil

678 − Rveg
678 )

2 [44]

To improve the robustness of fesc estimation, a machine learning method was employed
to estimate the correction factor f (Refsoil, VI). A number of machine learning algorithms
were tested for model training, including decision tree, random forest, support vector
machine, and Gaussian process regression (GPR), and it was found that the exponential
Gaussian process regression [45] was the best training model in this study (Figure S3), which
can quantitatively determine the prediction uncertainty in a systematic manner. The model
was trained using the 5-fold cross-validation method. The detailed GPR model parameters
can be found in Table S1. According to Equations (6) and (7), the input parameters of
the two machine learning models were Refsoil and VI, and the outputs were fesc/ NIRv

FAPAR
and fesc − NIRv

FAPAR , respectively. The Gaussian regression algorithm was used to train two
different correction factors, f 1 (Refsoil, VI) and f 2 (Refsoil, VI), in the models. All input and
output parameters can be obtained from the SCOPE simulations.

3. Results
3.1. Performance of Different Correction Factors for fesc Estimation

As discussed in Section 2.3, vegetation indices should be included in the correction
factor of the model. In this study, NDVI, SR, EVI2, and PVI were evaluated. The determi-
nation coefficient (R2), root mean square error (RMSE), and mean absolute error (MAE)
were used to evaluate the models’ performance. As depicted in Figure 4, model fesc/ NIRv

FAPAR
performed significantly better than model fesc − NIRv

FAPAR . However, changing the vegetation
indices had little effect on the R2 values. By comparing other performance evaluation
indices (Table 5), we found that NDVI performed best under all circumstances, including
sparse vegetation. NDVI is the most extensively used of over 40 vegetation indices [46]
and has been proven as a reliable representation of LAI and FVC [47,48]. Hence, NDVI was
finally chosen as the vegetation index in the correction factor.
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Table 5. Statistics of performance evaluation indices of the exponential GPR method with different
input parameters.

Inputs for Models R2 RMSE MAE R2 (LAI < 2) RMSE (LAI < 2) MAE (LAI < 2)

Refsoil, NDVI 0.85 0.0391 0.0311 0.69 0.0438 0.0348
Refsoil, SR 0.85 0.0396 0.0315 0.68 0.0441 0.0350

Refsoil, EVI2 0.84 0.0403 0.0313 0.65 0.0467 0.0372
Refsoil, PVI 0.82 0.0433 0.0334 0.62 0.0484 0.0385

When the inputs of the model were the combination of NDVI and Refsoil and the output
was fesc/ NIRv

FAPAR , the model performance R2 reached 0.850, indicating that f 1 (Refsoil, NDVI)
can explain 85% of the remaining part of fesc from the NIRv/FAPAR model. Even for
sparse canopies (LAI < 2), R2 reached 0.690. Therefore, the improved fesc model in the
near-infrared band accounting for soil reflectance (referred to as the fesc_GPR-SR model) is
defined as follows:

fesc =
NIRv

FAPAR
× f1(Ref soil , NDVI) (8)

3.2. Evaluation of the fesc_GPR-SR Model Using Simulated Data
3.2.1. Validation of the fesc_GPR-SR Model Using SCOPE Simulations

The performance for estimating fesc of the fesc_GPR-SR model was first assessed using
the SCOPE simulations. The comparison of fesc calculated by the NIRv/FAPAR model
and the fesc_GPR-SR model with that simulated by the SCOPE model is shown in Figure 5,
and it is evident that the fesc values estimated by the NIRv/FAPAR model are significantly
underestimated (data points are below the 1:1 line), especially for canopies with low LAI
values. Figure 6 clearly illustrates that as the LAI value increases, the underestimation effect
of fesc calculated by the NIRv/FAPAR model decreases. The fesc estimated by the fesc_GPR-SR
model is in close agreement with the true fesc values under all LAI values, which shows
that the fesc_GPR-SR model can effectively correct the underestimation of fesc, especially for
sparse vegetation. The R2 value of the relationship between fesc estimated by the fesc_GPR-SR
model and the true fesc values improves from 0.730 to 0.949, and the RMSE reduces from
0.081 to 0.015, compared with the NIRv/FAPAR model. The improvement of the fesc_GPR-SR
model is also significant in the case of sparse vegetation, with R2 increasing from 0.866 to



Remote Sens. 2023, 15, 4361 9 of 18

0.954 and RMSE decreasing from 0.100 to 0.012. The results demonstrate that the fesc_GPR-SR
model provides a better estimation of fesc in the near-infrared band and has high estimation
accuracy for sparse vegetation.
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Figure 5. Comparison of fesc in the near-infrared band (760 nm) estimated by (a) the NIRv/FAPAR
model (fesc (NIRv/FAPAR)) and (b) the fesc_GPR-SR model (fesc (GPR-SR)) with the fesc simulated by
the SCOPE model. R2 is the correlation coefficient of linear regression, and RMSE is the root mean
square error between fesc (SCOPE) and the fesc values calculated by fesc estimation models.
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Figure 6. Comparison of fesc in the near-infrared band (760 nm) calculated by the NIRv/FAPAR
model (fesc (NIRv/FAPAR), orange boxes), the SCOPE model (fesc (SCOPE), green boxes), and the
fesc_GPR-SR model (fesc (GPR-SR), blue boxes) under different LAI values.

Furthermore, we calculated the coefficient of variation (CV) of the canopy SIF sim-
ulated by the SCOPE model and the leaf SIF estimated by the fesc_GPR-SR model and
NIRv/FAPAR model for each set of different LAI values with only the VZA changing and
the remaining parameters fixed (Figure 7). The smaller the CV value, the less the SIF is
affected by the directional effect. The CV of canopy SIF for different LAI values is much
larger than that of leaf SIF due to the anisotropic scattering within the canopy. Apparently,
compared with the NIRv/FAPAR model, the CV of leaf SIF estimated by the fesc_GPR-SR
model is smaller, and the gap between the results of the two models is more obvious for
sparse vegetation. The result suggests that our fesc_GPR-SR model can reduce the directional
effect of canopy SIF more effectively compared with the NIRv/FAPAR model.
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Figure 7. The coefficients of variation (CVs) of the canopy SIF simulated by the SCOPE model and
the leaf SIF estimated by the fesc_GPR-SR model and NIRv/FAPAR model for each set of different
LAI values with only the VZA changing and the remaining parameters fixed (LIDF is plagiophile,
Cab = 60 µg/cm2, SZA = 30◦, RAA = 180◦, and soil reflectance at 780 nm is 0.1508). The amount of
data for different LAI values is the same.

3.2.2. Validation of the fesc_GPR-SR Model Using DART Simulations

The reliability of the fesc_GPR-SR model was further assessed using leaf-level and
canopy-level SIF of maize plants simulated by the DART model under sparse vegeta-
tion conditions (LAI = 2). The comparison of SIF at canopy and leaf levels is shown in
Figure 8. For ease of comparison, the unit of leaf-level SIF was converted from mW/m2/nm
to mW/m2/nm/sr. The leaf-level SIF estimated by the fesc_GPR-SR model (the mean value
is 1.818 mW/m2/nm/sr) is found to be closer to the SIF simulated by the DART model
(SIFDART

leaf = 1.813 mW/m2/nm/sr). The interquartile range (IQR) of leaf-level SIF calcu-
lated by the fesc_GPR-SR model is significantly smaller than that of multi-angle canopy SIF,
indicating that the fesc_GPR-SR model can eliminate the directional effect of the canopy SIF
effectively. Figure 9 displays the comparison of fesc in the near-infrared band estimated
by the NIRv/FAPAR model and the fesc_GPR-SR model with that simulated by the DART
model. The fesc estimated by the fesc_GPR-SR model is closer to the 1:1 line, with similar R2

values but the RMSE decreasing significantly from 0.070 to 0.026, in comparison with the
NIRv/FAPAR model. These results of the 3-D radiation transfer model also verify that the
fesc_GPR-SR model can effectively improve the accuracy of fesc estimation.
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Figure 8. Boxplot of maize canopy SIF in the near-infrared band (760 nm) simulated by the DART
model (SIFcanopy) and leaf-level SIF estimated by the NIRv/FAPAR model (SIFNIRv/FAPAR

leaf ) and
that estimated by the fesc_GPR-SR model (SIFGPR−SR

leaf ). The red dotted lines represent the leaf-level
SIF of maize in the near-infrared band (760 nm) simulated by the DART model (SIFDART

leaf ). For the
convenience of comparison, the unit of leaf-level SIF is converted to mW/m2/nm/sr (consistent with
the unit of canopy SIF).
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square error between fesc (DART) and the fesc values calculated by fesc estimation models.

3.3. Evaluation of the fesc_GPR-SR Model Using Field-Measured Data

The ΦSIF in Equation (1) remains relatively unchanged under high-light and stress-
free conditions [49,50]. As a result, there is a strong correlation between APARgreen and
SIFtotal, which is stronger than at the canopy level, taking into account canopy scattering
and reabsorption [15,26]. We use the field-measured data from healthy and non-stressed
vegetation to study the correlation of APARgreen–SIF at both canopy and leaf levels to assess
the performance of both downscaling methods.

To verify the improved performance of the model that accounts for soil reflectance in
SIF downscaling, the samples with FVC ≤ 0.8 from the ground-measured dataset were se-
lected for comparison and validation. Figure 10 reveals the correlation between APARgreen
and the canopy-level SIF, the leaf-level SIF calculated by the NIRv/FAPAR model, and
the fesc_GPR-SR model for various species. In comparison with the APARgreen–SIFcanopy
relationship, the R2 of the correlation between SIF after downscaling using both mod-
els and APARgreen increases significantly and the slopes of the linear regression lines of
APARgreen–SIFleaf for various species become more similar, indicating that downscaling
SIF from canopy level to leaf level eliminates the impact of varying canopy structures
among species and reduces the species dependence of the APARgreen–SIF correlation. Our
fesc_GPR-SR model performs better in this aspect, as reflected by the fact that the R2 of the
relationship between APARgreen and SIFleaf estimated by the fesc_GPR-SR model improves
from 0.921 to 0.937 and the RMSE declines from 0.904 to 0.656 mW/m2/nm in comparison
with the results of the NIRv/FAPAR model.

The R2 and RMSE values of the linear correlation between APARgreen and SIF for
samples of various species with FVC ≤ 0.8 appear in Table 6. The results indicate that the
R2 values of the APARgreen–SIFleaf relationship for different species increase after the SIF
downscaling. Compared with the NIRv/FAPAR model, the RMSE of SIFleaf for different
species calculated by our fesc_GPR-SR model is smaller, indicating that the fesc_GPR-SR model
can better estimate the leaf-level SIF. For vegetables and crops, although the R2 value
slightly decreases after accounting for soil reflectance, the RMSE is still smaller than that of
the NIRv/FAPAR model. For gold coin grass and winter wheat, the SIFleaf calculated by
the fesc_GPR-SR model displays a better linear correlation with APARgreen.
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Table 6. R2 and RMSE values of the line correlation between APARgreen and SIF for samples of
various species with FVC ≤ 0.8. The units of RMSE for the APARgreen–SIFcanopy relationship and the
APARgreen–SIFleaf relationship are mW/m2/nm/sr and mW/m2/nm, respectively.

Vegetables and Crops Gold Coin Grass Winter Wheat

R2 RMSE R2 RMSE R2 RMSE

SIFcanopy 0.883 0.187 0.750 0.195 0.944 0.071

SIFNIRv/FAPAR
leaf 0.955 0.709 0.891 0.612 0.966 0.683

SIFGPR−SR
leaf 0.950 0.646 0.901 0.518 0.970 0.511

Overall, the outcomes indicate that the fesc_GPR-SR model shows better performance in
SIF downscaling for different species, reducing the species dependence of APARgreen–SIF
for sparse vegetation to a greater extent in contrast to the NIRv/FAPAR model.

4. Discussion
4.1. Effect of Soil Reflectance on Estimating fesc

The scattering and reabsorption of SIF photons within the canopy are governed by the
same physical mechanisms as the scattering and reabsorption of reflected radiation photons.
When incident light enters the canopy from the top, it can either pass through the canopy
and reach the soil surface through the gaps or interact with leaves in the canopy. Photons
intercepted by the canopy are scattered and reabsorbed several times, and some escape
from the canopy while others are absorbed by leaves. Photons absorbed by leaves in the
PAR range (400–700 nm) can stimulate fluorescence photons with a 640–850 nm wavelength
range [27]. Emitted fluorescence will also escape from the canopy after multiple scatterings
and reabsorptions inside the canopy and leaves.

In practice, soil background has a specific reflectance spectrum and is not “black.”
Ignoring the influence of atmospheric radiative transfer and multiple scatterings between
soil and canopy (considering only single scattering), the photons captured by the sensor
mainly come from three sources: (1) photons (including emitted fluorescence photons)
that escape upward from the canopy to the sensor; (2) incident photons that pass through
the canopy, reach the soil surface, and are reflected to the sensor; (3) photons (including
emitted fluorescence photons) escaping downward from the canopy that reach the soil
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and are reflected to the sensor. It is worth mentioning that the downward-escaping SIF
photons from the canopy may be absorbed by the soil; however, this can be ignored as
the lower leaves receive less light and thus produce fewer SIF photons [15]. Consequently,
the SIF photons captured by the sensor come from two main sources: the contribution of
pure vegetation canopy and the contribution of soil single scattering, and soil reflectance
affects both. Yang et al. [27] proposed a basic model to estimate fesc based on spectrally
invariant theory, where fesc = RefNIR/i0·ωN, ignoring the contribution of soil scattering
to the fluorescence signal captured by the sensor. The near-infrared reflectance in the
numerator clearly contains the effect of soil reflectance. Zeng et al. [28] proposed the
NIRv/FAPAR model, which replaced the near-infrared reflectance with NIRv; however, the
NDVI used as the pure vegetation signal in this model still depended on soil reflectance.
The accuracy of fesc estimated by the NIRv/FAPAR model is reduced when a real soil
background, rather than a non-reflecting background, is present, especially for sparse
scenes [51]. This is because soil background pollutes the NIRv used to calculate fesc. The
variability of the value of i0 is also high for sparse vegetation, which indicates that soil
background can affect i0 and thus fesc [15].

The simulations using the SCOPE model in this study also show that soil reflectance
significantly affects the estimation of fesc, particularly for sparse vegetation (Figure 11).
When NIRv < 0.439, soil reflectance is the dominant factor in fesc, influencing the scattering
process between the canopy and soil background. The canopy structure is the dominant
factor of fesc when NIRv > 0.439. Thus, ignoring the reflection characteristic of the soil back-
ground and treating it as “black” will introduce significant uncertainty in the calculation of
fesc, especially for sparse canopies where soil reflectance has a greater influence.
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4.2. Superiority of the fesc_GPR-SR Model

At present, some studies on SIF downscaling have considered soil reflectance; however,
these studies lacked clarity and had significant uncertainties. Liu et al. [15] proposed a
SIF-downscaling approach where the ratio of fesc to the bi-directional reflectance factor was
obtained through SCOPE model simulations and the hypothesis of “black soil” was ignored
in the machine learning process. However, they did not explicitly account for the effect of
soil reflectance. Zhang et al. [52] developed a method to derive the global soil-resistant
SIFtotal (SIFtotal-SR) using satellite data. However, their method used an approximation of
the observed minimum reflectance to soil reflectance that is uncertain and relied on LAI and
clumping index (CI) satellite data, which also propagated uncertainties in SIFtotal. Notably,
Zeng et al. [53] proposed using NIRvH with minimal soil impacts by making use of the
spectral shape changes in the red-edge region to calculate true vegetation near-infrared
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reflectance. We used 9000 validation samples simulated by the SCOPE model to verify the
performance of the NIRvH2/FAPAR model to estimate fesc (Figure S4). Compared with the
results in Figure 5, it can be found that our model is also superior to the NIRvH2/FAPAR
model (R2 = 0.885, RMSE = 0.051), possibly because of uncertainties in NIRvH itself,
including the assumption that NIRvH2 is based on a linear increase in the reflectance of
soil in the red-edge region which is not always correct.

Ma et al. [54] suggested that supervised machine learning methods trained on ap-
propriate training datasets could construct accurate predictive models and overcome
difficulties in physical modeling. Rasmussen et al. [55] also noted that while traditional
parametric models are easy to interpret, they can be limited in their expression for complex
datasets. Hence, in this study, we chose to build our fesc_GPR-SR model using a machine
learning method. We proposed to add a correction factor composed of soil reflectance and
NDVI to the widely used NIRv/FAPAR model suggested by Zeng et al. [28], in order to
explicitly account for the effect of soil reflectance. This not only preserved the advantages
of the NIRv/FAPAR model’s simplicity, ease of computation, and clear physical meaning
but also compensated for its lack of explicit consideration of soil reflectance’s effect on fesc
estimation. We tested the performance of various machine learning algorithms and found
that exponential GPR was the best training model. Directly using the machine learning
model to estimate fesc may lead to poor model robustness due to too many model input
parameters, so the correction factor f (Refsoil, VI) with fewer parameters was only trained
using the exponential GPR method, which helped to reduce the number of input parame-
ters and improve the model’s robustness. Moreover, it ensured that the improvement was
carried out on the basis of retaining the physical meaning of the original NIRv/FAPAR
model as much as possible.

We demonstrated the superiority of our model by combining simulation data with
field data. The validation results of SCOPE model simulations (Section 3.2.1) showed
that the fesc estimated by the fesc_GPR-SR model was in good agreement with the true fesc
values, even under sparse vegetation, and it can significantly eliminate the influence of
direction effect. In addition, the 3-D radiative transfer model dataset also validated that
the fesc_GPR-SR model could improve the estimation of fesc (Section 3.2.2). Since the DART
model is too time-consuming to use for simulating a large amount of training data, a
small dataset was used to evaluate the performance of the fesc estimation model trained
with the SCOPE simulations. Additionally, ground-measured data from healthy and non-
stressed vegetation were used for supplementary verification and showed that the linear
correlation between APARgreen and SIFleaf could be improved for different species when soil
reflectance is considered and FVC is less than or equal to 0.8. The fesc_GPR-SR model reduced
the species dependency of the SIF–APARgreen relationship for sparse vegetation to a greater
extent (Section 3.3). The R2 value of the APARgreen–SIFleaf correlation for vegetables and
crops decreased slightly after considering soil reflectance, which may be because most
of the photographs of vegetables and crops at Nanbin Farm were taken on cloudy days,
leading to greater uncertainty in the FAPARgreen and soil reflectance calculations using the
photographs. It must be noted that the significant linear relationship between APARgreen
and SIF exists only in the absence of environmental stress. When environmental stress
exists, APARgreen may not be able to characterize the leaf-level SIF. So, APARgreen cannot
simply be used as a proxy of the total SIF. In conclusion, the fesc_GPR-SR model, which
accounts for soil reflectance, has been verified to increase the accuracy of fesc estimation
in the near-infrared band, particularly for sparse vegetation and the leaf-level SIF in the
near-infrared band calculated by the fesc_GPR-SR model is less sensitive to observation angles
and variations in canopy structure among multiple species.

4.3. Uncertainties of the fesc_GPR-SR Model

Although the fesc_GPR-SR model has been shown to be superior, there are still uncer-
tainties in the modeling process. Firstly, in addition to the influence of soil background
reflectance, the assumption that ωN was 1 also contributed to the underestimation of fesc
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by the NIRv/FAPAR model, because ωN is actually less than 1. However, considering
that ωN is the sum of leaf reflectance and transmittance in the near-infrared band and the
absorption effect of leaves in this band is very weak, numerous studies have shown and
acknowledged that ωN is relatively stable and close to 1 [15,27–29]. Therefore, we did not
pay attention to the uncertainty caused by the assumption that ωN was 1 but focused on the
effect of soil reflectance on fesc estimation. In the future, improving the precision of fesc can
be considered by calculating ωN accurately. Secondly, in this study, the correction factor
was modeled using a combination of soil reflectance and the vegetation index NDVI, which
represents vegetation coverage. While this combination was selected after evaluating the
models’ performance using four common vegetation indices, the correction factor could
be further optimized in the future by testing more than two multi-factor combinations.
Thirdly, despite the computational advantages of machine learning methods, they are
still black-box models and heavily dependent on training datasets, which reduces their
adaptability in special conditions. In the future, we plan to improve the model by establish-
ing a new semi-empirical analytical model that considers the influence of soil reflectance
on fesc estimation in two parts (one is the influence on the calculation of pure vegetation
reflectance and the other is the influence of single scattering between soil and canopy),
based on the basic model (fesc = RefNIR/(i0·ωN)) proposed by Yang et al. [27]. Additionally,
there are still uncertainties that cannot be clearly analyzed and quantified, including the
retrieval error of SIF. In a word, there are still many problems to be addressed in future
SIF-downscaling research.

5. Conclusions

Accurate estimation of the canopy fluorescence escaping probability is important
for SIF application, but the current algorithms cannot well deal with the influence of soil
reflectance, especially for sparse vegetation. In this work, a correction factor estimated
using the GPR algorithm with soil reflectance and NDVI was introduced into the widely
used NIRv/FAPAR model for better estimation of fesc in the near-infrared band. The new
method we proposed, the fesc_GPR-SR model, was evaluated using simulation data and
ground-measured data. The validation results of two simulation datasets from the SCOPE
model and the DART model demonstrate that the performance of the fesc_GPR-SR model in
estimating fesc is significantly better than that of the NIRv/FAPAR model, particularly for
sparse vegetation, and our fesc_GPR-SR model can also effectively eliminate the influence of
direction effects. Moreover, the validation results using the in situ measured data also prove
that, compared with the NIRv/FAPAR model, our fesc_GPR-SR model can better reduce the
species dependence of APARgreen–SIF and eliminate the effect of canopy structure difference
in multiple species. This study highlights the significance and advantages of considering
soil reflectance in fesc modeling and presents a more accurate fesc estimation model, which
will be useful for further studies on the SIF–GPP relationship.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/rs15184361/s1, Figure S1: Soil spectra called “loam_gravelly_
brown_dark” used in the DART model (from the DART model database “Lambertian.db”);
Figure S2: (a) Nadir and (b, c) side view of the 3-D canopy of maize simulated using the DART
model. The size of the scene is 1.5 m × 1 m, and 20 maize are planted in two rows, with 10 in each
row. Figure S3: Training performance (Predicted vs. Actual) of machine learning algorithms based on
5-fold cross-validation method when the input parameters are soil reflectance at 780 nm and NDVI;
Figure S4: Comparison of fesc in the near-infrared band (760 nm) estimated by the NIRvH2/FAPAR
model with the fesc simulated by the SCOPE model. R2 is the correlation coefficient of linear regression,
and RMSE is the root mean square error between fesc (SCOPE) and the fesc values calculated by the
NIRvH2/FAPAR model; Table S1: The main parameters of the GPR model when using MATLAB to fit
Gaussian process regression.
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