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Abstract: Supraglacial lakes in Greenland are highly dynamic hydrological features in which glacial
meltwater cumulates, allowing for the loss and transport of freshwater from a glacial surface to
the ocean or a nearby waterbody. Standard supraglacial lake monitoring techniques, specifically
image segmentation, rely heavily on a series of region-dependent thresholds, limiting the adaptability
of the algorithm to different illumination and surface variations, while being susceptible to the
inclusion of false positives such as shadows. In this study, a supraglacial lake segmentation algorithm
is developed for Sentinel-2 images based on a deep learning architecture (U-Net) to evaluate the
suitability of artificial intelligence techniques in this domain. Additionally, a deep learning-based
cloud segmentation tool developed specifically for polar regions is implemented in the processing
chain to remove cloudy imagery from the analysis. Using this technique, a time series of supraglacial
lake development is created for the 2016 to 2022 melt seasons over Nioghalvfjerdsbræ (79◦N Glacier)
and Zachariæ Isstrøm in Northeast Greenland, an area that covers 26,302 km2 and represents roughly
10% of the Northeast Greenland Ice Stream. The total lake area was found to have a strong interannual
variability, with the largest peak lake area of 380 km2 in 2019 and the smallest peak lake area of 67 km2

in 2018. These results were then compared against an algorithm based on a thresholding technique to
evaluate the agreement of the methodologies. The deep learning-based time series shows a similar
trend to that produced by a previously published thresholding technique, while being smoother
and more encompassing of meltwater in higher-melt periods. Additionally, while not completely
eliminating them, the deep learning model significantly reduces the inclusion of shadows as false
positives. Overall, the use of deep learning on multispectral images for the purpose of supraglacial
lake segmentation proves to be advantageous.

Keywords: meltwater; supraglacial lakes; remote sensing; Sentinel-2; deep learning; U-Net; Greenland;
Zachariæ Isstrøm; Nioghalvfjerdsbræ

1. Introduction

In recent years, the Greenland Ice Sheet has seen increasing mass loss from both
surface ablation runoff and calving. Consequently, its contribution to sea level rise has risen
from 0.02 mm/year for 1992–2001 to 0.68 mm/year for 2012–2016, according to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change [1]. As a significant
source of mass loss, supraglacial lakes (SGLs) play an intricate role in both supra- and
subglacial hydrology, specifically on Greenland. In periods of warmer air temperatures,
heavier rainfall, and/or thinner snowpack, the distribution and size of SGLs have been
observed to increase accordingly in northeastern Greenland [2]. Furthermore, the presence
of these lakes leads to more solar energy being absorbed by the surface due to their lower
surface albedo, and thus further forcing surface melt [3,4]. This surface melt is able to enter
the subglacial drainage system through moulins [5]. Not only does this lead to mass loss,
but also to localized ice uplift and deformation in the case of rapid drainage events [6],
and enhanced basal sliding, causing temporary glacier speed-ups [7–11]. Due to their role
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in complex hydrological dynamics, the seasonal evolution of SGLs and the quantification
of their stored and drained meltwater is critical for the understanding of the current and
future evolution of the Greenland Ice Sheet.

To monitor supraglacial lakes, ground-based observation stations have been used
to this day to gain highly detailed and continuous information on localized areas of
glaciers [9,10]. While this allows for the growth and drainage of certain SGLs to be very
precisely tracked, it only provides information in a limited scope and often requires ex-
pensive, strenuous, and even dangerous expeditions to install and monitor the required
setup. While the use of drones and aircraft extends the spatial scope of the acquisitions,
this method is then limited to acquiring detailed data over a short time period, while not
reducing the expense of such a mission.

With the relatively recent deployment of open-access, high-resolution satellite pro-
grams, such as Landsat-8 and Sentinel-2, the observation capabilities of polar regions
through remote sensing have increased substantially. Specifically, the near daily revisit rate
of these satellites in polar regions aids in the observation and analysis of highly variable
processes. Since the growth and drainage of SGLs is quite dynamic, it is pertinent to
have such regular data acquisitions, especially considering the large percentage of cloud
coverage in this region and its effect on ground visibility.

An effective and widespread methodology for SGL segmentation in multispectral
images relies on the creation of thresholds for one or several bands or spectral indices. In an
early study, Wessels et al. created several thresholds using Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) images to segment out both supraglacial
ice-dammed and moraine-dammed lakes in the Himalayan mountains [12]. The use of
visible bands, specifically in medium-to-high-resolution satellites, allows for an algorithm
based on a single threshold. An often-used simple threshold employs the ratio of the
blue and red bands because of its ability to differentiate SGLs from their surrounding
landscape [13–16]. To overcome some of the drawbacks of having a single static threshold,
several teams investigated the potential of dynamic thresholding using the red band [17,18].
Here, a central pixel is compared to the surrounding pixels in a 21 × 21 moving window,
thus allowing for more adaptability to different atmospheric and background conditions,
with the drawback of being more computationally expensive. To further accentuate SGLs
in glacial scenes, several spectral indices have been employed, consisting of various bands.
Firstly, the standard Normalized Difference Water Index (NDWI), which uses green and
SWIR1 bands, has been successfully applied to SGLs [19], along with a derivative version
adapted for ice (NDWIice), which uses the red and blue bands [20–23]. Another frequently
used variation of the NDWI is denoted as NDWIadapted, which uses the NIR and blue
bands [6,24]. Additionally, the combination of the standard NDWI and the Normalized
Difference Snow Index (NDSI), which uses the green and SWIR1 bands, has been used to
integrate the strengths of both ratios and filter out potential false detections included from
a singular spectral index [25,26].

While multispectral imaging is versatile and information-rich, the ability for radar
satellites to provide data regardless of the atmospheric and lighting conditions allows for
extended observation potential. Studies have taken advantage of both SAR backscatter
data and the SAR data interferometric and polarmetric components [21,27–29]. While the
varying methodologies prove the benefit of this sensor type, the main hindrance is its
inability to distinguish lakes from the ice during the peak melt season, since the ice tends
towards a less-solid state itself, thus restricting its use to the cooler seasons.

In recent years, the introduction of machine learning into the remote sensing do-
main has allowed for improvements in segmentation and classification of myriad earth
observation applications. It specifically helps overcome the issue that many traditional
thresholding methods have regarding the adaptability to different lighting conditions, as
well as natural variations among SGLs. A standard and reliable machine learning algorithm,
Random Forest (RF), has been employed by several research groups for the purpose of
improved SGL segmentation on glaciers and ice shelves around the world [30–35]. For
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SGL segmentation in mountainous regions, Wangchuk and Bolch input several different
data layers derived from Sentinel-1 and Sentinel-2 images into their RF model: NDWIblue,
NDWIgreen, NIR, radar backscatter, slope and a compactness ratio [31]. The RF model
implemented by Dirscherl et al. used even more bands and spectral indices derived from
Sentinel-2 data as input to segment the pixels into four categories: water, snow/ice, rock
and shadow [33]. Furthermore, Dell et al. classified not only the water boundaries for the
lakes but also included slush as a class to attempt to identify zones of partial meltwater [35].
This model produced relatively good results, but contains a significant amount of uncer-
tainty in the validation stage, since slush boundaries are quite ambiguous and manual
delineation is quite subjective. In another study, an array of supervised machine-learning
and thresholding techniques with varying class labels were compared to determine the
best performing methodology [30]. Although many techniques performed well, the RF
classifier achieved the overall best performance. In addition to standard machine learning
algorithms, the capabilities of deep learning models have also begun to be explored, but to a
much lesser extent. While several groups have implemented U-Net on glacial lakes [36,37],
which are typically found on surrounding rocks or bordering a glacier boundary, to our
knowledge only one research team has applied deep learning specifically to SGLs. In their
study, a modified U-Net architecture was applied to single-polarized Sentinel-1 radar data
to segment SGLs on the Antarctic ice sheet [38]. This method was then further extended
by combining it with their RF-based Sentinel-2 algorithm [33] to create a comprehensive
pipeline for SGL segmentation, compensating for the disadvantages of both methods [39].

Despite the success of these newly developed algorithms, they all were unable to fully
overcome a few key misclassification errors. Firstly, the similarity in optical reflectance of
SGLs to shadows is a primary cause of misclassification. The introduction of an increased
number and variety of shadows into the training dataset has been proven to reduce the
false-positive rate, but is nevertheless unable to completely mitigate it [30,33]. For machine-
learning and thresholding methodologies alike, some pre- and post-processing steps are
implemented to limit the inclusion of shadows into the data, such as excluding areas with
a slope value greater than 5% [33], using the daily sun azimuth angles in combination with
the local topography to create seasonal shadow masks [16], excluding scenes for days with
solar elevation >20◦ [35], and simply removing clouds and cloud shadows manually from
the data [30]. Furthermore, the exclusion of lake area due to partially frozen lake surfaces
has been a source of underestimation for which no sufficiently successful method has yet
been developed [14,16]. Another widespread contributor to lake segmentation errors is
the presence of clouds in multispectral scenes and the inability to properly mask them in
their entirety [12,16,30,35]. While standard cloud-masking tools, e.g., Sen2Cor [40] and
Fmask [41], work well for many regions, these algorithms lose accuracy significantly when
employed over polar regions, due to the similarity of spectral reflectance in optical bands.
When these insufficiently reliable methods are incorporated in lake segmentation processing
chains, the risk of miscalculating the total lake area, due to unknowingly cloud-covered
lakes, increases substantially. It also hinders the ability of automated rapid drain-detection
algorithms, as it is then unclear whether a drainage has occurred or the lake is momentarily
blocked from view. Recently, Nambiar et al. created a self-training deep learning algorithm
to specifically address the problem of cloud segmentation in Sentinel-2 images over polar
regions, which significantly outperforms the traditional cloud-masking algorithms [42].

This study aims to investigate the segmentation of SGLs in Sentinel-2 images in
Northeast Greenland using deep learning methods. The specific goal is to quantify the
spatial distribution and evolution of SGLs over the 2016 to 2022 melt seasons through the
use of a U-Net deep learning architecture. To address the previously discussed sources of
errors, we explore the capability of artificial intelligence to differentiate shadows from lake
area by incorporating a richly diverse training dataset. Additionally, the cloud-masking
algorithm created by Nambiar et al. [42] is integrated into the SGL processing chain to
better identify cloud-covered lakes to produce a more accurate time series.
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2. Materials and Methods
2.1. Area of Interest

This study is focused on the Nioghalvfjerdsbræ (also referred to as the 79N Glacier)
and Zachariæ Isstrøm (ZI) glaciers in the Northeast Greenland Ice Stream (NEGIS), high-
lighted in Figure 1. This region has come to recent scientific attention, especially since
the destabilization of ZI’s floating tongue and its subsequent rapid retreat [43]. These
two glaciers alone drain roughly 12% of the Greenland Ice Sheet [43,44], and it is now
estimated that the NEGIS region will contribute 13.5 to 15.5 mm to sea level rise by 2100 [45].
Although these glaciers are moving at a substantial rate, the SGLs on them tend to con-
sistently develop in the same locations throughout the summer melt seasons due to the
influence of the bedrock topography on the surface topography, forming local depressions
on the ice surface [46,47]. The spatial area considered in this study is delineated in red in
Figure 1b, comprising the ablation zone of 79N Glacier and Zachariæ Isstrøm upstream of
their grounding lines, as defined in [16].
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Figure 1. (a) Overview map of Greenland, where (b,c) are subsets of the area delineated in red in (a).
(b) Closer view of the area of interest, with the spatial coverage of the utilized Sentinel-2 scenes shown,
along with the region in which the model is run outlined in red. (c) Velocity map (m/year) highlighting
the locations of the two glaciers of interest in this study. The ice velocity data is Sentinel-1 data from the
2019–2020 winter campaign from the ESA Ice Sheets CCI project (http://products.esa-icesheets-cci.org/
products/downloadlist/IV/, last accessed on 28 February 2023).

2.2. Sentinel-2 Data

The Sentinel-2 mission consists of two identical satellites that capture images con-
taining thirteen different multispectral bands, ranging from coastal aerosol (442.7 nm) to
shortwave infrared (2202.4 nm). The visible bands (red, blue and green), which are used for
SGL segmentation in this study, each have a resolution of 10 m. For this analysis, Sentinel-2
A/B level-1C scenes, which provide top-of-atmosphere reflectance, are used. With the
constellation’s high revisit time and polar-orbiting track, there is a roughly daily image

http://products.esa-icesheets-cci.org/products/downloadlist/IV/
http://products.esa-icesheets-cci.org/products/downloadlist/IV/
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acquisition at the latitudes used in this study. The high temporal and spatial resolution of
these data allow for a nearly continuous and detailed observation of the highly dynamic
processes in this region.

2.3. Data Selection and Preprocessing

There are two datasets used in this study, for different purposes: (1) algorithm develop-
ment and (2) time series calculations. The data selection and preprocessing procedures for
these two datasets are similar but differ in some key aspects, so they will thus be described
separately.

Firstly, the dataset for algorithm development is intended to provide the deep learning
algorithm with a highly diverse set of image subsections from which it can learn the
characteristics and variations of the region. These images are hand-selected to ensure that
different lake shapes, water colors, atmospheric conditions, shadows, and illumination
conditions are present, among others. Eleven Sentinel-2 images (level 1C) were selected
for this purpose and were downloaded using the Google Cloud public data repository
(https://cloud.google.com/storage/docs/public-datasets/sentinel-2, accessed on 5 May
2023). The specific Sentinel-2 scenes are listed in Table A1 in Appendix A. These images
were then tiled into subsets of 512 × 512 pixels. From these subsets, 941 were chosen to
represent the wide range of surface features and their subsequent variations. A selection of
these subsets can be seen in Figure 2, demonstrating the variability of these scenes. All tiles
were then standardized against the training and testing dataset to fit a normal distribution.
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Figure 2. Examples of the image subsets (512 × 512 pixels) chosen for algorithm development. Each
column highlights variability within certain categories: (A) lighter-colored lakes, (B) darker-colored
lakes, (C) cloud shadows on the ice/snow, (D) ice/snow texture and color, and (E) surrounding
rock/nunataks.

The data for the time series evaluation, however, should consist of a series of images
providing full coverage over the area of interest with as high of a temporal resolution as
possible. This time series should span over an entire melt season to allow for the tracking of
supraglacial lake development, using the algorithm developed in this research. Sentinel-2
scenes are available in this region from roughly mid-March to mid-September each year,
allowing for complete coverage of the melt seasons. These images were filtered for scenes
containing a minimum data coverage of 90%. Scenes from the same day were merged

https://cloud.google.com/storage/docs/public-datasets/sentinel-2
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together, and then the GIMP land classification map [48], which was manually updated
using a 2016 Sentinel-2 image, was used to remove non-glacier areas (e.g., rock and ocean).

2.4. Preparation of Training and Testing Data

In order for the deep learning algorithm to learn the difference between the classes (ice,
lake and rock), the training and testing data need to be labeled pixel-wise with the ground
truth. As this task can be tedious to carry out manually, an online tool (segments.ai) is used
to increase the efficiency of the labeling process. The output from this process is a mask
(.tif) corresponding to each image subset. These image–mask pairs are then divided into
the two smaller datasets, training and testing, so that the algorithm is not being tested on
images that it has already seen while training. Image subsets from three Sentinel-2 scenes,
totaling 141 subsets, are used for the testing dataset and eight Sentinel-2 scenes, totaling
800 subsets, are used for training, resulting in a roughly 15/85% split. While the model is
being trained, a random 10% portion of the training images is set aside and used as the
validation set, against which the model compares its learning after every epoch.

2.5. Deep Learning Architecture

A well-performing convolutional neural network for the purpose of semantic image
segmentation is the U-Net architecture. Originally developed by Ronneberger et al. [49] for
the purpose of biomedical image segmentation, it has proven its usefulness in many fields,
including that of remote sensing. Implied by its name, the distinct feature of U-Net is its
characteristic U shape, comprised of an encoder and a decoder, as shown in Figure 3, where
an adapted version of U-Net is depicted. Here, the original U-Net was deepened by two
extra layers in order to expand the receptive field, allowing for more spatial context for each
pixel’s prediction. Initially, an image of size 512 × 512 with three visible bands (red, green,
and blue) are input into the network. Indicated by the red arrows, the image then undergoes
two convolutional processes, each followed by a Rectified Linear Unit (ReLU) activation
function [50], increasing the amount of feature channels. Next, the image undergoes a
max pooling operation to reduce the spatial dimensions. This downsampling process is
continued through the encoder portion until a sufficient number of feature channels are
created. The process is then reversed through the decoder portion by upsampling the data.
Here, as the data is upsampled, concatenation also occurs, transferring the corresponding
information from the encoder portion through skip connections, indicated by the white
boxes in Figure 3. Once the image has reached its original spatial dimensions and has
undergone two further convolutional processes, a final sigmoid activation function is
applied to it, indicated by the orange arrow. This outputs a pixel-wise prediction, with one
layer for each semantic class. Here, there are three classes: ice/snow, lake, and rock.

2.6. Model Development and Hyperparameter Tuning

This U-Net architecture is integrated into a deep learning pipeline based on Tensorflow
2.5.0 (https://www.tensorflow.org/, accessed on 5 May 2023). First, the model is compiled
using a certain optimizer, loss function, and loss weights. During the model training,
image and mask pairs are then fed into the network and trained over the full epoch,
where the model then makes predictions on the validation data, producing an intermediate
accuracy and loss value. This process is then repeated until the validation loss value has
stopped improving. The total number of epochs is limited to 150, but an early stopping
mechanism based on validation loss is implemented so that the model stops training before
it starts overfitting to the data. The optimized model is saved and applied to the testing
dataset, where various evaluation parameters are calculated. As there are many network
hyperparameters that can be adjusted to produce different results, hyperparameter tuning
is needed to find the optimal values. The training and testing procedure described above is
repeated iteratively with the following hyperparameters over the denoted ranges or values:
optimizers (Adagrad, RMS, Adam), dropout (0.0–0.4), and base learning rates (1E-6–1E-5).
The loss function is always set to binary cross-entropy, and the loss weights are calculated

https://www.tensorflow.org/
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based on the proportion of pixels assigned to each class in order to offset class bias. The
performance of each model on the testing dataset are then compared, and the model with
the highest Cohen’s kappa and F1-scores is selected.
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dimensions of each image are listed on the outer side of the block (e.g., 256 × 256 pixels). The value
above each step indicates the number of feature channels defining different parameters.

2.7. Post-Processing and Time Series Evaluation

Having completed the deep learning model development phase, the model is then
applied to the image time series over the full melt season. First, each image is segmented
into tiles of 512 × 512 pixels for computational efficiency before the standardization scaler
created from the training process is applied. Then, the model first makes a prediction to
each tile before merging the scene back together, producing an array containing one layer
per semantic class. Each pixel in this array represents the probability that this pixel belongs
to a certain class. Thus, to determine the prediction, the class with the highest probability is
chosen for each pixel. Then, the closing morphological function is applied to the prediction
to fill in small gaps and smooth out edges. Finally, the prediction arrays are converted to
vectors and saved as a shapefile.

In order to track specific lake development over the melt season, it is necessary to
assign IDs to different lakes. As mentioned previously, supraglacial lakes tend to form in
roughly the same positions every year, due to the fact that there are surface depressions
on the glacier’s surface that are formed by the topography of the bedrock [46]. These
topographic sinks have been mapped out for this region using ArcticDEM in the process
described in [16]. Any lakes that have formed within the boundary of a topographic sink
or within 300 m of one are assigned to that sink’s ID, and the lake area is then calculated.

An important component of the development of a supraglacial-lake-area time series
is the ability to identify when clouds are covering the region. For this, we use the newly
developed deep learning-based cloud segmentation algorithm from Nambiar et al. [42],
which was trained specifically for cloud segmentation over polar regions. This model takes
the raw Sentinel-2 scenes as input and outputs a raster prediction. The model uses all
13 spectral bands, since the distinction between clouds and ice/snow cover is particularly
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difficult using visible bands alone. The cloud predictions from the same day are then
merged to provide the same spatial coverage as the merged Sentinel-2 scenes on which the
lake predictions are made.

Using both the lake-area masks and the cloud masks, a cloud coverage identification
and correction procedure is able to be implemented for each scene, as indicated in Figure 4.
For each topographic sink, the percentage of cloud-covered area is calculated. If more than
10% of the total amount of sink area (i.e., hypothetical lake area) is covered by clouds, the
image from the corresponding day is removed from the time series. After this cloud check
is conducted over the entire melt season, the total lake-area trend can be seen for each year.
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Figure 4. The processing chain overview for the creation of a supraglacial lake-area time series. The
process is divided into three components: (1) Model training, where training data are prepared and a
deep learning model is trained; (2) Scene prediction, where the time series data are prepared and both
lake and cloud predictions [42] are made on a series of scenes; (3) Cloud correction, where cloudy
days are identified and removed, and daily lake-area totals are calculated.

3. Results
3.1. Model Selection and Application to Testing Dataset

During the hyperparameter trials conducted to determine the best deep learning
model, different performance metrics are calculated and compared. Since the testing
dataset has a strong class imbalance, with the majority of pixels being assigned to the
class ice/snow, the use of accuracy as the primary evaluator is misleading and limiting
to model improvement. Thus, several other metrics, such as precision, recall, F1-score
and Cohen’s kappa coefficient, are calculated to provide more insight into the model’s
performance. Since Cohen’s kappa coefficient is able to counteract class imbalance skew
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while providing a single value across classes, it was used as the main factor for determining
a model’s success.

The best performing model was accordingly selected, containing the following hyper-
parameters: dropout (0.0), learning rate (0.000005) and optimizer (Adam). The performance
metrics of this model are listed in Table 1. These metrics are calculated based on a diverse
testing dataset, as outlined in Section 2.3. The metrics for all three classes are relatively
high (i.e., above 0.90) with the lake class scoring lowest, primarily due to false-negative
classifications around some lake edges and some false-positive classifications over rock
and very dark shadows.

Table 1. Performance metrics of the selected deep learning model applied to the testing data.

Class Precision Recall F1-Score Accuracy Kappa Coefficient

Ice/snow 1.00 1.00 1.00

0.99 0.93Lake 0.90 0.91 0.90

Rock 0.98 0.92 0.95

In Figure 5, four example testing images are shown, along with their manually derived
ground-truth labels and the prediction labels from the model. In general, the prediction
labels tend to follow the lake contours rather precisely, with only small areas of false nega-
tives and positives. Additionally, since existing supraglacial lake segmentation algorithms
tend to falsely identify shadows on ice as lakes, the testing dataset was created with a
significant percentage of images containing shadows (19.15% of the entire testing dataset).
Two of these images are shown here in columns A and C, demonstrating the model’s
ability to differentiate between lake and shadow. Furthermore, out of all the testing images
containing shadow, only three contained portions of falsely classified shadows.
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Figure 5. Examples of testing tiles (A–D), their respective ground-truth labels, and the predictions
made on the tiles by the selected deep learning model. Each tile has a size of 512 × 512 pixels.

3.2. Influence of Cloudy Days on Time Series Results

As a result of the application of the cloud segmentation algorithm over the time
series, an evaluation of the daily cloud cover could be made. While the cloud segmentation
algorithm worked quite well in general, some manual adjustments were needed for the early
2022 melt season. Figure 6 shows a daily cloud percentage calculated over the topographic
sink areas, i.e., the locations where lakes could potentially form. Here, yellow represents a
cloud-free day and dark blue depicts a day where all sink areas were completely covered by
clouds. Days with insufficient Sentinel-2 data are depicted in white. As cloud coverage is
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dependent on the variable local weather system, there is not an interannual trend to be seen.
An interesting point, however, is the persistent stretches of full cloud coverage in 2022. The
number of cloud-free days is also relatively sparse in 2020; however, there are fewer days
of complete cloud coverage, in contrast to 2022. The percentage of days with at least 20%
cloud coverage are shown in Table 2, where it can be seen that the percentages for these
two years are roughly equivalent. In comparison, 2019 had a relatively cloud-free melt
season, with only 32% of the available images containing more than 20% cloud coverage
over the lakes.
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Figure 6. The daily percentage of cloud cover over the predefined sink areas (i.e., potential lake areas)
in the 2016 to 2022 melt seasons.

Table 2. Number of days in each melt season (15 March to 30 September) where at least 20% of the
potential lake areas are covered by clouds.

2016 2017 2018 2019 2020 2021 2022

Number of
cloudy days (out
of total images *)

20/52 27/100 42/137 51/176 68/110 73/168 114/179

Percentage of
cloudy days 38.5% 27.0% 30.7% 32.4% 61.8% 43.5% 63.7%

* Some years contain fewer images due to lack of available data coverage of the entire area of interest, particularly
in the earlier years of Sentinel-2′s operation.

The importance of accurate cloud masks is demonstrated in Figure 7, where the time
series of an example lake over a 20-day period in 2021 is shown. These daily images
show the segmentation of the lake boundary from the deep learning model as well as
the estimated lake area in the lower left corner. There are six days in which clouds or
cloud shadows fully inhibit the identification of the lake boundary. Furthermore, there
are two days, 31 July and 7 August, where only a portion of the lake is segmented due to
partial cloud coverage. Without the removal of both the fully and partially cloud-covered
days, the lake-area time series would appear very jumpy and it would be more difficult to
determine where the actual trend lies. Figure 7 also demonstrates how dynamic an SGL
can be. In less than three weeks, this lake decreases in area by roughly 62%, causing the
lake to separate into three disconnected bodies of water.

3.3. Seasonal Trends and Interannual Comparison of Supraglacial Lake Area

The results from the time series calculations can be seen in Figure 8, where the daily
total lake area is tracked over the entire melt season for the years 2016 to 2022. In general,
each melt season follows a similar trend, reaching the peak lake area around 1 August. The
development progression and quantity of meltwater, however, vary strongly among the
years. For example, the peak lake area for 2019 is roughly 5.6× the amount of that in 2018,
due to drastically different local weather conditions, as investigated by Turton et al. [2].
Additionally, while most years begin showing significant lake development in early June,
this is not apparent until early July in 2022. Furthermore, the threshold for acceptable cloud
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coverage was raised to 20% for 2022 (from the 10% used for the other years), due to an
insufficient number of cloud-free days during the peak of the melt season.
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Figure 7. Evolution of an example lake over a 20-day period in the 2021 melt season. The red outlines
are the segmentations produced by the deep learning model, the area of which is shown in the bottom
left corner of each scene.

While the model performed well as a whole over the time series, there were a couple
of situations for which manual adjustments were needed. Firstly, in the peak of some melt
seasons, the amount of meltwater is so high that the ice and snow surface itself turns a light
blue, seemingly due to some form of stagnant surface melt or slush. These areas appear to
be very shallow, but can be widespread, causing a sudden and drastic increase in detected
lake area. As this is an unrepresentative depiction of the seasonal lake-area development,
these days (totaling 2 days in 2016, 5 days in 2019, 1 day in 2020, and 2 days in 2021) were
removed from the time series. Secondly, even though the majority of cloud shadows were
ignored by the model, there were three instances of large, very dark cloud shadows being
falsely included in the lake-area estimation. These areas were removed from the daily
lake-area total to ensure a trend more reflective of the actual lake area.
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Figure 8. Seasonal trends of total lake area over the Northeast Greenland study area from 2016
to 2022.

Figure 9 shows the evolution of the number of SGLs and their size distribution over the
2016 to 2022 melt seasons. The lakes were sorted into five bins based on their area, where the
smallest lakes (<0.001 km2) are represented by light green and the largest lakes (>1.0 km2)
are represented by dark blue. Each bin is stacked upon the previous one, cumulating in the
total number of lakes. Thus, the height of each color represents the number of lakes in the
respective bin. For most years, a similar maximum number of lakes can be seen, with an
average of 520 lakes, excluding the 2018 melt season, which only reached a maximum of
294 lakes. This information, along with details about the average lake size on peak days, can
be found in Table 3. Here, it can be seen that the average lake size varies quite drastically
among the melt seasons. Furthermore, as expected, the day on which the peak number of
lakes occurs tends to coincide with the maximum total lake area for each melt season.

Table 3. The maximum number of lakes recorded per melt season, the date upon which it was
recorded, and the average lake area on that day with the associated standard deviation (km2).

2016 2017 2018 2019 2020 2021 2022

Date of maximum number
of lakes 20 July 1 August 8 August 30 July 24 July 2 August 3 August

Maximum number
of lakes 424 472 294 555 561 491 508

Average lake area on peak
date (km2) 1.24 ± 3.52 0.57 ± 1.25 0.23 ± 0.48 1.06 ± 2.94 0.57 ± 1.33 0.70 ± 1.61 0.80 ± 2.65

It can also be seen in Figure 9 that the number of lakes within each bin tends to
saturate after a certain threshold, after which lakes of a larger size begin developing. This
can be visually seen by the plateau in each bin throughout the central part of the melt
seasons. Averaging over all melt seasons, these thresholds were found to be 11.4 ± 2.1 lakes,
42.3 ± 4.4 lakes, 122.1 ± 11.6 lakes, and 190.8 ± 23.2 lakes for lakes smaller than 0.001 km2,
between 0.001 and 0.01 km2, between 0.01 and 0.1 km2, and between 0.1 and 1.0 km2,
respectively. The 2018 melt season was excluded from the calculations of the final threshold
(lakes between 0.1 and 1.0 km2) since very few lakes achieved a size larger than 1.0 km2.
This pattern implies that a stable point is reached throughout the melt seasons, where new
lakes begin appearing at the same rate that existing lakes grow in size. This thus causes the
lower bins to remain at a relatively fixed size, while the uppermost bin(s) continue to grow.
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Figure 9. Number of lakes grouped by their size over the 2016 to 2022 melt seasons. The lakes are
categorized into one of five bins (see legend). The y-axis represents the number of lakes in each bin
per day, cumulating in the total number of lakes.

3.4. Comparison between Methods: Thresholding vs. Deep Learning

To benchmark the use of this deep learning model for SGL segmentation, the method
used by Hochreuther et al. [16], in which the red and blue bands are used to create a lake
threshold, was extended to cover the same temporal span as the time series in this study.
As both studies use the same images and cover the same spatial extent, the distinction
between the results is purely based on the methodology. Table 4 shows the peak total lake
area achieved throughout the melt season for each methodology. Here, it can be seen that
the peak areas for both methods are on the same scale and are of a relatively similar size
compared to other years. The main difference is that the deep learning method consistently
has a significantly higher peak lake area, with the exception of 2018 and 2020.

Table 4. Comparison of the maximum total lake area over the area of interest using the thresholding
method extended from [16] and the deep learning method developed in this study.

2016 2017 2018 2019 2020 2021 2022

Peak lake area
from thresholding

method (km2)
265.39 153.26 76.66 333.19 292.91 192.83 234.30

Peak lake area from
deep learning method

(km2)
300.33 184.47 67.27 380.47 297.47 271.41 303.67

A more detailed look at the time series created by each method is provided in Figure 10.
For each melt season, the results from each method generally follow similar trends, with
coinciding timings for lake growth and shrinkage. The main differences generally come
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from three sources. Firstly, the quality of the cloud-masking algorithm strongly influences
the smoothness of the time series. The algorithm used in the thresholding method was
statistically based, and while it removed days with complete cloud coverage well, it seems to
have included many days of partial cloudiness, resulting in much jumpier results. The deep
learning method, in contrast, removed scenes with a much smaller cloud presence. Thus,
misinterpretation of this jumpiness is avoided in the deep learning method. The second
source of difference between the time series is the generally larger lake-area estimations
provided by the deep learning method. This stems from a difference in definition of where
lakes can develop. In the thresholding method, lake area was restricted to only occurring
within the boundaries of the predefined sink areas; any area falling outside was not counted
as part of a lake. Contrarily, this definition was more relaxed in the deep learning processing
chain. Here, the sink areas were used to assign IDs to the bodies of water, but the lakes were
not purely limited to the sink areas; any body of water coming at some point within 300 m of
a sink was assigned to that sink. This allows for more water to be counted towards the lakes
and generally increases the amount of lake area estimated by the deep learning algorithm.
This is particularly prominent during periods of higher melt, when the meltwater tends
to exceed the extent of the sink areas. The final main source of difference between the
estimates originates in a post-processing step included in the thresholding method. In an
attempt to include floating ice into the lake area, the thresholding method aggregates the
floating-ice area if it is completely surrounded by lake water pixels. Otherwise, if even
a pixel of the floating ice is in contact with the edge of the lake, the entire floating-ice
area is excluded from the estimation. Since such a processing step does not exist in the
deep learning method, periods of time where floating ice is found in the center of a lake
have a higher total lake-area estimation for the thresholding method. Examples of this
can be seen later in the 2016, 2017, and 2018 melt seasons. One additional minor source
of discrepancy between the methods lies with the freezing of the lakes at the end of the
melt season. As the lakes begin to freeze over in September, both methods tend to give
inconsistent results as the color becomes lighter and less homogeneous. The thresholding
method tends to continue including portions of the frozen lake, while the deep learning
method includes a bit less. These differences are relatively minimal, but are nonetheless a
factor in the discrepancy. A more direct look at the differences between the two methods
can be seen in Figure A1 in Appendix A. Additionally, examples of floating-ice inclusion
and exclusion, along with the limitation of the thresholding method to the sink areas, are
shown in Figure A2 in Appendix A.

In Figure 11, the differences between the two methods are further investigated by
analyzing the distribution of lake sizes over the melt season. Figure 11a displays a cumu-
lative plot of the number of lakes found in each bin for both methods over the 2019 melt
season. Here, the colors represent the five categories based on area, where the smallest
lakes (<0.001 km2) are represented by blue and the largest lakes (>1.0 km2) are represented
by green. It can be seen that while the general trends are similar for each method, there
are significant differences in the number of lakes found in each bin. These differences
are further highlighted in Figure 11b, where the differences between the methods were
calculated each day for each bin. Positive differences indicate that the deep learning method
has found more lakes than the thresholding method in that category of lake sizes. Four
of the categories have positive averages, with the majority of data points falling above
zero. One category, however, almost entirely falls in the negative range, indicating that the
thresholding method has found more lakes of this size (0.01–0.1 km2). The two categories
for the smallest lakes (<0.001 km2 and 0.001–0.01 km2) have average differences of 4.3 and
10.6, respectively. Almost every data point for these categories shows a significantly larger
number of lakes found by the deep learning model. This implies that the deep learning
model was either (1) better at detecting smaller lakes, and/or (2) it was detecting smaller
portions of medium-sized lakes than the thresholding method. This second point is more
likely for areas of mixed pixels found around lake boundaries, in particularly during
periods of refreezing, an example of which is shown in Figure A2 in Appendix A. The
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two largest categories (0.1–1.0 km2 and >1.0 km2) tend to have more days with minimal
differences in the number of lakes, as seen by the larger bulges around zero in Figure 11b.
There are, however, also days on which the difference is quite large. This is primarily
influenced by the deep learning method’s inclusion of more and larger lakes during the
peak melt season. This effect is additionally seen by the significant negative differences
found in the category of 0.01–0.1 km2, with an average difference of −14.1. The larger
number of these medium-sized lakes for the thresholding method compensate for the
smaller number of larger lakes present in the other categories.
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Figure 11. (a) Number of lakes grouped by their size for both the deep learning method (solid
lines) and thresholding method (dashed lines) for the 2019 melt season. Only days where data were
available for both methods are plotted. The colors represent five categories based on their area,
where the smallest lakes (<0.001 km2) are represented by blue and the largest lakes (>1.0 km2) are
represented by green. The y-axis represents the number of lakes in each bin per day, cumulating
in the total number of lakes. (b) Distribution of the difference in number of lakes detected by both
methods (the thresholding method subtracted from the deep learning method), displayed as a violin
plot. The colors correspond to those in (a). Each horizontal line within the shapes represents one
data point.
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4. Discussion

As seen with other remote sensing applications, deep learning techniques have proven
to be capable of accomplishing tasks comparably well when compared to traditional meth-
ods. That is not to say, however, that the method development phases are equal in terms of
effort and straightforwardness or that the results are identical. While traditional methods,
such as thresholding techniques, generally have the challenge of inadaptability and require
the direct definition of many conditions to eliminate undesirable inclusions in the results,
deep learning methods have their own challenges. Firstly, the preparation of ground-truth
labels for the training and testing images is quite tedious and time-consuming. Further-
more, even though the principles of training the model and tuning the hyperparameters are
relatively basic, the outcome is not directly controllable by the user, rendering it difficult to
curate desirable results without running a significant number of grid-search trials.

The quality of the results of the two methods brings forth another point of discussion.
As mentioned previously, proper cloud segmentation plays a significant role in the smooth-
ness and accurate representation of the state of meltwater on the surface. However, even
if both the thresholding and deep learning techniques used the same high-quality cloud
segmentation algorithm, there would still be differences in the results. The limitation of the
predictions to the predefined sink areas in the thresholding method has the benefit of out-
putting consistent results, largely free from false-positive segmentations. Even though this
limits the inclusion of meltwater that accumulates outside of these areas, this is necessary
because of the otherwise widespread inclusion of false positives such as cloud shadows.
With the deep learning method, the results do not need to be constrained to certain areas
because the algorithm has been trained not to include shadows in the results, for the most
part. Thus, the deep learning model is able to include more meltwater in the lake-area
estimation than the thresholding method. It is also less sensitive to a changing ice geometry
than the thresholding algorithm, and is hence better suited for fast changing areas of the
Greenland Ice Sheet.

While the deep learning model performed quite well in this study, there are still areas
in which it could be improved. As mentioned previously, during the peak of a heavy melt
season, the model tends to include widespread, thin layers of meltwater or slush appearing
across the ice surface. An example of this can be seen in Figure A2 in Appendix A. The
model was never presented with images containing surface conditions like this during
training, so it rather inconsistently includes these areas when they are present. To improve
the model, images containing this kind of slush should be added into the training and
defined as either something that should or should not be marked as supraglacial lakes, for
a more consistent prediction. The difficulty therein, however, lies with one’s ability to be
able to distinguish where these zones concretely start and end to be able to properly teach
the model which areas belong to the ice sheet and which to the lakes. Furthermore, even
though an intentional effort was directed into including shadows in the training dataset in
order to avoid misclassifications, there were still a few instances of false positives due to
shadows. The majority of cloud shadows were properly avoided; however, a few really
dark ones were falsely classified. Similarly, at the beginning and end of the polar summer
(i.e., March and September), the sun is so low on the horizon that large shadows are cast
on the ice from the surrounding rock outcroppings. These shadows are very dark and
it is difficult for even the human eye to distinguish whether they are lakes or shadows.
Consequently, these topographic shadows were falsely classified as lakes in March and
the beginning of April, which can be seen by the slight upturn in lake area in Figure 8.
Considering that the misclassification of shadows has been a ubiquitous problem in this
field until now, the capabilities shown through deep learning in this study demonstrates a
potential for eradicating at least a significant portion of them. Finally, as the inclusion of
floating ice is not addressed by the deep learning approach, the geospatial post-processing
step used in the thresholding method could be integrated with the deep learning pipeline
to allow additional lake area to be included. While this processing step does not lead to
consistent floating-ice inclusion, it provides a basis for floating-ice area estimations.
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5. Conclusions

In this study, the capabilities of deep learning for the purpose of supraglacial lake
segmentation in multispectral images have been demonstrated. Here, a deep learning
pipeline based on the U-Net architecture has been implemented and applied to Sentinel-2
images throughout the 2016 to 2022 melt seasons. While there are still aspects of this
method that occasionally lead to false-positive detections, a comprehensive and relatively
consistent product is able to be generated. Furthermore, this model’s areas of weakness
could be improved upon by including more training data tailored to specific situations, e.g.,
very dark shadows and slushy-snow and ice surfaces. Additionally, these results have been
compared to a standard red/blue thresholding technique, highlighting the congruence
of the results produced from the two differing methodologies, as well as the areas upon
which deep learning improves the output. Lastly, the importance of an accurate cloud
segmentation algorithm for the development of a smooth time series is highlighted.

There are several related topics that would be interesting to explore in future research.
Firstly, the model in this study was trained and applied only on images procured over the
NEGIS region. Further analysis would be needed to be able to determine if this model
would be able to be seamlessly transferred to other areas in Greenland or even Antarctica,
or if the model would need to be adjusted. Furthermore, with relatively accurate cloud and
lake-segmentation algorithms, it would be possible to apply them to create a rapid drainage
detection algorithm. The automated detection of such drainages would be advantageous
for investigating their cause and their influence on surface and subglacial hydrology.
Additionally, the implementation of a comparison study to evaluate the effectiveness
of different deep learning techniques would be advantageous in order to determine the
network optimally suited for the task. Finally, while the quantification of lake area is an
important first step in understanding the dynamics of surface meltwater, the corresponding
volume would bring an even deeper understanding and would allow for incorporation
of these values into hydrological and climate models. Overall, this study provides a
confirmation of the applicability of machine learning to remote sensing topics and also
provides context for its strengths and weaknesses.
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Appendix A

Table A1. The Sentinel-2 scenes used in the training and testing of the deep learning model. The
number of 512 × 512 image subsets (i.e., tiles) that were used from each image are also listed.

Sentinel-2 Scene Number of Tiles Used

S2A_MSIL1C_20160802T155912_N0204_R097_T26XNN_20160802T155907 172

S2A_MSIL1C_20170715T154911_N0205_R054_T27XVH_20170715T154905 165

S2A_MSIL1C_20200717T150921_N0209_R025_T27XVH_20200717T170914 156

S2A_MSIL1C_20210801T150911_N0301_R025_T27XVJ_20210801T171130 67

S2B_MSIL1C_20190826T153819_N0208_R011_T26XNP_20190826T191152 56

S2B_MSIL1C_20190826T153819_N0208_R011_T27XVH_20190826T191152 64

S2B_MSIL1C_20210801T155819_N0301_R097_T26XNP_20210801T175737 47

S2B_MSIL1C_20210802T152809_N0301_R111_T27XVH_20210802T173148 73

S2A_MSIL1C_20160803T152912_N0204_R111_T27XVH_20160803T152910 100

S2B_MSIL1C_20190713T155829_N0208_R097_T27XVH_20190713T193729 38

S2B_MSIL1C_20220820T153809_N0400_R011_T27XVH_20220831T150550 3
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Figure A1. The difference between the deep-learning and thresholding estimates shown in Figure 10,
where areas of positive difference (purple) depict days where the deep-learning estimates are larger
and areas of negative difference (orange) depict days where the thresholding estimates are larger.
Here, the difference was only calculated for days where both methods produced lake-area estimates.
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Figure A2. Exemplary scenes showing differences in the lake masks created by the thresholding
method (purple) and the deep learning method (orange). (1a,2a) demonstrate the inconsistency of
floating-ice inclusion in the thresholding method, where (1a) does not include the floating ice since it
is not completely surrounded by water pixels. Neither (1b, or 2b) includes the floating ice, since this
process is not included in the deep learning method. (3b) demonstrates the inconsistent widespread
inclusion of blue ice/slush during some high-melt periods. The thresholding mask in (3a) shows how
these areas are less extensive, partly due to its restriction to the predefined sink areas. (4a) shows an
instance of lake-area underestimation due to the thresholding method’s restriction to the predefined
sink areas. In comparison, (4b) shows how the deep learning model is able to fully segment the lake
area due to the more relaxed boundary conditions. (5a,5b) show inconsistencies in both methods
regarding the segmentation of lake area in the process of refreezing at the end of the melt season.
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