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Abstract: The optimal selection of characteristic bands and retrieval models for the hyperspectral
retrieval of soil heavy metal concentrations poses a significant challenge. Additionally, satellite-
based hyperspectral retrieval encounters several issues, including atmospheric effects, limitations in
temporal and radiometric resolution, and data acquisition, among others. Given this, the retrieval
performance of the soil arsenic (As) concentration in Pingtan Island, the largest island in Fujian
Province and the fifth largest in China, is currently unclear. This study aimed to elucidate this
issue by identifying optimal characteristic bands from the full spectrum from both statistical and
physical perspectives. We tested three linear models, namely Multiple Linear Regression (MLR),
Partial Least Squares Regression (PLSR) and Geographically Weighted Regression (GWR), as well as
three nonlinear machine learning models, including Back Propagation Neural Network (BP), Support
Vector Machine Regression (SVR) and Random Forest Regression (RFR). We then retrieved soil arsenic
content using ground-based soil full spectrum data on Pingtan Island. Our results indicate that the
RFR model consistently outperformed all others when using both original and optimal characteristic
bands. This superior performance suggests a complex, nonlinear relationship between soil arsenic
concentration and spectral variables, influenced by diverse landscape factors. The GWR model,
which considers spatial non-stationarity and heterogeneity, outperformed traditional models such
as BP and SVR. This finding underscores the potential of incorporating spatial characteristics to
enhance traditional machine learning models in geospatial studies. When evaluating retrieval model
accuracy based on optimal characteristic bands, the RFR model maintained its top performance, and
linear models (MLR, PLSR and GWR) showed notable improvement. Specifically, the GWR model
achieved the highest r value for the validation data, indicating that selecting optimal characteristic
bands based on high Pearson’s correlation coefficients (e.g., abs(Pearson’s correlation coefficient)
≥0.45) and high sensitivity to soil active materials successfully mitigates uncertainties linked to
characteristic band selection solely based on Pearson’s correlation coefficients. Consequently, two
effective retrieval models were generated: the best-performing RFR model and the improved GWR
model. Our study on Pingtan Island provides theoretical and technical support for monitoring
and evaluating soil arsenic concentrations using satellite-based spectroscopy in densely populated,
relatively independent island towns in China and worldwide.

Keywords: Geographically Weighted Regression; ground-based soil spectra; Pingtan Island; Random
Forest Regression; soil arsenic concentration

1. Introduction

Due to the rapid advancement of urbanization, industrialization and agricultural
intensification, especially the widespread usage of chemicals and fertilizers, the issue
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of heavy metal pollution in soil has progressively worsened. It has become a critical
environmental problem that has garnered broad attention [1]. Heavy metal pollution
exhibits high toxicity, strong concealment and irreversibility, and excessive accumulation
of heavy metal pollutants in soil not only jeopardizes regional ecological security and
affects the growth and development of fauna and flora, but also poses a significant threat
to human health via the food cycle [2]. Various factors contribute to soil heavy metal
contamination, of which arsenic (As), as a trace element, manifests bespoke features of soil
contamination. Arsenic is one of the essential elements that are necessary for the growth
of living organisms. However, when its concentration surpasses a certain level, it can
contaminate soil and water [3]. Although arsenic can exist in diverse chemical forms in the
environment, arsenate (As(V)) and arsenite (As(III)) are the most typical as well as perilous
inorganic forms [4] because of their high toxicity and fluidity, which may pose a threat to
the natural environment and human life, so it is crucial to study the concentration of heavy
metal arsenic in the soil.

The traditional approach to detecting soil heavy metal content involves on-site sam-
pling and laboratory analysis. However, because it is time-consuming, costly and unable to
meet the growing demands of the rapid, real-time and continuous monitoring of soil heavy
metal content and spatial distribution on a large scale [5], it is only suitable for monitoring
heavy metal content in small soil areas. Therefore, in recent years, several experiments
have commenced retrieving the concentration of heavy metals by obtaining the reflectance
spectrum of the soil, especially in combination with remote sensing technology, which
can proficiently achieve large-scale, low-cost and real-time monitoring of heavy metal
pollution [6–8]. The mechanism for determining arsenic concentrations in soil using hyper-
spectral data is as follows. The continuous spectral information of the ground objects in the
solar reflectance spectrum range (300–2500 nm) is obtained to reflect the composition of the
features according to the spectral characteristic curve. The spectral characteristic absorption
peaks of different heavy metal like arsenic are found and used as independent variables
through stoichiometry and computer science methods, the soil heavy metal content is
measured as the dependent variable, and these two types of variables are incorporated into
the selected statistical model to achieve heavy metal content retrieval.

Currently, several linear and nonlinear models exist for retrieving soil heavy metal
content. The linear modeling methods for soil heavy metal hyperspectral retrieval mainly
include Ordinary Least Squares Regression (OLSR), Multiple Linear Stepwise Regression
(MLSR) and Partial Least Squares Regression (PLSR), among others. Cheng et al. [9] tested
and analyzed soil samples in a suburb of Wuhan City and established the Partial Least
Squares Regression (PLSR) model for Cd, Pb, As, Cr, Cu and Zn contents and reflectance
spectra. The results showed that the PLSR model has good prediction accuracy for Cr, As
and Cd concentrations. Taking the Shizishan mining area of Tongling City, Anhui Province
as the research area, Yang et al. [10] utilized stepwise multiple regression (SMR) and
PLSR methods to establish a heavy metal hyperspectral prediction model and concluded
that the PLSR retrieval model was more suitable for soil heavy metal prediction in the
study area. Moreover, Hou et al. [11] used various spectral transformation methods to
establish PLSR for soil heavy metals in coal mining areas. They found that the combination
of Savitzky–Golay (SG) convolution smoothing and multiplicative scattering correction
with logarithmic transformation can effectively improve the prediction accuracy of the
PLSR model. However, the complex nonlinear relationship between the predictor and
dependent variables makes it challenging to solve with a linear model, resulting in the
reduced accuracy and stability of the linear estimation model [12].

With the rapid development of artificial intelligence, machine learning models have
demonstrated remarkable predictive capacities, leading to their widespread use in various
fields [13]. To estimate heavy metal content in soil and account for the complex nonlin-
ear relationship between high-dimensional spectral data and soil heavy metal content,
many scholars have adopted a nonlinear modeling approach and combined spectral data
with machine learning methods to improve the accuracy of their prediction models. For
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instance, Zhou et al. [14] compared three hyperspectral retrieval models for soil heavy
metal prediction based on the Sanjiangyuan area and found that Random Forest Regression
(RFR) had a better prediction accuracy than PLSR and Support Vector Machine Regres-
sion (SVR). Chen et al. [15] used four models, PLSR, SVR, RF and ELM (extreme learning
machine), to estimate the Cr, Zn and Pb concentrations in soil, and they found that ELM
offered the best predictive performance. In addition to machine learning models, the
Geographically Weighted Regression model (GWR) is a spatial statistical method that offers
unique advantages in quantifying the non-stationary spatial phenomenon. Shi et al. [16]
constructed a GWR model for soil Pb concentration prediction in Shenzhen City. They
found that GWR obtained better results than RK (regression kriging) for predicting the soil
Pb concentration. However, the practical application of the GWR model requires spatial
non-stationary/heterogeneity of the relation between heavy metal content and spectral
variables. Numerous studies have shown that, although the various retrieval models signif-
icantly improve the prediction accuracy of heavy metal content in hyperspectral soil, soil
spectral characteristics are a comprehensive reflection of the relevant properties of the soil,
and soil heavy metals in different study areas are affected by natural factors such as topog-
raphy, soil properties, hydrology and climate, as well as by human factors [17]. Moreover,
environmental variables such as soil structure, composition and vegetation can significantly
influence the relationships between heavy metal content and spectral characteristics [18].
Consequently, the selection of appropriate prediction models tailored to specific study
areas becomes crucial. The complexities of varied environments necessitate developing
and using models that best capture these nuances in different geographical contexts.

The primary emphasis remains on determining the optimal retrieval models, which
encompass various linear and nonlinear models. Moreover, selecting the optimal charac-
teristic bands from the full spectrum presents a significant challenge, given the need to
consider both statistical and physical perspectives. Furthermore, satellite-based retrieval
of soil heavy metals encounters several obstacles, such as atmospheric effects, temporal
and radiometric resolution limitations and data acquisition challenges. In comparison,
ground-based soil heavy metal retrieval methods possess several distinct advantages.

In 2009, with the inauguration of the Pingtan Comprehensive Experimental Zone,
rapid development was brought to Pingtan Island, the largest island in Fujian Province and
the fifth largest in China, home to 400,000 residents. Despite significant economic advance-
ments, human intervention in the form of real estate development, road construction and
mining continued to jeopardize the ecological health of the island [19]. The rich mineral
deposits there intensify such activities, making mining and smelting predominant sources
of heavy metal pollution in the soil. Therefore, assessing soil heavy metal concentrations
for Pingtan Island is significant. Previously, the concentrations of seven typical soil heavy
metals (Cu, V, Cr, Mn, Co, Zn and Pb) were studied, revealing insignificant heavy metal
contamination and ecological risks [20]. However, as an important source of soil heavy
metal contamination, the soil arsenic concentration has yet to be assessed in Pingtan Island.
Therefore, it was taken as the research area in this study. As a relatively independent
region, Pingtan Island exhibits a high level of containment regarding soil heavy metal pol-
lution, with minimal influence from complex land-based sources. However, this pollution
can continuously and adversely impact nearby marine areas through its release into the
environment. Our study on Pingtan Island can also shed light on the characteristics of
soil heavy metal pollution in other densely populated island towns globally, highlighting
its implications on human activity and livelihoods. Due to limited hyperspectral remote
sensing data acquisition, the focus was shifted to the ground-based soil spectroscopy of
arsenic content. This also serves as a significant theoretical basis for the satellite-based
spectroscopy of soil arsenic content. This study aimed to optimize the soil arsenic content
retrieval model. Thus, characteristic band selection was conducted by considering both
statistical and physical perspectives. Six models, namely MLR, PLSR, GWR, BP, SVR and
RFR, were tested for their performance in predicting the arsenic concentration in the study
area. The most suitable model was identified by comparing the accuracy of these six models.
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This finding can serve as a foundation for the future monitoring and treatment of soil heavy
metal arsenic pollution in the area, utilizing satellite-based spectroscopy.

2. Materials and Methods
2.1. Study Area and Experimental Data

As shown in Figure 1, Pingtan Island is located southeast of Fuzhou City, bordered
by the Taiwan Strait to the east and Changle and Fuqing across the Haitan Strait to the
west, stretching 30 km from north to south and 19 km from east to west, with an area
of 274.33 km2 located between 25◦15′–25◦45′ north latitude and 119◦32′–120◦10′ east lon-
gitude. It is situated in the subtropical evergreen broad-leaved forest vegetation zone,
characterized by low-level topography, with the central part slightly elevated. Dominated
by sea-accumulated plains, the region enjoys a long summer and a short winter, with
warm and humid climatic conditions. Furthermore, the area receives an average annual
precipitation of 1172 mm, making it one of the less rainy areas in Fujian Province.
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Based on various environmental factors, such as soil texture, land use and topographic
characteristics in the study area, carefully selected sampling points were positioned to
collect soil samples from late July to early August 2013. A meticulous five-point sampling
method was employed to ensure the accuracy of samples and to avoid the effects of soil
disturbance or transfer by some human activities. This method entailed sampling the central
point along with four surrounding points located approximately 10 m apart, subsequently
combining them to form a composite sample. Crucially, the geographical coordinates and
type of features in each sampling point were recorded using a handheld Global Positioning
System (GPS). Only surface soil located at a depth of 0–20 cm was collected from a total
of 72 sampling points (Figure 1). To ensure the precision of the subsequent analyses, the
soil samples were air-dried and crushed before being screened through a 100-mesh sieve.
The resulting soil was then divided into two parts using the quarter method. One part
was subjected to hyperspectral determination, and the other was analyzed for heavy metal
arsenic content. The soil arsenic content was determined via inductively coupled plasma
mass spectrometry (ICP-MS, Thermo Electron, Waltham, MA, USA). The following sections
discuss the soil spectral measurements and pre-processing in detail.

The ASD FieldSpec4 spectroradiometer (Analytical Spectral Device, Boulder, CO,
USA), which covers spectrum bands ranging from 350 to 2500 nm, was used to obtain soil
spectral data. A halogen lamp with a band range of 350–2500 nm and a sampling interval
of 1 nm was chosen as the exclusive light source in a darkroom to reduce the influence of
foreign light. Further, to minimize scattered light caused by uneven surfaces, a pretreated
2 cm soil sample was placed on a black velvet cloth inside a glass culture vessel with a
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diameter of 10 cm, with its surface scraped flat. The light source was 30 cm away from the
soil sample surface, and the zenith angle of the light source was set to 30◦. The probe was
placed 15 cm vertically above the surface of the soil sample, the field of view angle of the
optical fiber probe was 5◦, and the field of view was approximately 2.61 cm. The use of a
standard whiteboard for calibration helped with obtaining absolute reflectivity. To decrease
the error caused by measurement instability, each soil sample was tested ten times, and
after removing the abnormal spectral curves, their average value was taken as the actual
reflectance spectrum data of the soil sample.

To diminish interfering background noise and enhance the characteristics of the origi-
nal spectral curve, it is imperative to smooth the spectral curve and transform the spectral
data before the construction of a spectral retrieval model [21]. To attain this objective, the
original spectrum was subjected to Savitzky–Golay smoothing to lessen the effects due to
the different optical environments of the laboratory and the effects of sample grinding [22].
Moreover, low-order differential transformation of spectral data facilitates the removal of
background drift and baseline interference while augmenting discernible information in
the original data and emphasizing unapparent traits of the soil’s natural spectrum [23].
Continuum Removal (CR) is also employed to eliminate the background signals and extract
feature bands. Therefore, in this study, the smoothed spectral data were subjected to an
array of transformations, including first-order differential (FD), second-order differential
(SD), reciprocal (RT), reciprocal first-order differential (RTFD), penultimate second-order
differential (RTSD), reciprocal logarithmic (AT), reciprocal logarithmic first-order differ-
ential (ATFD), reciprocal logarithmic second-order differential (ATSD) and continuum
removal (CR). The correlation between the arsenic concentration, as measured, and the
above-mentioned spectral transformation data was tested to identify the band exhibiting
the highest correlation.

2.2. Retrieval Methods of Soil Arsenic Concentration

A Multiple Linear Regression Model (MLR)

Multiple Linear Regression is the expression of a linear relationship between a depen-
dent variable and a combination of multiple independent variables. The MLR model is a
classical statistical analysis method based on the least squares method, and its regression
equation is [24]

y = β0 + β1x1 + β2x2 + · · ·+ βnxn + ε (1)

where y is the dependent variable, x is the independent variable, βi (i = 0, 1, 2, . . . , k)
is the regression coefficient, which represents the random error, and k represents the
number of independent variables. The measured concentration of arsenic was used as the
dependent variable of the modeling sample, and the characteristic spectrum was used as
the independent variable to establish the MLR model.

B Partial Least Squares Regression Model (PLSR)

Partial Least Squares Regression, proposed by Wold et al. [25], is a linear regression
modeling method of multiple dependent variables to multiple independent variables. It
combines the advantages of principal component analysis and linear regression models
and is more conducive to distinguishing spectral information and noise [26]. Its modeling
principle is to establish the spectral matrix X of m × n, and the heavy metal content
detection matrix Y of n × l, where m is the number of spectral bands, n is the number of
samples, and l is the heavy metal type.

The method decomposes X and Y with the following formula [25]:

X = TPT + E
Y = UQT + F

(2)

where U and T are the score matrix, P and Q are the loads, and E and F are the residual
matrices of PLSR. For the linear regression between U and T, with B as the relationship
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coefficient matrix, U = TB is used, and the formula for predicting the heavy metal content is

Ypredicted = TcalculatedBQ
= XmeasuredPT BQ

(3)

where Ypredicted represents the predicted value of the heavy metal content, and Xmeasured is
the independent variable, which is the spectral matrix of the characteristic variables.

C Geographically Weighted Regression Model (GWR)

The Geographically Weighted Regression model is a nonparametric local spatial
regression analysis method initially proposed by geographers at Newcastle University
in the United Kingdom. The aim of this method is to model spatial variation between
independent and dependent variables of different spatial subregions [27]. The GWR model
is an extension of the ordinary least squares regression model, which explains the spatial
relationship between the dependent and independent variables. This technique is widely
used to explore non-stationary spatial relationships and has yielded excellent results in
predicting soil properties [28]. Because the relationship between soil heavy metal content
and spectral characteristics is affected by spatial heterogeneity, this paper uses the GWR
model to add the coordinate data of the sampling points and embed them into the regression
equation as spatial data, as follows [27]:

yi = β0(ui, vi) +
p

∑
k=1

βk(ui, vi)xik + εi i = 1, 2, . . . , n (4)

In the above formula, the coordinate of the sampling point i and the kth regression
parameter on the sampling point i are functions of the geographic location obtained using
the weight function method in the estimation process. Calculating the spatial weight
function is the core part of the GWR model, and this paper selects the spatial weight matrix
of the Gauss function method to calculate the model. Its calculation formula is [28]

wij = exp
(
−
(
dij/b

)2
)

(5)

where b represents a non-negative attenuation parameter that characterizes the functional
relationship between the weight and the distance. This parameter effectively determines
the bandwidth, whereby a larger bandwidth corresponds to a slower decay of weight
with increasing distance. Conversely, a smaller bandwidth results in a faster decay of
weight. The basic idea of the Gauss function method is to express the relationship between
weight and distance by selecting a continuous monotonically decreasing function with
good universality.

D Back Propagation Neural Network Model (BP)

A neural network, the most prevalent example being the BP neural network, is a
mathematical model that mimics the synaptic structure of human neurons and facilitates
the processing of information. The framework operates based on the error back propagation
algorithm, involving forward propagation of the input signal and subsequent backward
propagation of the error [29]. Its basic architecture is divided into the input, hidden and
output layers. The input layer relays data to the neurons and generates output information
through signal propagation. The error is calculated against the expected output and is
forwarded to the corresponding neuron in the hidden layer through back propagation,
triggering the adjustment of weights and threshold levels according to the aforementioned
error. The iterative process thus optimizes the neural network’s predictive accuracy until
it reliably approximates the measured value [30]. The soil spectral data are usually used
as the input layer, the hidden layer is the algorithm of the model, and the output layer
is the heavy metal concentration. In this paper, the number of nodes in the input layer
was set to 10, the number of nodes in the output layer was set to 1, tansig was used as the
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activation function of the model, and the back propagation algorithm was used to train
and determine that the optimal number of nodes in the hidden layer is 12.

E Support Vector Machine Regression Model (SVR)

Support Vector Machine is a machine learning method based on the Vapnik–Chervonenkis
dimension theory and structural risk minimization proposed by Vapnik [31]. It is developed
from the optimal classification surface under the condition of linear separability, which can
handle small samples and nonlinear and high-dimensional problems, and it can overcome
local optimal solution problems in neural networks [32,33]. The basic principle is to use
a nonlinear map p to convert low-dimensional data into high-dimensional or multidi-
mensional data, and through the transformation of data dimensions, low-dimensional
nonlinear problems can be transformed into high-dimensional linear problems [34]. The
Support Vector Machine Regression model consists of two parts: linear regression and
nonlinear regression. In this experiment, the cross-validation method was used to help
find the model’s best c (penalty coefficient) parameter and g (kernel function parameter
gamma) parameter. The radial basis function was selected as the kernel function, with the
value of the loss function p set to 0.4. The model was trained, and the regression predic-
tions were made using the svmtrain function and the svmpredict function in the MATLAB
R2021a environment.

F Random Forest Regression Model (RFR)

The fundamental principle of Random Forest lies in the utilization of random classifi-
cation technology, which involves the use of Bootstrap aggregation (Bagging) to devise a
group of nodes comprising weak classifiers. Through this process, the data are distributed
into various decision trees, and the best classification results are determined through voting.
This method can solve both classification and regression problems by employing binary
data segmentation algorithms [35,36]. Concerning classification problems, the Gini coeffi-
cient is used to segment the data. Regarding regression problems, weighted averages are
used for training samples, which enables the training of a large number of decision trees
without the need for pruning. The final outcome is determined through voting. In this
experiment, we utilized the TreeBagger function within the MATLAB R2021a environment
to train the model. Specifically, we configured it as a regression tree model with instructions
for regression analysis. The optimal number of leaf nodes and the optimal number of
trees were determined to be 3 and 200, respectively, and the final model training time was
2.33 s. Consequently, the Random Forest algorithm demonstrates a swift training speed,
can process high-dimensional data without requiring feature selection, possesses strong
dataset adaptability and performs well in the hyperspectral retrieval of soil heavy metals
due to its simple implementation, high precision and strong overfitting resistance.

3. Results
3.1. Statistical Analysis of Soil Arsenic Concentration in Pingtan Island

Table 1 shows arsenic content values from the environmental quality standard of
China [37] and the arsenic background value of soil in Fujian province of China [25].
Through the statistics of the basic characteristics of arsenic concentrations in the soil of
72 samples in the study area (Table 2), the total arsenic concentration of the sample varied
between 6.33 and 114.81 mg/kg. From the perspective of heavy metal contamination,
the average value of arsenic was 43.43 mg/kg, which was higher than the national soil
environmental quality three-level standards, indicating that the study area was seriously
polluted by arsenic. Even when referring to the new national soil environmental quality
standard [38], a soft standard distributed in 2018, arsenic values of 42/72 soil samples
exceeded 40 mg/kg—the highest risk screening values for the soil contamination of agri-
cultural land. From the spatial distribution of heavy metals, the coefficient of variation of
arsenic was 47%, signifying significant variations. Such a coefficient of variation reflects
the influence of human activities on arsenic content within the region. Therefore, the statis-
tical results indicate that the arsenic concentration in the study area was non-uniformly
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distributed in the soil, with an evident spatial heterogeneity. This inconsistency may be
attributed to the substantial influence of local anthropogenic activities.

Table 1. Soil arsenic (As) background value in China and Fujian Province.

Element

Standard Value in China
(mg/kg) Background Value in

Fujian Province
(mg/kg)Type PH

<6.5
PH

6.5–7.5
PH
>7.5

As
dry land 30 30 25

5.87paddy field 40 25 20

Table 2. Statistical information for soil arsenic (As) concentration in the study area (unit: mg/kg).

Element Min Max Mean SD Skewness Kurtosis CV

As 6.33 114.81 43.43 20.43 0.64 1.18 47

3.2. Spectral Characteristics Analysis of Soil Samples in Pingtan Island

The content of heavy metals in soil is influenced by the adsorption and fixation of
these metals onto soil components, such as organic matter, iron oxides and clay minerals,
which are known as soil spectroscopic active substances. The connection between heavy
metals and these substances forms the basis for estimating heavy metal content through
soil reflectance spectroscopy. Figure 2 illustrates the reflectance spectrum of soil samples
collected from Pingtan Island. All soil samples exhibited a similar trend of changes in
spectral curves. The reflectivity in the visible light band was low, and spectral reflectance
increased with wavelength. In the near-infrared band, the overall spectral curve flattened.
However, a low-quality region, represented by the red box in the spectral range of ap-
proximately 2300 nm–2500 nm, possessed irregularities and frequent crossings that were
most pronounced from approximately 2400 nm to 2500 nm. This issue could potentially
impact the selection of effective characteristic bands of the soil arsenic concentration with
the original reflectance data and their diverse transformations. The spectral curve showed
reflection peaks of organic matter near the 600 nm and 800 nm bands, along with three
pronounced water absorption bands near the 1400 nm, 1900 nm and 2200 nm bands that
were influenced by silicate minerals and clay minerals in the soil. Furthermore, Figure 3
presents the spectral curves after diverse data transformations. The spectral curves of the
FD and ATFD transformations fluctuated considerably. The RT and AT transformations
declined rapidly from the starting band before, showing a trend of slowing down around
600 nm. The changes in reflectance after RTFD, RTSD, ATSD and SD conversion mainly
appeared before 500 nm and after 2200 nm. After CR transformation, the spectral curve was
normalized between 0 and 1, and the absorption valley mainly appeared around 500 nm,
1000 nm, 1400 nm, 1900 nm and 2200 nm.

To explore the relationship between different spectral indexes and arsenic concentra-
tion, the arsenic concentration and various spectral transformations were analyzed with
Pearson’s correlation. Table 3 shows the maximum correlation coefficient and its corre-
sponding original characteristic bands, where ‘-’ indicates that the reflectance spectrum of
the band is negatively correlated with the concentration of heavy metals; otherwise, it is
represented as a positive correlation.

The analysis presented in Table 3 demonstrates a positive correlation between the
arsenic concentration and SR, FD, RTSD, ATSD and CR regarding smoothed spectral
reflectance. In contrast, there is a negative correlation between arsenic concentration and
SD, RT, RTFD, AT and ATFD. Notably, the highest correlating bands for all transformations
(except for FD) were found within the near-infrared spectrum. The highest correlation
coefficient found in the CR was below 0.4 (p < 0.01), and all other transformations yielded
correlation coefficients exceeding 0.4 (p < 0.01).
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Table 3. Original characteristic bands of arsenic concentration with spectral indicators.

Spectral Indicator Original Characteristic
Band /nm

Maximum Pearson’s
Correlation Coefficient

SR 2440 0.5264 **
FD 478 0.4460 **
SD 1398 −0.4414 **
RT 2441 −0.5151 **

RTFD 1349 −0.4947 **
RTSD 1423 0.5145 **

AT 2440 −0.5224 **
ATFD 1349 −0.4622 **
ATSD 1423 0.4594 **

CR 2152 0.3882 **
** denotes statistical significance at the 0.01 level (two-tailed).
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Based on the spectral analysis conducted above, it was observed that several char-
acteristic bands in the vicinity of 2500 nm in Table 3 may be contaminated by excessive
noise; this noise could hinder the effective use of the information within these bands for
enhancing retrieval accuracy. To address this, the optimal selection of characteristic bands
was examined and tested based on two criteria: statistical one (using Pearson’s correlation
coefficients) and physical spectral quality (including sensitivity to soil active materials such
as soil organic matter, clay minerals and iron oxides).

Tables 4 and 5 present the optimal characteristic bands for arsenic concentration, tak-
ing into account the spectral indicators of SR/RT/AT. The first type of optimal selection,
as shown in Table 4, was made under the criteria of the second-highest Pearson’s correla-
tion coefficients and higher-quality spectral data. Moreover, the second type of optimal
selection, as shown in Table 5, was made under the criteria of high Pearson’s correlation
coefficients (abs(Pearson’s correlation coefficient) ≥ 0.45) combined with sensitivity to soil
active materials.

Table 4. First type of optimal selection of characteristic bands with spectral indicators of SR/RT/AT.

Spectral Indicator Optimal Characteristic
Band/nm

Second-Highest Correlation
Coefficient

SR 2212 0.4986 **
RT 2390 −0.4954 **
AT 2384 −0.4930 **

** denotes statistical significance at the 0.01 level (two-tailed).

Table 5. Second type of optimal selection of characteristic bands with spectral indicators of
SR/RT/AT.

Spectral Indicator Optimal Characteristic
Band/nm High Correlation Coefficient

SR 2212 0.4986 **
RT 2212 −0.4839 **
AT 2212 −0.4925 **

** denotes statistical significance at the 0.01 level (two-tailed).

3.3. Retrieval Models’ Construction of Soil Arsenic Concentration in Pingtan Island

(1) Based on original characteristic bands

Through Pearson’s correlation analysis between arsenic concentration and soil spectra,
spectral bands with high correlations were identified. Linear models (MLR, PLSR and
GWR) and nonlinear models (BP, SVR and RFR) were used for retrieval analysis, using a
total of 72 samples. The training set comprised 70% of the sample data, and the validation
set comprised 30%. The correlation coefficient (r), the coefficient of determination (R2) and
the root-mean-square error (RMSE) were used to evaluate the retrieval performance of the
model (Table 6). The best regression model was determined according to the larger values
of r and R2, the smaller RMSE value and the close scatter distribution of the training data
and the validation data, indicating optimal model performance.

Upon comparing the accuracy of the linear models (MLR, PLSR and GWR), it was
discovered that PLSR outperformed MLR for both the training and validation data, with
a higher correlation coefficient r and coefficient of determination R2 and a smaller RMSE.
Further analysis revealed that, although GWR had a slightly higher RMSE in its validation
data than that of PLSR, it still demonstrated superior accuracy in other performance
indicators, with a correlation coefficient r exceeding 0.7 and a coefficient of determination
R2 greater than 0.5 (Figure 4). Hence, the linear models can be ranked in terms of accuracy
as follows: GWR > PLSR > MLR.
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Table 6. Retrieval results based on original characteristic bands in Table 3.

Model
Training Data Validation Data

r R2 RMSE (mg/kg) r R2 RMSE (mg/kg)

MLR 0.6400 ** 0.4097 16.1806 0.6487 * 0.4058 15.3761
PLSR 0.6720 ** 0.4516 16.1028 0.6940 ** 0.4738 11.8161
GWR 0.7461 ** 0.5541 13.8338 0.7441 ** 0.5420 13.0101

BP 0.7003 ** 0.4895 15.1688 0.7358 ** 0.5407 8.0496
SVR 0.6477 ** 0.4163 15.5690 0.6389 * 0.3899 15.6473
RFR 0.8967 ** 0.7359 10.9567 0.8255 ** 0.6489 10.3955

** denotes statistical significance at the 0.01 level (two-tailed), * denotes statistical significance at the 0.05 level
(one-tailed).
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In the realm of nonlinear modeling, the R2 values for the SVR and BP models clocked
in at approximately 0.4 and 0.5, respectively. On the other hand, the R2 of the RFR model
consistently exceeded 0.6 (Figure 5), a figure that far surpasses the other two models. Even
though the RFR’s validation data displayed a slightly larger RMSE when compared to
the BP model, its r value stands at a significant 0.8, and the RMSE value was less than
15 mg/kg. Therefore, when looking at accuracy in the nonlinear model, RFR, BP and SVR
can be successively ranked as RFR > BP > SVR.

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 20 
 

 

  
(a) (b) 

Figure 5. Scatterplot of training and validation data for RFR: (a) Training data; (b) Validation data. 

The accuracy of the six prediction models for arsenic concentration in this study area 
varied, and their performance can be ranked as follows: RFR > GWR > BP > PLSR > SVR > 
MLR, for the correlation coefficient r value of the training data, and RFR > GWR > BP > 
PLSR >MLR > SVR, for the correlation coefficient r value of the validation data. Therefore, 
the RFR model exhibited the highest accuracy in both scenarios, followed by the GWR 
model. The ranking of the other models differed slightly between the training and valida-
tion data sets. Specifically, the RFR model boasted the highest degree of accuracy, with 
the r, R2 and RMSE of the validation data being 0.8255, 0.6489 and 10.3955, respectively. 
The accuracy of the GWR model was second to that of RF, and the r, R2 and RMSE of the 
validation data were 0.7441, 0.5420 and 13.0101, respectively. Experimental outcomes un-
derlined the RFR’s excellent retrieval performance in this study for the nonlinear model, 
emphasizing that the concentration and spectrum of the arsenic concentration in the soil 
was not a simple linear relationship, which may be affected by soil type and climatic fac-
tors. Thus, the retrieval accuracy of the simple linear models was limited. Moreover, the 
GWR model in the linear model also showed an excellent retrieval performance in this 
experiment as the spatial coordinate information of the sample points was integrated into 
the construction of the GWR model, which thoroughly considered the spatial non-station-
arity between the soil arsenic concentration and the reflectance spectrum. This spatial het-
erogeneity is often ignored in most models. Although the accuracy of the GWR model still 
has a greater improvement compared to the RFR model, the retrieval performance of the 
model further demonstrated the existence of spatial heterogeneity between the arsenic 
concentration and the spectrum in the study area, allowing for the construction of a more 
precise and stable retrieval model. 
(2) Based on the first type of optimal characteristic bands 

Similar to the process described earlier, the correlation coefficient, coefficient of de-
termination and root-mean-square error were calculated to evaluate the retrieval models 
using the optimal characteristic bands. These evaluations were conducted based on the 
retrieval results with the first type of optimal characteristic bands, considering the two 
criteria of the second-highest Pearson’s correlation coefficients and higher-quality spectral 
data. The results of these evaluations can be found in Table 7. 

Table 7. Retrieval results based on the characteristic bands in Tables 3 and 4. 

Model 
Training Data Validation Data 

r R2 RMSE (mg/kg) r R2 RMSE (mg/kg) 
MLR 0.6500 ** 0.4224 15.5881 0.7145 ** 0.4287 15.7926 
PLSR 0.66711 ** 0.4504 14.8022 0.6842 ** 0.4671 15.0733 
GWR 0.7392 ** 0.5407 12.9545 0.7982 ** 0.6286 13.5795 

BP 0.7186 ** 0.4682 12.6433 0.6759 ** 0.4426 12.7430 

Figure 5. Scatterplot of training and validation data for RFR: (a) Training data; (b) Validation data.

The accuracy of the six prediction models for arsenic concentration in this study area varied,
and their performance can be ranked as follows: RFR > GWR > BP > PLSR > SVR > MLR, for the
correlation coefficient r value of the training data, and RFR > GWR > BP > PLSR > MLR > SVR,
for the correlation coefficient r value of the validation data. Therefore, the RFR model
exhibited the highest accuracy in both scenarios, followed by the GWR model. The ranking
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of the other models differed slightly between the training and validation data sets. Specif-
ically, the RFR model boasted the highest degree of accuracy, with the r, R2 and RMSE
of the validation data being 0.8255, 0.6489 and 10.3955, respectively. The accuracy of the
GWR model was second to that of RF, and the r, R2 and RMSE of the validation data were
0.7441, 0.5420 and 13.0101, respectively. Experimental outcomes underlined the RFR’s
excellent retrieval performance in this study for the nonlinear model, emphasizing that
the concentration and spectrum of the arsenic concentration in the soil was not a simple
linear relationship, which may be affected by soil type and climatic factors. Thus, the
retrieval accuracy of the simple linear models was limited. Moreover, the GWR model in
the linear model also showed an excellent retrieval performance in this experiment as the
spatial coordinate information of the sample points was integrated into the construction
of the GWR model, which thoroughly considered the spatial non-stationarity between
the soil arsenic concentration and the reflectance spectrum. This spatial heterogeneity is
often ignored in most models. Although the accuracy of the GWR model still has a greater
improvement compared to the RFR model, the retrieval performance of the model further
demonstrated the existence of spatial heterogeneity between the arsenic concentration and
the spectrum in the study area, allowing for the construction of a more precise and stable
retrieval model.

(2) Based on the first type of optimal characteristic bands

Similar to the process described earlier, the correlation coefficient, coefficient of de-
termination and root-mean-square error were calculated to evaluate the retrieval models
using the optimal characteristic bands. These evaluations were conducted based on the
retrieval results with the first type of optimal characteristic bands, considering the two
criteria of the second-highest Pearson’s correlation coefficients and higher-quality spectral
data. The results of these evaluations can be found in Table 7.

Table 7. Retrieval results based on the characteristic bands in Tables 3 and 4.

Model
Training Data Validation Data

r R2 RMSE (mg/kg) r R2 RMSE (mg/kg)

MLR 0.6500 ** 0.4224 15.5881 0.7145 ** 0.4287 15.7926
PLSR 0.66711 ** 0.4504 14.8022 0.6842 ** 0.4671 15.0733
GWR 0.7392 ** 0.5407 12.9545 0.7982 ** 0.6286 13.5795

BP 0.7186 ** 0.4682 12.6433 0.6759 ** 0.4426 12.7430
SVR 0.6597 ** 0.4233 15.7397 0.6333 * 0.3856 15.0533
RFR 0.8894 ** 0.7347 10.9802 0.8004 ** 0.6151 10.8847

** denotes statistical significance at the 0.01 level (two-tailed), * denotes statistical significance at the 0.05 level
(one-tailed).

From Tables 3 and 4 and Tables 6 and 7, the following findings can be derived:
(1) When comparing the retrieval results based on both the original characteristic bands and
the optimal ones, the RFR and GWR models consistently demonstrated the best and second-
best performance, respectively. (2) However, there were changes in the accuracy rankings.
Specifically, when considering the correlation coefficient (r) values for the validation data,
the rankings changed from the original order of RFR > GWR > BP > PLSR > MLR > SVR to
the optimal order of RFR > GWR > MLR > PLSR > BP > SVR. In the optimal scenario, the
ranking positions of linear models increased from the r values of the validation data.

Additionally, the following observations can be made: (1) The linear models (MLR,
PLSR and GWR) exhibited greater sensitivity toward the optimal characteristic bands. The
accuracy of both the MLR and GWR models improved significantly. Specifically, for the
MLR model, the r value of the validation data increased from 0.6487 to 0.7145, showing
good statistical significance. Similarly, for the GWR model, the r value of the validation
data increased from 0.7441 to 0.7982. (2) However, for the nonlinear models (SVR, BP and
RFR), the r metric generally decreased, except for the r value of the training data for the
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BP and SVR models. Overall, the use of optimal characteristic bands resulted in decreased
performance for these nonlinear models in terms of retrieval results.

In summary, the linear models (MLR, PLSR and GWR) demonstrated improved
sensitivity to the optimal characteristic bands, resulting in enhanced accuracy. On the other
hand, the nonlinear models (SVR, BP, and RFR) evinced weakened efficacy in utilizing
the optimal characteristic bands, except for the r value of the training data for the BP and
SVR models.

(3) Based on the second type of optimal characteristic bands

Similar to the previous analysis, the correlation coefficient, coefficient of determination
and root-mean-square error were calculated to evaluate the retrieval models using the
optimal characteristic bands. This evaluation was conducted based on the retrieval results
with the second type of optimal characteristic bands, considering the criteria of high
Pearson’s correlation coefficients (abs(Pearson’s correlation coefficient) ≥ 0.45) combined
with sensitivity to soil active materials. The results of this evaluation can be found in
Table 8.

Table 8. Retrieval results based on the characteristic bands in Tables 3 and 5.

Model
Training Data Validation Data

r R2 RMSE (mg/kg) r R2 RMSE (mg/kg)

MLR 0.6493 ** 0.4215 16.2586 0.6954 ** 0.4665 14.0281
PLSR 0.6777 ** 0.4593 14.6014 0.7159 ** 0.4912 15.0675
GWR 0.7301 ** 0.5285 13.1248 0.8052 ** 0.6461 13.2556

BP 0.6562 ** 0.4105 14.9417 0.7331 ** 0.5240 10.0690
SVR 0.6635 ** 0.4352 15.7681 0.6165 * 0.3640 14.8183
RFR 0.8996 ** 0.7406 10.8576 0.7776 ** 0.5878 11.2641

** denotes statistical significance at the 0.01 level (two-tailed), * denotes statistical significance at the 0.05 level
(one-tailed).

Based on Tables 3, 4, 7 and 8, the following observations can be made: (1) When
comparing the retrieval results using both the original characteristic bands and the optimal
ones, the RFR and GWR models generally maintained their positions as the best and second-
best performers, respectively. (2) However, there were changes in the accuracy rankings.
Specifically, when considering the correlation coefficient (r) values for the training data, the
rankings changed from the original order of RFR > GWR > BP > PLSR > SVR > MLR to
the optimal order of RFR > GWR > PLSR > SVR > BP > MLR. Similarly, when considering
the correlation coefficient (r) values for the validation data, the rankings changed from
the original order of RFR > GWR > BP > PLSR > MLR > SVR to the optimal order of
GWR > RFR > BP > PLSR > MLR > SVR. In the optimal scenario, the ranking positions of
linear models increased from the r values of both training and validation data. Specifically,
the GWR model achieved the highest r value for validation data.

The following additional observations can be made: (1) The linear models (MLR, PLSR
and GWR) appeared to be more sensitive to the optimal characteristic bands, and all of them
showed improvements in the r metric, except for the r value of the training data for the
GWR model. Specifically, for the MLR model, the r value of the validation data increased
from 0.6487 to 0.6954 with good statistical significance. Similarly, for the GWR model, the
r value of the validation data increased from 0.7441 to 0.8052, representing the highest r
value among all models for the validation data. (2) However, for the nonlinear models
(SVR, BP and RFR), the performance varied, with some r values for both the training and
validation data increasing and others decreasing. Overall, the retrieval results based on
both the original characteristic bands and the optimal ones presented a minor decline in
performance for these nonlinear models.

In summary, the linear models (MLR, PLSR and GWR) exhibited greater sensitiv-
ity to the optimal characteristic bands, resulting in improved accuracy for most met-
rics. Conversely, the performance of the nonlinear models (SVR, BP and RFR) showed
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mixed results, with some metrics improving and others declining when using the optimal
characteristic bands.

4. Discussion
4.1. Mechanism Analysis of Soil Arsenic Concentration in Pingtan Island

Research has shown that iron oxides have an impact on the spectral quantitative
retrieval of soil heavy metals [39]. With an increase in iron oxide content or a higher ratio
of iron oxide content to organic matter content, the stability and predictive ability of the
retrieval model weaken, leading to the formation of absorption bands around 500 nm
and 950 nm due to iron oxides. In Figure 2, a weak absorption band is presented at
around 500 nm, and a distinct absorption band is visible at around 950 nm, suggesting the
potential presence of increased iron oxide content within the study area [40,41]. Table 3
also confirms the presence of characteristic bands at around 500 nm in the soil spectra of
the study area, which highlights the potential noteworthy influence of iron oxides on the
concentration of arsenic. Iron oxide minerals are also the most important source of soil
arsenic [42,43], which is a geological factor contributing to the overall higher arsenic content
in the soil of Pingtan Island. Furthermore, previous studies have shown that the absorption
features of soil clay minerals are located at around 1400 nm [44–46], 1900 nm [45,46] and
2200 nm [44,47–49]. For field spectrometry and image spectroscopy, 1400 nm and 1900 nm
were affected by strong atmospheric water vapor absorption, so the inversion modeling
primarily utilized the absorption feature at 2200 nm. The laboratory spectra measured
in this study indicated prominent absorption peaks at 1400 nm, 1900 nm and 2200 nm,
as shown in Figure 2. Tables 3–5 also confirmed the presence of characteristic bands at
around 1400 nm and 2200 nm in the soil spectra of the study area, indicating the possible
significant feedback of clay minerals on arsenic content in Pingtan Island’s soil. Clay
minerals are also an important source of soil arsenic [50]. Pingtan Island hosts 15 kinds of
minerals (including sub-minerals), such as iron, copper, tungsten, molybdenum, quartz
sand, alunite and decorative stones. Of particular note are the abundant reserves of
casting sand, standard cement sand, glass sand, gabbro for decoration and granite for
decoration, which were included in the list of mineral resources in Fujian Province in
2015 (https://www.pingtan.gov.cn/jhtml/ct/ct_9241_124464 (accessed on 1 September
2023)). Therefore, mining these mineral resources may provide an important source for
the accumulation of arsenic in soil. Moreover, as a relatively closed land area with limited
space, Pingtan Island’s topography and geomorphology are not conducive to the migration,
diffusion and dilution of soil arsenic, further intensifying the accumulation and pollution
of arsenic in the soil.

In addition, the spectral response range of soil organic matter predominantly occurs
within the range of 400 nm and 1100 nm, with the most significant changes happening
between 600 nm and 800 nm [51,52]. Based on the soil spectral curves shown in Figure 1
and the characteristic bands of the soil arsenic concentration presented in Tables 3–5, it was
observed that there were no significant peaks or strong correlations that could indicate a
direct relationship between the soil organic matter and soil arsenic content. However, the
characteristic band at 1349 nm with the RTFD indicator shows the potential influence of
organic matter [53]. Overall, the impact of soil organic matter on soil arsenic accumulation
in the study area was found to be limited. Hence, it is suggested that soil organic matter
may not be a major factor influencing the accumulation of arsenic in the study area. This
analysis is consistent with the objective condition of relatively low organic matter content in
the soil of Pingtan Island (https://www.pingtan.gov.cn/jhtml/ct/ct_2948_97751 (accessed
on 1 September 2023)).

It should be noted that the characteristic bands of soil spectra in Pingtan Island may
slightly differ from those cited in the literature due to variations in soil texture classes
across different regions, differences in spectral data acquisition and variations in spectral
pre-processing methods. However, these differences do not significantly impact the overall
reliability of the analysis.

https://www.pingtan.gov.cn/jhtml/ct/ct_9241_124464
https://www.pingtan.gov.cn/jhtml/ct/ct_2948_97751
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4.2. Assessment of Ground-Based Hyperspectral Retrieval of Soil Arsenic Concentration in
the Study

The geochemical data obtained from investigating soil heavy metals have proven to be
precise, making it a reliable basis for ecological risk assessments in various studies [54–58].
However, these data are generally discrete, sparse and relevantly stationary, which cannot
satisfy the frequent and rapid monitoring requirement for a wide area. Consequently,
using hyperspectral remote sensing to retrieve soil heavy metal content presents a unique
advantage for rapid and dynamic observations across a wide area. Although it may be
challenging to directly retrieve soil heavy metal content from remote sensing imagery due
to various factors, including atmospheric effects and sensor limitations, ground-based
hyperspectral retrieval studies can provide significant theoretical and technical support for
satellite-based studies. Multi-model retrieval studies of soil arsenic concentrations with
ground-based hyperspectral data are particularly important and were explored in this
paper. The pre-processing of soil spectra before the selection of characteristic bands helps
eliminate background noise to create more prominent reflection peaks and absorption val-
leys, improving the accuracy of hyperspectral modeling. Studies have shown that spectral
differential technology could effectively eliminate curves’ drift phenomenon and linear
background interference, thus facilitating the discovery of sensitive spectral characteristic
parameters among different heavy metals. Moreover, the reciprocal logarithmic variation
in the spectrum helped attenuate random effects, such as those caused by topography
and lighting [59]. This study employed nine transformation forms to transform the data:
first-order differentiation, second-order differentiation, reciprocal, reciprocal first-order
differentiation, reciprocal logarithmic first-order differentiation, reciprocal logarithmic
second-order differentiation and continuum removal. Subsequently, the use of Pearson’s
correlation analysis helped screen out bands with significant correlations as characteristic
bands for the retrieval modeling process, minimizing high-dimensional data redundancy
and mitigating data collinearity to a certain extent. However, this method also possessed
limitations, as the correlation between the spectral data and soil heavy metal content did
not significantly improve in this study after transformation, which differed from the re-
sults of Teng et al. [60]. Furthermore, filtering feature bands posed the potential risk of
removing some bands with rich feature information, ultimately affecting the accuracy of
the subsequent model’s establishment.

Due to the abundance and diversity of soil types, modeling heavy metal content using
a single method proves to be challenging. Thus, six modeling methods based on linear
and nonlinear models were selected in this study to estimate the arsenic concentration.
The model exhibiting the highest precision was chosen as the optimal retrieval model in
the study area. Numerous studies have consistently demonstrated that models based on
nonlinear relationships tend to exhibit higher accuracy compared to linear relationship
models. For instance, Gholizadeh et al. [61] conducted a comparative analysis of two models
using soil samples from a large brown coal mining dumpsite in the Czech Republic. Their
findings indicate that the Support Vector Regression (SVR) model outperforms the Partial
Least Squares Regression (PLSR) model in terms of accuracy. However, in this study, the
precision of linear models such as MLR, PLSR and GWR was superior to that of nonlinear
models such as SVR in validation data, and the accuracy of the GWR model was greater
than that of the BP model. This result may be due to the problem of achieving a locally
optimal solution when performing parameter optimization while using machine learning
methods in modeling. As such, to enhance the modeling precision of BP and SVR, it is
necessary to further optimize algorithms to attain an optimal global solution. For example,
Shi et al. [62] used the LASSO (least absolute shrinkage and selection operator) algorithm
and GA (genetic algorithm) to optimize BP, which greatly improved the estimation accuracy
and generalization ability of the model.

The accuracy of retrieving heavy metal content using the nonlinear model RFR in
this study far surpassed that of other models. The reason is that the relationship between
the reflectance spectrum of the soil and the heavy metal content is not ideally linear. For
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example, the spectral characteristics of heavy metals do not consistently increase with a
higher concentration. Furthermore, the characteristic bands of heavy metals at the same
concentration differ among different soil types due to the influence of organic matter and
other components [18]. Therefore, employing nonlinear models can overcome the problems
of overfitting and insufficient explanatory properties in linear models, resulting in greater
retrieval accuracy. In addition, when there is significant spatial heterogeneity between the
soil heavy metal content and the reflectance spectrum, models such as MLR, PLSR, BP, SVR
and RFR do not account for spatial variables, which subsequently affects retrieval accuracy.
Conversely, the GWR model incorporates spatial coordinate data into the modeling process,
fully considering the spatial non-stationarity between the soil heavy metal content and the
reflectance spectrum [63]. That is why the GWR model in this study also demonstrated
good retrieval performance, with accuracy that was second only to the RFR model, further
underscoring the presence of spatial heterogeneity between the soil arsenic concentration
and the reflectance spectrum in the study area.

4.3. Impacts of Optimal Characteristic Bands on Soil Arsenic Content Retrieval

The approach of selecting the optimal Pearson’s correlation coefficient coupled with a
spectrum that is highly sensitive to the active constituents within the soil has a favorable
impact on constructing prediction models for soil-borne heavy metals. Prior studies, such
as that carried out by Lu et al. [64], have also verified the feasibility of this method. Their
research, focusing on heavy metal concentrations in karstic regions, demonstrated that
the utilization of spectral response bands linked to clay minerals and organic matter was
instrumental in enhancing the accuracy and stability of the prediction models. Similarly, Lin
et al. [65] identified a specific spectral band with an arsenic content correlation coefficient
surpassing 0.5 as being particularly sensitive when establishing heavy metal prediction
models. This band was associated with the active constituents of the soil spectrum (specifi-
cally those at 500 nm and 800 nm). Nonetheless, the extent to which this band selection
method affects the precision of diverse heavy metal models remains unexplained; thus, our
study offered a more profound analysis.

For linear models (MLR, PLSR and GWR), the relationship between characteristic
bands and soil heavy metals is relatively simple. This means that any variations in the
characteristic bands for SR/RT/AT are linearly propagated to the retrieval models. As a
result, the overall training and validation results showed a direct variation for these linear
models. Although the optimal characteristic spectra may not align with the highest Pear-
son’s correlation coefficients, the overall improvements for the linear models highlighted in
Section 3.3 were significant. This improvement demonstrates that the selected characteristic
spectra were effective, and the selection strategy was reasonable, particularly considering
the two criteria of a high Pearson’s correlation coefficient (e.g., abs(Pearson’s correlation
coefficient) ≥ 0.45) and sensitivity to soil active materials (soil organic matter, clay minerals
and iron oxides).

On the other hand, regarding nonlinear models, two points can be observed: (1) The
optimal characteristic bands with SR/RT/AT may not directly affect the accuracy im-
provement of the nonlinear models, even though the results obtained based on optimal
characteristic bands indicate a slightly inferior accuracy. (2) When comparing the retrieval
results based on original characteristic bands and optimal ones, the RFR model overall
demonstrated the highest accuracy. These observations further emphasize that the relation-
ship between characteristic bands and soil heavy metals is complex and nonlinear.

Consequently, the optimal selection of characteristic bands, determined based on the
two criteria of a high Pearson’s correlation coefficient and sensitivity to soil active materials,
provide two effective retrieval models: the best RFR model and the improved GWR model.

4.4. Limitations of This Study and Outlook for Future Studies

Indeed, there are still some unresolved issues in this study. The following points
highlight these concerns:
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1. Machine learning methods lack clear physical meanings, which can lead to less
stable and robust retrieval models. To address this, it should be considered that
machine learning methods can achieve better retrieval performance when sufficient
geochemical survey data are available. Additionally, considering the advantages of the
GWR model, traditional machine learning models can be improved by incorporating
spatial characteristics.

2. The optimal selection of characteristic bands with SR/RT/AT transformation spectra
was performed manually in this study. To enhance the process, future research can
explore automatic selection methods that adhere to the criteria of high Pearson’s
correlation coefficients (e.g., abs(Pearson’s correlation coefficient) ≥ 0.45) and sensi-
tivity to soil active materials (e.g., soil organic matter, clay minerals and iron oxides).
Notably, noticeable absorption peaks are observed at approximately 950 nm and
1900 nm in Figure 1, corresponding to the sensitive spectral ranges of soil active mate-
rials. However, these characteristic bands were not utilized in soil arsenic retrieval.
Incorporating them has the potential to further improve the retrieval accuracy of soil
arsenic concentrations.

The transition from ground-based hyperspectral retrieval to satellite-based retrieval
poses different challenges and issues, such as the robustness of characteristic bands and
the universal availability of optimal models. Therefore, it is crucial to consider the compre-
hensive use of both ground-based and satellite-based characteristic bands to address these
challenges effectively [39].

5. Conclusions

Our findings from this study can be summarized as follows:

1. Using both the original characteristic bands and the optimal ones, the RFR model
exhibited the best performance. This suggests that the relationship between the soil
arsenic concentration and its spectral variables is complex and nonlinear, influenced by
various factors in the landscape. The GWR model also showed excellent performance
as the second-best model, considering the spatial non-stationarity and heterogeneity
of the relationship between the arsenic concentration and spectral variables. This
highlights the importance of considering spatial characteristics in geospatial studies
and indicates the potential for improving traditional machine learning modeling.

2. When evaluating the accuracy rankings of the retrieval models based on optimal
characteristic bands, the RFR model retained its position as the best-performing model.
Although there was only a slight improvement in the r value of the training data, the
accuracy of the linear models (MLR, PLSR and GWR) saw significant enhancements,
particularly for the GWR model, which achieved the highest r value for the validation
data. This demonstrates that the optimal characteristic bands, selected based on
the two criteria of a high Pearson’s correlation coefficient and sensitivity to soil
active materials, successfully addressed the issues of uncertainty and low quality in
characteristic band selection based on Pearson’s correlation coefficients. Consequently,
this study generated two effective retrieval models: the best-performing RFR model
and the improved GWR model.

For Pingtan Island, the dynamic monitoring of soil arsenic content is crucial. Research
provides theoretical and technical support for the monitoring and contamination evaluation
of soil arsenic concentrations using satellite-based spectroscopy in relatively independent
island towns with dense populations, such as Pingtan Island, both in China and worldwide.
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