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Abstract: Land surface temperature (LST) is closely associated with urban and rural development. To
study the spatiotemporal evolution of the LST, we used daily night light and LST data as well as the
gravity model, coupling coordination model, standard deviation ellipse, and other methods. Under
the analysis–coordination–gravity framework, we studied the spatiotemporal and gravitational
evolution of the nighttime LST in the Henan Province in 2013, 2016, 2019, and 2022. Our research
revealed significant differences in the high-brightness values of nighttime lighting between different
years and seasons. The maximum offset distance occurred in the winters of 2013–2016 at 20,933.28 m,
whereas the minimum offset distance was observed in the autumns of 2019–2022 at 1196.03 m.
In addition, the spatiotemporal gravity of the LST exhibits a certain evolution pattern. Although
differences in the direction of evolution and the distribution of high gravity density were found, a
homogenization trend was observed for the distribution of gravity in the spring of 2016, autumn of
2019, and summer of 2022. LST shows different characteristics over changing space and seasons, and
its gravity shows the characteristics of spatial aggregation. The results provide new ideas for LST
studies and are of significance for the restoration of ecosystems.

Keywords: land surface temperature; night lighting; gravity model; evolution law; Henan Province

1. Introduction

As a country with rapid urbanization, China constantly faces serious ecological prob-
lems. Due to frequent and abnormal human activities, natural ecosystems are confronted
with problems such as resource consumption, environmental pollution, and ecological
destruction, posing enormous challenges to ecological governance. In March 2019, the
United Nations (UN) adopted “The UN Decade on Ecosystem Restoration 2021–2030”
initiative, establishing a vision for ecosystem restoration and marking the comprehensive
launch of global natural restoration actions [1,2]. The land surface temperature (LST) is
closely related to the energy [3], water [4], and carbon cycles [5,6] of natural ecosystems
and plays an important role in the restoration of the ecosystem.

In recent years, the complex relationship between LST and ecosystems has attracted
attention from the scientific community, including the regulation of the LST and ecosystem
services [7], social-ecological indicators and risk assessment of thermal health [8], and
the effects of heat waves on ecosystem productivity [9]. Related research on LST has
continuously delved into multiple dimensions, scales, and levels [10]. The emergence of
nighttime lighting provides a basis for the further explanation of human activities [11],
the economy [12], population [13,14], and electricity consumption [15]. Existing research
has also combined LST with nighttime lighting to explore the relationship between urban
development and the LST. For example, the characteristics and trends of the LST and
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nighttime light intensity [16], relationship between night light and the spatial heterogene-
ity of the LST [17], and gradient evolution relationship between the urban development
index defined by nighttime lighting and urban heat islands [18] were analyzed. According
to previous research, the distribution of nighttime lights better reflects the spatial char-
acteristics of human activity [19]. Areas with high brightness values exhibit increased
entertainment [20], infrastructure [21], and environmental pollution [22]. Because of the
large number of human gatherings, surface heat accumulates in high-brightness areas.
However, research on the interaction between nighttime lighting and LST is lacking. Few
studies have explored the coupling and coordination relationships between nighttime light-
ing and LST. Furthermore, based on the current literature, research on nighttime lighting
and LST generally uses an 8-day synthesis, 16-day synthesis, and monthly or annual data
for regional analysis. However, we believe that it is not possible to fully consider the true
trend and evolution of nighttime lighting and the LST when using the above-mentioned
synthesized data for analysis. Furthermore, seasonal variations significantly differ due to
different weather conditions, sunshine durations, and urbanization level.

The gravity model explores the interaction of regional spatial data and is primarily
used for research on the economy [23], trade [24], energy [25], and other aspects. With the
development of its academic application, the gravity model has been gradually introduced
by experts and scholars into geography, ecology, humanities, and other disciplines. The
relevant theories represented by the gravity model have great advantages in relevant
theories of spatial connection and intensity. In recent years, the reports of gravitational
model research in the field of ecology have gradually increased, primarily including
ecological security patterns [26], efficiency [27], and corridors [28]. As mentioned, LST has
a strong correlation with ecological restoration. This study focuses on the gravitational
effect of LST, which provides important reference for related research on high temperature
heat waves and the heat island effect.

Therefore, this study uses the time nodes of spring, summer, autumn, and winter
in the 24 solar terms to divide the daily night light and LST data, extract the LST values
with high brightness, and further combine the analysis–coordination–gravity framework to
explore the spatial distribution and spatiotemporal variation laws of regional LST gravity.
This study provides an important reference for understanding the formation of the heat
island effect and regional ecological restoration and governance.

2. Research Area and Technical Route
2.1. Research Area

The Henan Province (Figure 1) is in the central region of China, between 31◦23′–36◦22′N
and 110◦21′–116◦39′E. Its terrain and landforms are diverse and feature extensive vegeta-
tion coverage. The province spans the Yangtze, Yellow, Huai, and Hai River basins, with
relatively scarce water resources and various types of natural disasters such as drought,
floods, pests and diseases, geological disasters, forest fires, and sudden environmental
events. In recent years, the number of geological disasters has significantly increased
(766 in 2021) and the number of natural disasters, such as forest fires and sudden envi-
ronmental events, has also remained high. The urbanization rate in the research area has
increased annually since 2013, reaching 50% in 2017. The built-up area has been increasing
annually, reaching 3235 km2 in 2021. Urbanization has caused a series of environmental
problems, such as ecological damage, resource scarcity, and air pollution, which must be
better managed and resolved.

2.2. Research Technical Route

In this study, daily nighttime lighting and the LST were considered the main data
sources. The standard deviation ellipses, autocorrelation analysis, coupled coordination
models, and gravity models were analyzed. Taking the years 2013, 2016, 2019, and 2022
in the Henan Province as examples, this study delves into the evolutionary laws of LST
and gravity. The data were mainly divided based on the 24 solar terms of spring, summer,
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autumn, and winter and the average method was used for data synthesis to obtain night
light data and LST for the four seasons. The natural breakpoint classification method
was utilized to consider the high brightness value as the first evaluation unit. The LST
in the evaluation unit was extracted. The coupling coordination degree model was used
to obtain the coupling coordination relationship between the brightness value and LST;
the coordination degree was used as the division scale to obtain the second evaluation
unit. Finally, the gravity model was used to explore the space–time evolutionary law of
the high gravity area of LST in the second evaluation unit. Figure 2 shows the research
technology roadmap, which displays the analysis–coordination–gravity architecture. The
main idea of this architecture is to grasp the spatial distribution of the main research content
in the region and use the coupling coordination relationship as a transitional process.
The coordination part of the coupling coordination relationship can be represented as a
“1 + 1 > 2” relationship. In this study, the LST area with high brightness values included
concentrated and intense high temperatures. By conducting relevant research on LST and
gravity, the spatiotemporal evolution law of LST and gravity was further elucidated.
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3. Research Methods and Data
3.1. Standard Deviation Ellipse

The standard deviation ellipse is a method in which graphics are used as representa-
tions to depict the spatial variations of elements using parameters such as the area, center
of gravity, major and minor axes, and rotation angles of the ellipse. Recently, it has been
widely applied in disciplines such as ecology [29], geography [30], and environmental
sciences [31]. The equations are as follows:

Center of gravity X coordinate : X =
∑n

i=1 Wixi

∑n
i=1 Wi

, (1)

Center of gravity Y coordinate : Y =
∑n

i=1 Wiyi

∑n
i=1 Wi

, (2)

Azimuth angle θ :

tan θ =
(∑n

i=1 W2
i x̃i

2−∑n
i=1 W2

i ỹi
2)+

√
(∑n

i=1 W2
i x̃i

2−∑n
i=1 W2

i ỹi
2)

2
+4∗∑n

i=1 W2
i x̃i

2 ỹi
2

2∗∑n
i=1 W2

i x̃i ỹi
,

(3)

Standard deviation of x−axis : σx =
√

∑n
i=1 (Wi x̃i cos θ −Wi ỹi sin θ)2/ ∑n

i=1 W2
i , (4)

Standard deviation of y−axis : σy =
√

∑n
i=1 (Wi x̃i sin θ −Wi ỹi cos θ)2/ ∑n

i=1 W2
i , (5)

where Wi and (xi, yi) are the spatial weights and coordinates of the research variables,
respectively; (X, Y) represents the weighted average center of the research variable; and
x̃i and ỹi represent the coordinate deviation of each research variable from the weighted
average center.

3.2. Autocorrelation Analysis

The spatial autocorrelation method mainly explores whether variables have spatial
dependence or aggregation in space [32,33]. It is mainly divided into global spatial autocor-
relation and local spatial autocorrelation [34–36] and is generally represented by Moran’s I.

Moran′s I =
∑m

a ∑m
b 6=a Qab(ea − e)(eb − e)
S2 ∑m

a ∑m
b 6=a Qab

, (6)

where m is the number of samples, S2 is the variance of the kernel density value, ea
and eb represent the values of the variables in the sample, and Qab is the spatial weight
matrix. The range of values for Moran’s I is [–1, 1]. Values greater than 0 indicate positive
autocorrelation, values less than 0 indicate negative autocorrelation, and values equal to 0
indicate a random distribution. Furthermore, local spatial autocorrelation was combined to
explore the spatial aggregation of the LST with high brightness values.

3.3. Coupling Coordination Model

The coupling coordination degree model integrates the coupling degree and coordi-
nation degree indicators [37,38], thereby describing the interaction and coordination level
between nighttime light brightness values and the LST. In this study, the focus was placed
on variable coordination and then extracted gravitational values. The equations for the
coupling coordination degree are:

D =
√

C× T, (7)

T = h f (x) + kg(x), (8)
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C =

{
f (x)g(x)

[ f (x) + g(x)/2]2

}1/2

, (9)

where D, T, and C represent coupling co-scheduling, coordination degree, and coupling
degree, respectively; f (x) and g(x) represent nighttime light brightness values and LST
values, respectively; and h and k are undetermined coefficients that characterize the impor-
tance of the variables. In this study, h = k = 0.5.

3.4. Gravity Model

The basic concept of the gravity model is derived from Newton’s law of universal
gravitation [39]. In this study, a gravity model was introduced to study LST. Focusing on
the coordination region, the product of the LST of the two regions was divided by the
regional distance to reflect the gravitational relationship of the LST. When the gravitational
value is larger, the gravitational relationship between the LST between regions is stronger.
The equation is as follows:

P = R
TrTu

Gru2 , (10)

where P is the gravitational value of the LST between regions r and u; Tr and Tu represent
the LST values between regions r and u, respectively; R is a coefficient, generally 1; Gru is
the distance between the center positions of regions r and u.

3.5. Data Sources and Preprocessing

The nighttime lighting and LST data in this study were obtained from NASA’s Earth-
data database (https://www.earthdata.nasa.gov/) and AI Earth (https://engine-aiearth.
aliyun.com/). The nighttime lighting data are VNP46A2 data, which include substan-
tial improvements in temporal resolution, calibration, and spatial resolution compared
with DMSP-OLS. In this study, a stable light source corrected using the DNB BRDF was
extracted. The daily LST data used were MOD11A1. To maintain consistency with the
nighttime lighting time, we chose the nighttime LST as the main research object and did not
consider daytime LST. The LST was converted into a numerical value in degrees Celsius.
The LST and nighttime lighting data were preprocessed through embedding, cropping, and
a unified coordinate system. The LST has a resolution of 1 km, and the nighttime lighting
data has a resolution of 500 m.

4. Spatiotemporal Gravitational Evolution of the Land Surface Temperature
4.1. Spatiotemporal Distribution of Nighttime Lighting

To make reasonable use of the coupling coordination model, spatiotemporal distri-
bution differences in the nighttime lighting brightness values were analyzed (Figure 3).
In addition to areas other than those with low nighttime brightness values, the nighttime
light was centered around Zhengzhou City and distributed to other prefecture-level cities
and counties in the Henan Province. In addition, the nighttime brightness values of cities,
such as Pingdingshan, Jiaozuo, Xuchang, and Xinxiang, were high. The nighttime light
brightness had a large distribution area in 2013, 2019, and 2022 and the nighttime light
in 2013 and 2019 showed a balanced distribution throughout the four seasons, without
significant differences. The nighttime lighting brightness was weaker in 2016, especially in
autumn and winter. The nighttime lighting brightness in autumn 2022 was slightly weak
and gradually increased in winter.

In this study, areas other than those with low light intensity were selected as the first
evaluation unit, and the directional distribution of the first evaluation unit was explored
using a standard deviation ellipse (Figure 4; the scale of the thumbnail in the upper left
corner is inconsistent). Table 1 shows the offset distances of the standard deviation ellipses
for the three time periods in the study area, which indirectly indicate the magnitude
of nighttime lighting offset. In the first two periods of spring, the offset distance was

https://www.earthdata.nasa.gov/
https://engine-aiearth.aliyun.com/
https://engine-aiearth.aliyun.com/
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similar and the offset amplitude was consistent, whereas the offset amplitude significantly
decreased in the last period. The shift amplitude in summer was relatively small in the three
time periods, with a slightly larger shift amplitude in the first period. The amplitude in
the first two periods of autumn was consistent, but a sharp decrease in the shift amplitude
occurred in the third period, indicating that the change in the lighting brightness during the
autumn period was relatively small. The deviation amplitude in winter decreased from the
first to the third period. Overall, the deviation distance and amplitude exhibited significant
changes in the first period, whereas the changes in the last period were relatively small.
This indicates that the social, economic, and demographic changes in the Henan Province
have been relatively small in the past four years compared with those in 2013 and 2016.
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In spring, the first evaluation unit shifted toward the eastern region, and the direction
of the shift in summer was similar to that in spring. The shift direction in autumn changed,
shifting from the northeast direction in spring and summer to the northwest direction
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from 2013 to 2016, and the shift direction also changed from 2019 to 2022. The winter shift
direction returned to the same direction as in spring and summer in the 2013–2016 period,
shifted southeast in the 2016–2019 time period, and shifted in the same direction as in
autumn in the 2019–2022 time period.
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Table 1. Deviation of the standard deviation ellipse.

Distance/m 2013–2016 Year 2016–2019 Year 2019–2022 Year

Spring 16,784.18 16,621.67 7198.46
Summer 13,277.02 12,135.64 12,032.19
Autumn 17,501.98 18,020.99 1196.03
Winter 20,933.28 17,993.05 13,269.90

4.2. Spatiotemporal Correlation Characteristics of the Land Surface Temperature

Figure 5 shows the global spatial autocorrelation results. The autocorrelation test
for LST under the first evaluation unit in all years yielded Z > 2.58, with a p-value below
0.01 and a positive Moran’s I. This indicates that LST was not randomly distributed and
showed a positive autocorrelation at the 99.9% confidence level. The LST trend was the
same, and a spatial clustering effect was observed. In 2013 and 2019, Moran’s I first
decreased and then increased with seasonal changes, indicating that the aggregation degree
of the LST also first decreased and then increased. The degree of aggregation in 2016
gradually increased with the change in seasons and the degree of aggregation in 2022
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showed an oscillating evolution pattern. From a seasonal perspective, the degree of LST
aggregation in the spring of 2016 was lower than that of the other three years. The degree
of LST aggregation in the summer of 2016 surpassed that of 2019 and 2022 and the degree
of aggregation in 2013 remained in a leading position. The degree of aggregation in autumn
decreased significantly in 2019, with 2022 having the highest degree of aggregation. The
Moran’s I values in winter were all greater than 0.5. The year 2016 showed the highest
degree of clustering, whereas the other three years had similar degrees of clustering.
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To analyze the spatial aggregation and diffusion of the LST more intuitively, a local
autocorrelation test was conducted. Figure 6 shows the results. In 2013, the high–high
aggregates in spring, autumn, and winter were mainly concentrated in the southern part
of the Henan Province, whereas they were mainly concentrated in the central region in
summer. The high–low aggregates were scattered in small amounts throughout the Henan
Province, with large areas appearing in summer and autumn. In 2016, The high–high
aggregates were mainly located in the southern region of the study area, with significant
differences in the degree of aggregation between the spring and summer and autumn and
winter seasons. In spring and summer, more high–low aggregates were observed in the
southern region, which transformed into low–low aggregates during autumn and winter.
Large areas around Zhengzhou City also transitioned from insignificant clustering to high–
low and low–low aggregates in spring and summer, respectively. In spring and winter of
2019, the clustering types in the southern region of the study area were similar to those in
the northern region. Except for the low–high clustering types in summer, the clustering
types were evenly distributed throughout the study area, whereas the insignificant ones
in autumn occupied most of the area, with some clusters located at the edge of the study
area. The cluster distribution in 2022 was similar to that in 2019, with spring and winter
being the most similar. In summer, the northern cluster shifted from an insignificant to a
high–low cluster, whereas the northern region shifted from a high–low to a low–low cluster
in autumn.

4.3. Spatiotemporal Gravity Analysis of the Night Land Surface Temperature

In this study, the coupling coordination model was used to extract the second eval-
uation unit, and the coupling coordination between nighttime light brightness and LST
values was explored. The first evaluation unit of the coordination part was extracted as
the second evaluation unit and the LST gravity value of the second evaluation unit was
calculated, with the high gravity value as the main focus of the study.
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Figure 7 shows the spatiotemporal distribution of the high-gravity LST in spring. The
high gravity values in spring showed certain differences in their spatial and temporal
dimensions. In 2013, high-gravity values did not appear in the northern region of the
Henan Province but were more densely distributed in the western and southern regions,
mainly at the junction of Pingdingshan City, Zhumadian and Nanyang City, and Xinyang
City. In 2016, high-gravity values gradually shifted to the north and appeared as high-
density distributions in Xinxiang, Jiaozuo, Hebi City, and other places. High-gravity value
densities in Zhumadian, Nanyang, and Xinyang gradually decreased. The high-gravity
values in 2019 were mainly distributed in Pingdingshan, Xinxiang, Jiaozuo, and Kaifeng
as well as around Shangqiu City. The distribution of high-gravity values in 2022 was
relatively balanced. Except for Luoyang, Sanmenxia, and Zhengzhou, which had lower
values, the prefecture-level cities had higher or lower gravity values. The two ends of
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the springtime nodes were located at extremely high and extremely low temperatures for
the entire year’s LST. At the same time, they were in the transitional season of vegetation
presence to absence. Such geographical features and climate can lead to differences in the
gravity of LST. Except for the significant spatial differences in 2013, high-gravity values in
the other years were mostly evenly distributed.
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Figure 8 shows the spatiotemporal distribution of the high-gravity LST in summer.
The distribution of high-gravity values in summer was denser than that in spring. In
2013, a very high distribution density was observed from Anyang City to the southwest,
with the overall distribution in the east being sparser than in the west. The high-gravity
value distribution in 2016 was mainly centered around Zhengzhou City, spreading towards
cities such as Pingdingshan, Jiaozuo, Xinxiang, and Jiyuan. In addition, small areas with
a high-gravity value distribution also appeared in cities such as Zhumadian, Zhoukou,
and Shangqiu, and the distribution of high-gravity values was denser in 2019 than in 2016.
Zhengzhou and Pingdingshan City had high-gravity values that pulled each other and
became dense centers. The distribution of high-gravity values in the northern region of
the Henan Province was wider and denser. The distribution of high-gravity values in 2022
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was generally sparse compared with other years, with an increase in high-gravity values
in the southern region. Summer is the hottest season of the year and the LST reached its
highest value at night. The distribution density of high-gravity values showed a clear
upward trend. In addition, because of prolonged sunlight and strong solar radiation,
the distribution density of high-gravity values was more prominent in areas with dense
human activity. However, over the years, the distribution density of high-gravity values
decreased, which may be related to the deep governance of the ecological environment by
the local government.
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Figure 9 shows the spatiotemporal distribution of the high-gravity LST in autumn.
Compared with summer, the density distribution of high-gravity values decreased signifi-
cantly in autumn. In 2013, the primary core distribution in Zhengzhou disappeared. High-
gravity values were mainly observed in Xinxiang, Jiyuan, Jiaozuo, Shangqiu, Pingdingshan,
and other cities. Notably, the high-density distribution of high-gravity values also appeared
in the western region of Sanmenxia City. In 2016, the distribution of high-gravity values
was the lowest, appearing only sporadically in some areas of cities such as Anyang, Jiyuan,
Jiaozuo, Pingdingshan, and Luohe. In 2019, the distribution of high-gravity values grad-
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ually recovered. Simultaneously, the high-gravity density centered around Zhengzhou
City reappeared, and many high-gravity values were distributed in the northern region of
the Henan Province. The high-gravity value distribution density in 2022 shifted towards
sparsity and presented a uniform distribution. The nighttime LST showed a downward
trend in autumn, which was much lower than the high-temperature heat waves in summer.
The solar radiation and sunlight were significantly reduced and the distribution of high-
gravity values of LST decreased, especially in late autumn at the transition to winter. The
significant decrease in the nighttime LST also affected the overall high-gravity distribution
of the LST in autumn.
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Figure 10 shows the spatiotemporal distribution of the high-gravity LST in winter. The
distribution of high-gravity values in winter was denser than that of spring and autumn. In
2013, high-density values were mainly distributed at the junction of Pingdingshan, Xuchang,
and Zhengzhou City, whereas other high-gravity values were scattered in the Henan
Province. The distribution of high-gravity values in 2016 and 2019 was relatively similar and
evenly distributed in the study area. The high-gravity densities of Pingdingshan, Xuchang,
Zhengzhou, and other cities maintained their peak values. Although the distribution of
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high-gravity values in 2022 was relatively uniform, the distribution of high-gravity values
gradually became discrete. Due to the relatively low impact of clouds and air humidity on
winter solar radiation, the LST decreased. In addition to factors such as sunlight and solar
radiation, weather changes, such as snowfall and frost, were also observed. Although the
distribution density of the high-gravity values was high, the overall gravity value was low,
which was closely related to the overall decrease in the LST.
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According to the above results and analysis, the spatiotemporal gravity distribution of
LST showed very large differences, and the spatiotemporal gravity distribution at most
time nodes demonstrated an aggregation distribution. From the temporal perspective,
combined with the evolutionary direction of night light, we know that with the continuous
acceleration of urbanization in Henan Province from 2013 to 2022, great changes in pop-
ulation, economy, and environment [40] will inevitably lead to changes in the gravity of
LST. From the seasonal perspective, the difference between the four seasons is not only an
alternate evolution to that of time. The transition of the seasons causes certain changes in
vegetation, water, animal activities, and ecology [41], which also affect LST.
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5. Discussion and Conclusions
5.1. Discussion

In this study, daily nighttime lighting and LST data and seasonal data were selected
and fused according to the division of the four seasons into 24 solar terms, completing
in-depth data mining. In this study, we proposed and applied the suitable analysis–
coordination–gravity research framework. We fused the daily data to make relevant
research on LST accurate at the daily scale, which has practical and theoretical significance.
The LST is an important parameter in ecological processes such as climate [42], environ-
ment [43,44], resource management [45], and urban construction [46,47], and is closely
related to humans. A reasonable analysis of the spatiotemporal evolution of LST gravity can
facilitate the sustainable development of the ecological environment. In addition, the focus
of this research was placed on high-gravity changes in the LST in areas with high nighttime
lighting brightness values. These areas have a significant effect on high-temperature heat
waves in cities and rural areas. Studying their seasonal evolution can provide guidance to
better control the LST as well as develop ideas for research on the heat island effect and
thermal environment.

In this study, only the spatiotemporal gravity law of the nighttime LST was discussed,
and factors influencing of the LST spatiotemporal gravity were not considered. However,
these factors can be used to analyze the urban heat island effect, which has a significant
effect on species distribution, ecological adaptation, and climate change. In addition, the
gravity mining of LST is not deep enough. Due to the limited scope of this study, the gravity
of LST in each year is not explored, which may lead to the neglect of some evolutionary
laws. In future research, we aim to determine the factors affecting the LST gravity and pay
more attention to the study of longer time series, so as to provide guidance for government
decision-making, resource management and environmental management.

5.2. Conclusions

In this study, we utilized daily LST and nighttime light data in combination with
the analysis–coordination–gravity research framework to explore the spatiotemporal and
gravitational evolutionary laws of the LST in the Henan Province in 2013, 2016, 2019,
and 2022. We focused on areas with high brightness values that had high coupling and
coordination with the LST. The high-temperature heat waves generated in this area were
particularly severe. The results can be summarized as follows:

(1) The high brightness values of nighttime lights had a larger distribution area in 2013,
2019, and 2022, with a larger deviation in the winter of 2013–2016 and a smaller
deviation in the autumn of 2019–2022. The deviation direction also significantly
varied in different seasons, except for spring and summer.

(2) The distribution of the LST under the first evaluation unit was not randomized and
presented a positive autocorrelation with a 99.9% confidence interval. Moran’s I values
in winter were greater than 0.5. The local spatial autocorrelation results indicate that
clustering was mainly distributed at the northern and southern ends of the Henan
Province. Close to the more developed Zhengzhou City, only four nodes showed a
clustering distribution.

(3) The distribution of high-gravity values showed a differentiated pattern across different
years and seasons. Because of seasonal differences, the LST is influenced by multiple
factors such as solar radiation, sunlight, and rainfall. The distribution of high-gravity
values was relatively dense in summer, whereas in the milder seasons of spring and
autumn it showed a uniform distribution in most years. The distribution in winter
appeared to be denser than that in spring and autumn; however, the overall gravity
value was relatively low.

In addition to the connection of population, policy and economy among regions,
the correlation between thermal environment and LST cannot be ignored. To control the
harm caused by the heat island effect at the provincial level, further consideration of the
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evolutionary process of LST across seasons and time is necessary. In addition to its own
heat, the attraction among LST must be considered. These research results are of great
significance for a deeper understanding of the relationship between nighttime brightness
changes and the LST and provide a scientific basis and decision-making support for urban
planning and environmental management.
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