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Abstract: Previous studies of vegetation dynamics in the Yellow River Delta (YRD) predominantly
relied on sparse time series or coarse-resolution images, which not only overlooked the rapid
and spatially heterogeneous changes, but also limited our understanding of driving mechanisms.
Here, employing spatiotemporal data fusion methods, we constructed a novel fused enhanced
vegetation index (EVI) dataset with a high spatiotemporal resolution (30-meter and 8-day resolution)
for the YRD from 2000 to 2020, and we analyzed the vegetation variations and their driving factors
within and outside the YRD Nation Natural Reserve (YRDNRR). The fused EVI effectively captured
spatiotemporal vegetation dynamics. Notably, within the YRDNRR core area, the fused EVI showed
no significant trend before 2010, while a significant increase emerged post-2010, with an annual
growth of 7%, the invasion of Spartina alterniflora explained 78% of this EVI increment. In the YRDNRR
experimental area, the fused EVI exhibited a distinct interannual trend, which was characterized
by an initial increase (2000–2006, p < 0.01), followed by a subsequent decrease (2006–2011, p < 0.01)
and, ultimately, a renewed increase (2011–2020, p > 0.05); the dynamics of the fused EVI were mainly
affected by the spring runoff (R2 = 0.71), while in years with lower runoff, it was also affected by
the spring precipitation (R2 = 0.70). Outside of the protected area, the fused EVI demonstrated a
substantial increase from 2000 to 2010 due to agricultural land expansion and human management
practices, followed by stabilization post-2010. These findings enhance our comprehension of intricate
vegetation dynamics in the YRD, holding significant relevance in terms of wetland preservation and
management.

Keywords: vegetation variations; spatiotemporal heterogeneity; remote sensing; fusion; Yellow
River Delta

1. Introduction

Estuarine wetlands, which form through the dynamic interaction between riverine and
coastal processes, represent a distinctive ecosystem with profound implications for coastal
defense, carbon sequestration, climate regulation, and habitat provisioning [1–3]. However,
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the structures and functioning of rapidly evolving estuarine wetland ecosystems face
severe degradation risks resulting from the influences of climate change and anthropogenic
activities [4–6]. Therefore, it is crucial to acquire a comprehensive understanding of the
spatial–temporal characteristics of vegetation variations and their dominant driving factors
in the estuarine wetlands, as they play vital roles in wetland ecological restoration and
sustainable development efforts.

Vegetation is the fundamental basis of ecosystem services and functions, and its dy-
namics act as a sensitive indicator of ecosystem conditions, being closely related to climate
change, hydrological conditions, and human activities [7]. In recent years, the rapid de-
velopment of remote sensing technology has led to it becoming the primary approach
used to study wetland evolution processes and patterns. Several studies have investigated
land use cover and changes in wetlands [8–10], and these studies have successfully iden-
tified changes in wetland vegetation types; however, they are limited in their ability to
capture variations in vegetation growth conditions. There are also studies concentrating
on estimating wetland vegetation biomass [11,12], simulating wetland productivity and
carbon dynamics [13,14], etc. However, regarding the rapidly evolving estuarine wetland
ecosystems, the majority of studies still rely on two-phase or sparse time series satellite-
based data to analyze vegetation variations [15–17], which leads to temporal and spatial
discontinuity, as well as limited accuracy, in current investigations of estuarine wetland
vegetation dynamics.

The comprehensive and accurate monitoring of large-scale and rapidly changing
ecosystems heavily relies on the availability of satellite-based data with simultaneously
high spatial and temporal resolutions [18,19]. However, due to the inherent trade-offs
among pixel size, swath width, and the presence of cloud contamination, it remains a
challenge to acquire a single satellite sensor that can provide a dense and fine-scaled time
series of remote sensing data [20,21]. Currently, satellite-based data can be categorized into
two groups: the first group comprises satellites that provide frequent coverage at intervals
of 1–2 days, albeit with coarse spatial resolution (e.g., MODIS, with spatial resolution
ranging from 250 m to 1 km); the second group consists of satellites with fine spatial
resolutions in the range 10–30 m, such as Landsat and HJ-1, but they have longer revisit
intervals and are susceptible to cloud and precipitation interference [22]. The continuous
and precise monitoring of estuarine wetland vegetation cannot be achieved using a single
satellite dataset.

The spatiotemporal data fusion method enables the generation of synthesized images
with high-spatial resolution images at frequent intervals by blending two types of data [22],
thereby overcoming limitations and enabling the fine-scale monitoring of vegetation dy-
namics in terrestrial ecosystems [23–25]. Traditionally, spatiotemporal data fusion methods
can be broadly categorized into three categories: weighted function-based, unmixing-based,
and dictionary-pair learning-based methods [22]. Although these approaches enhanced the
spatial and temporal resolution of fused remote sensing data [18,26], these methods still
face challenges in terms of dealing with complex land cover types [26,27]. Recently devel-
oped methods have improved fused data accuracy. For example, an integrated approach
combining deep learning with a variational model outperforms mainstream models in
terms of overall fusion accuracy [28]; a framework integrating spatial, temporal, and spec-
tral fusion data accommodates multisource observation fusion to overcome sensor number
limitations [29]; the degradation-term constrained spatiotemporal fusion network (DSTFN)
showed the strong generalization required to deal with land cover change [30]; the flexible
spatiotemporal data fusion (FSDAF) method could both preserve more detailed spatial
information and closely capture reflectance changes caused by land cover conversions [22].
These novel fusion methods facilitate high-resolution remote sensing monitoring for areas
with complex land cover changes.
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The Yellow River Delta (YRD) wetland, which is characterized by rapid environmental
and ecosystem changes, is considered to be the youngest, most representative, and most
intact estuarine wetland ecosystem in the temperate zone of China [4,31]. The Chinese
Government released the “Outline of Ecological Protection and High-quality Development
Plan for the Yellow River Basin” report in 2021. As the green ecological corridor of the
lower reaches of the Yellow River, the Yellow River Delta has garnered considerable
attention. Recently, numerous studies have been conducted to explore the dynamics of
wetlands and driving factors of wetland change in the YRD [7,32–35]. Climate features play
dominant roles in influencing the seasonal variations in vegetation cover [36], temperature
predominantly governs vegetation growth during the spring and autumn seasons in the
YRD, and runoff plays a crucial supplementary role in plant growth, especially in regions
near rivers in which drought surpasses a certain threshold [7]. Meanwhile, under the
influence of human activities, the wetland area has undergone a sequence of reduction,
followed by expansion [37,38]. The expansion of cultivated land primarily encroaches
upon the core wetland areas, while urban development predominantly disrupts wetland
connectivity [37]. Furthermore, the invasion of Spartina alterniflora has significantly altered
the mitigation of coastal erosion, led to the severe degradation of the local ecosystem, and
weakened the carbon storage capacity of the coastal wetlands [4,31,39,40]. However, the
dominant factors driving wetland changes vary across different periods and are not yet
well understood, as few studies have investigated the changes in the dominant factors [41].
A comprehensive understanding of wetland vegetation patterns and their drivers is crucial
for performing ecological evaluation and wetland restoration [42].

Therefore, this study focuses on the following objectives: (a) constructing and vali-
dating a high-spatiotemporal resolution (8-day temporal resolution and 30-meter spatial
resolution) remote sensing vegetation index dataset; (2) analyzing the interannual spa-
tiotemporal patterns of vegetation dynamics in the YRD estuarine wetlands from 2000 to
2020; and (3) identifying the primary driving factors of vegetation variations in different
regions of the YRD. This study could improve our understanding of the complex dynamics
of vegetation in the YRD, and the approach adopted in this study can offer valuable insights
for the study of vegetation dynamics in estuarine wetlands at a global level.

2. Materials and Methods
2.1. Study Area

The YRD is located in North China (Figure 1, 118◦30′E–119◦30′E, 37◦30′N–38◦10′N)
and serves as the estuary of the Yellow River, which is the second longest river in China. The
YRD falls within the temperate monsoon climate region, which is characterized by distinct
seasons and concurrent rain and heat. The average annual temperature is approximately
12 ◦C, while the annual precipitation rate ranges from 530 to 630 mm. Wetland vegetation
is widely distributed along a gradient.

In 1992, the Chinese Government established the Yellow River Delta National Nature
Reserve (YRDNNR) to protect the YRD estuarine wetland ecosystem, which covers an
area of 1530 square km. The reserve consists of a core area (COR), a buffer area (BUF),
and an experimental area (EXP) (Figure 1b). The core zone is distributed around both
new and old estuaries of the Yellow River, and access by any individual or organization is
strictly prohibited. The buffer zone surrounds the core zone, while the experimental zone is
situated around the core and buffer zones, allowing scientific research, surveys, education,
practical activities, visits, and tourism to take place [15].
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Figure 1. The geographic location of the Yellow River Delta: (a) the geographical position of the
Yellow River Delta (YRD) in China; (b) the spatial distribution map of the Yellow River Delta National
Nature Reserve (YRDNRR); (c) the vegetation distribution map of the YRD.

2.2. Data and Preprocessing
2.2.1. Remote Sensing Data

(1) MODIS

The MOD09A1 data were utilized to monitor the long-term vegetation dynamics.
The data were downloaded from the National Aeronautics and Space Administration
(https://ladsweb.modaps.eosdis.nasa.gov/search/, accessed on 1 January 2022), having
a spatial resolution of 500 × 500 m and temporal resolution of 8 days. Several vegetation
indices, namely the enhanced vegetation index (EVI), normalized difference vegetation
index (NDVI), modified normalized difference water index (mNDWI), and land surface
water index (LSWI), were computed to reflect the dynamics of wetland ecosystems. These
indices allowed us to assess the vegetation dynamics and water distribution in the study
area over an extended period. This study employed all available MOD09A1 data generated
from 2000 to 2020.

EVI = 2.5× ρnir − ρred
ρnir + 6× ρred − 7.5× ρblue + 1

, (1)

NDVI =
ρnir − ρred
ρnir + ρred

, (2)

mNDWI =
ρgreen − ρswir

ρgreen + ρswir
, (3)

LSWI =
ρnir − ρswir
ρnir + ρswir

, (4)

where ρnir, ρred, ρblue, ρgreen, and ρswir represent the surface reflectance of near infrared,
red, blue, green and shortwave infrared wavelengths, respectively.

https://ladsweb.modaps.eosdis.nasa.gov/search/


Remote Sens. 2023, 15, 4332 5 of 22

We utilized ENVI 5.6, which is a widely recognized software used to perform im-
age processing and analysis [43], to create a new dataset comprising four spectral bands
(i.e., EVI, NDVI, mNDWI, and LSWI).

(2) Landsat

Landsat 5 TM and Landsat 8 OLI data were utilized to portray the spatial hetero-
geneity of the vegetation distribution. We utilized Landsat data with a path number
of 121 and row number of 34. The data were downloaded from the Geospatial Data
Cloud (https://www.gscloud.cn, accessed on 1 January 2022); the spatial resolution was
30 × 30 m, and the revisit interval was 16 days. However, due to the influences of cloud
cover, precipitation, and aerosols, the availability of usable data was very limited. We
selected cloud-free or minimally cloudy data from Landsat 5 TM and Landsat 8 OLI sensors
generated between 2000 and 2020. A total of 44 scenes were meticulously chosen (Table 1).
To ensure the integrity of the study, we made every effort to guarantee the availability of
at least one usable data acquisition for each growing season. We performed radiometric
calibration and atmospheric correction using the Landsat data. The Landsat data were
used to calculate the EVI, NDVI, mNDWI, and LSWI. The four indices were then used to
generate a new dataset using ENVI software.

Table 1. The Landsat data used in this study.

ID Data Source Data ID Data Source Data
1 Landsat5 TM 20 February 2000 23 Landsat5 TM 27 January 2009
2 Landsat5 TM 11 June 2000 24 Landsat5 TM 19 May 2009
3 Landsat5 TM 4 December 2000 25 Landsat5 TM 4 June 2009
4 Landsat5 TM 30 June 2001 26 Landsat5 TM 14 January 2010
5 Landsat5 TM 8 January 2002 27 Landsat5 TM 7 June 2010
6 Landsat5 TM 21 September 2002 28 Landsat5 TM 2 February 2011
7 Landsat5 TM 12 February 2003 29 Landsat5 TM 22 March 2011
8 Landsat5 TM 7 August 2003 30 Landsat5 TM 7 June 2011
9 Landsat5 TM 15 February 2004 31 Landsat8 OLI 3 September 2013

10 Landsat5 TM 10 September 2004 32 Landsat8 OLI 25 January 2014
11 Landsat5 TM 28 October 2004 33 Landsat8 OLI 14 March 2014
12 Landsat5 TM 16 January 2005 34 Landsat8 OLI 12 January 2015
13 Landsat5 TM 12 August 2005 35 Landsat8 OLI 5 June 2015
14 Landsat5 TM 15 October 2005 36 Landsat8 OLI 27 October 2015
15 Landsat5 TM 4 February 2006 37 Landsat8 OLI 30 December 2015
16 Landsat5 TM 16 September 2006 38 Landsat8 OLI 3 March 2016
17 Landsat5 TM 7 February 2007 39 Landsat8 OLI 20 January 2018
18 Landsat5 TM 17 July 2007 40 Landsat8 OLI 31 July 2018
19 Landsat5 TM 13 March 2008 41 Landsat8 OLI 23 January 2019
20 Landsat5 TM 14 April 2008 42 Landsat8 OLI 19 August 2019
21 Landsat5 TM 20 August 2008 43 Landsat8 OLI 23 January 2020
22 Landsat5 TM 7 October 2008 44 Landsat8 OLI 20 July 2020

Tips: the 233rd day of 2008 was used to perform validation, while the remaining data were used to perform fusion.

(3) Remote Sensing Data Pre-Processing

To ensure the proper alignment of MODIS and Landsat data, a sequence of steps was
undertaken. Firstly, we resampled all MODIS images to a spatial resolution of 480 m using
the nearest neighbor method and reprojected MODIS data to the projection of Landsat.
Additionally, a Landsat image was resampled to match the 480-meter resolution of MODIS
using the pixel aggregate method. Subsequently, the resampled Landsat image was selected
as a reference to correct the MODIS data. This step involved cropping all MODIS images
based on the sampled Landsat, thereby ensuring that they possessed exactly the same
dimensions. Ultimately, the MODIS data were further resampled to a 30-meter resolution
using the nearest neighbor method. This series of procedures guaranteed uniform data

https://www.gscloud.cn
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size among inputs, with all MODIS pixels representing complete pixels containing 16 × 16
Landsat pixels.

2.2.2. Meteorological Data

This study employed the Chinese 1-kilometer resolution monthly precipitation dataset
and the 1-kilometer resolution monthly average temperature dataset to analyze the impact
of climate change on vegetation growth. The datasets were download from the A Big
Earth Data Platform for Three Poles platform (http://poles.tpdc.ac.cn/en/, accessed on
1 July 2022) [44,45]. To obtain a holistic perspective, the spatially averaged values were
calculated by aggregating the grid-based data specifically within the geographic bounds
of the YRD. This process facilitated the creation of a dataset encompassing the seasonal
average precipitation and temperature measurements, focusing on the period spanning
2000 to 2020.

2.2.3. Distribution Data of Spartina alterniflora

The spatiotemporal distribution data of Spartina alterniflora were obtained from the
Spatial–Temporal Dataset of Salt Marsh Vegetation in YRD (1999–2020) [46]. The data
were download from the Global Change Research Data Publishing and Repository plat-
form (https://geodoi.ac.cn/WebCn/doi.aspx?Id=1989, accessed on 1 May 2023). This
dataset incorporates optical data from 2068 scenes captured via Landsat TM/ETM/OLI
and Sentinel-2 MSI, as well as radar data from Sentinel-1 SAR. By leveraging the phenolog-
ical characteristics of salt marsh vegetation, a random forest algorithm was employed to
classify the typical salt marsh plant species. The spatial resolution of this dataset was 10 m.

2.2.4. Runoff Data

We employed monthly scale runoff data obtained from the Lijin Hydrological Station,
which were sourced from the Yellow River Conservancy Commission (http://www.yrcc.
gov.cn/, accessed on 1 January 2022). The Lijin Station is situated approximately 100 km
upstream from the estuary of the Yellow River.

2.2.5. Landcover Data

The land use and land cover data of the YRD (Figure 1c) were derived from the
Chinese coastal land use and land cover data [47], which were obtained through visual
interpretation of high-resolution Google Earth images [47].

2.3. Methods

The combination of the FSDAF method [22] and the time series linear fitting model
(TSLFM method) [19,48] enabled the fusing of Landsat and MODIS datasets. The FSDAF
technique produces fused images that exhibited higher accuracy and preserved more de-
tailed spatial information, especially in land use and cover change regions, than alternative
fusion methods [22]. The TSLFM method was effective at capturing the temporal dynamics
inherent in the MODIS dataset [19,48]. Firstly, we individually utilized the FSDAF and
TSLFM methods to calculate high-spatial resolution images for the YRD from 2000 to 2020.
Subsequently, we employed the time series characteristics of the images obtained through
the TSLFM method, as well as the spatial heterogeneity attributes acquired through the
FSDAF method, to generate the final fused vegetation index (Figure 2).

Within the framework of the spatiotemporal data fusion method, the input data
consisted of a set of images, namely a pair of coarse-(MODIS) and fine-resolution (Landsat)
images acquired at time t1, in addition to a single coarse-resolution image obtained at
time t2. The output data were predicted as fine-resolution images at time t2, which were
characterized by an enhanced spatiotemporal resolution, featuring a spatial resolution of
30 × 30 m and a temporal resolution of 8 days. The imaging schedules of MODIS and
Landsat were not concurrent. Given that we adopted Landsat data at time t1 as the baseline,
we opted for the nearest available MODIS image, in terms of acquisition date, to serve as

http://poles.tpdc.ac.cn/en/
https://geodoi.ac.cn/WebCn/doi.aspx?Id=1989
http://www.yrcc.gov.cn/
http://www.yrcc.gov.cn/
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the coarse-resolution dataset for time t1. Furthermore, it was essential that the acquisition
times of fine- and coarse-resolution images at t1 and t2 should be the differences. For the
time t1, a preference was accorded to the selection of images captured during the active
growth season and the period of peak vegetation. However, for time t2, non-growing
season data were typically chosen. In this study, all available MOD09A1 data from 2000 to
2020 were used, along with 45 Landsat images with minimal or no cloud cover (Table 1),
which were used as the reference data. Notably, this configuration of input data was critical
to the success of the FSDAF technique, as it enabled the algorithm to leverage the spatial
and temporal information present in the input data.
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2.3.1. FSDAF Method

The FSDAF methodology encompassed six key steps to effectively fuse remote sensing
data [22]. Here, we briefly outline the principal processes and relevant equations as follows:

(1) Classification of fine-resolution image

The initial step involved categorizing the fine-resolution image taken at time t1 to
assign distinct land cover classes. An unsupervised classifier was adopted for this purpose.

(2) Temporal dynamics estimation

The temporal dynamics for each land cover class within the coarse-resolution image
from t1 to t2 were estimated. The temporal alteration of a coarse pixel was computed as a



Remote Sens. 2023, 15, 4332 8 of 22

weighted summation of the temporal changes across all classes within it, as expressed by
the following equation:

∆C(xi, yi, b) = ∑l
c=1 fc(xi, yi)× ∆F(c, b), (5)

where (xi, yi) represents the coordinate index of the ith pixel, ∆C(xi, yi, b) represents the
change in the band value of the (xi, yi) coarse pixel between t1 and t2, ∆F(c, b) represent
the change in the band b value of class c at fine resolution between t1 and t2, f c(xi, yi)
represents the proportion of class c of the (xi, yi) coarse pixel, and i represents the index of a
coarse pixel;

(3) Prediction of fine-resolution image

By leveraging class-level temporal changes, the fine-resolution image at t2 was pre-
dicted, and residuals were calculated at each coarse pixel. This prediction relied solely
on the temporal change information, omitting any spatial considerations. The prediction
equation was formulated as follows:

FTP
2
(
xij, yij, b

)
= F1

(
xij, yij, b

)
+ ∆F(c, b), (6)

where FTP
2
(

xij, yij, b
)

represents the temporal prediction, and j represents the index of a fine
pixel within one coarse pixel, i.e., j = 1,. . ., m;

R(xi, yi, b) = ∆C(xi, yi, b)− 1
m

[
m

∑
j=1

FTP
2
(
xij, yij, b

)
−

m

∑
j=1

F1
(

xij, yij, b
)]

, (7)

where R(xi, yi, b) represents the distribution residual of fine pixels within a coarse pixel.

(4) Identify TPS interpolation to guide residual distribution

TPS serves as a spatial interpolation technique used to identify point data rooted in
spatial dependence [49]. The TPS interpolator was employed to distinguish between the
fine-resolution image and the coarse-resolution image at t2. The TPS equation is represented
as follows:

fTPS−b(x, y) = a0 + a1x + a2y +
1
2

N

∑
i=1

bir2
i logr2

i , (8)

where fTPS−b(x, y) represents the basic TPS function for band b of N known points. The
prediction of fine pixels is expressed as follows:

FSP
2
(
xij, yij, b

)
= fTPS−b

(
xij, yij

)
, (9)

(5) Distribute residuals to fine pixels

The distribution of the residuals from the temporal prediction to individual fine
pixels inside of each coarse pixel is the key step required to improve the accuracy of the
temporal prediction.

∆F
(

xij, yij, b
)
= m× R(xi, yi, b)×W

(
xij, yij, b

)
+ ∆F(c, b), (10)

where ∆F
(

xij, yij, b
)

represents the prediction of the total change in a fine pixel between t1
and t2, and W

(
xij, yij, b

)
represents the weight.

(6) Robust prediction of fine image using neighborhood

The robust prediction of the fine image is derived by considering neighboring infor-
mation. The essential equations for this process are as follows:

F2,FSDAF
(
xij, yij, b

)
= F1

(
xij, yij, b

)
+ ∑n

k−1 wk × ∆F(xk, yk, b), (11)
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wk = (1/Dk)/ ∑n
k−1(1/Dk), (12)

Dk = 1 +
√(

xk − xij
)2

+
(
yk − yij

)2/(w/2) , (13)

∆F
(
xij, yij, b

)
= r
(
xij, yij, b

)
+ ∆F(c, b), (14)

where F̂2
(

xij, yij, b
)

is the temporal prediction of the fine image at t2 based on the FSDAF
method; Dk is a relative distance ranging from−1 to 1, and w is the size of the neighborhood
(for more details, see Zhu et al. (2016) [22]).

2.3.2. TSLFM Method

The input data of the TSLFM method consisted of a set of MODIS and Landsat images
at time t1, along with a Landsat image at time t2, which were similar to those of the FSDAF
method. The output data were predicted as fine-resolution images at time t2. The FSDAF
methodology encompassed three key steps that effectively fused remote sensing data Here,
we briefly outline the principal processes and relevant equations:

(1) Extraction of pure pixels

The land cover data were resampled to exactly match the rows and columns of
the Landsat data. Then, based on the resampled land over data, each coarse-resolution
pixel was examined to determine whether it represented a pure pixel. If the land cover
type within the range of a coarse-resolution pixel was entirely consistent, the pixel was
considered to be a pure pixel.

(2) Construction of correlation function

We used formulated fitting equations to determine the average vegetation indices of
pure pixels of different vegetation types at times t1 and t2.

C2(l, b) = m× C1(l, b) + n, (15)

where m and n denote fitting parameters, l denotes various vegetation types, and C1 and
C2 denote the average vegetation indices of pure pixels of vegetation type l at times t1 and
t2, respectively.

(3) Prediction of fine image

Based on the fine pixel data at time t1 and using the fitting parameters m and n, we
calculated the values of fine pixels for different vegetation types at time t2:

F2,TSLFM(l, b) = m× F1(l, b) + n, (16)

where F1 and F2 represent the fine-resolution b band at times t1 and t2, respectively.

2.3.3. Integration of Simulation Results of FSDAF and TSLFM Methods

Finally, we integrated the temporal variation trends from the TSLFM simulation results
into the spatial heterogeneity information derived from the FSDAF simulation results to
generate the fused vegetation index data.

F2,Fused(l, b) = F2,TSLFM(l, b) + ∆F2,FSDAF(l, b), (17)

∆F2,FSDAF(l, b) = F2,FSDAF(l, b)− F2,FSDAF(l, b), (18)

where F2,Fused represents the finally fused fine-resolution image data, F2,TSLFM(l, b) repre-
sents the average value of the b band simulated via the TSLFM method at time t2, and
F2,FSDAF(l, b) represents the average value of the b band simulated via the FSDAF method
at time t2.
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2.4. Statistical Analysis

A piecewise linear regression (PLR) model [50,51] was employed to identify potential
EVI trends from 2000 to 2020. The PLR method is a well-known technique used to detecti
turning points in time-series data:

y =

{
β0 + β1t + εt t ≤ α

β0 + β1t + β2(t− α) + εt t > α
, (19)

where t is year in annual EVI; α is the visually estimated turning point of the time series
defining the timing of a trend change; β0, β1, and β2 are regression coefficients, with the
three regression coefficients being determined using the least squares linear regression; and
ε is the residual of the fit. A p value of less than 0.05 was considered to be significant.

The analysis of EVI trends was conducted using the linear least squares regression
method, allowing us to assess the slope of EVI changes at both the regional and pixel scales.
The determination coefficient (R2) was employed to assess the impact of various factors on
the EVI trend. A p value of less than 0.05 was considered to be significant.

3. Results
3.1. Spatial Pattern of Vegetation Variations

The annual average fused EVI in the YRD in 2020 is illustrated in Figure 3. The
regions along the banks of the Yellow River exhibited the highest EVI values, typically
exceeding 0.20, while the coastal regions displayed the lowest EVI values, which were
below 0.10 (Figure 3a). In the protected areas, the EVI values tended to be lower than
in the outside area (Figure 3b). Specifically, the core zone of the YRDNNR displayed the
lowest average EVI, having a value of 0.07 ± 0.02; the buffer zone showed slightly higher
EVI values, averaging approximately 0.10 ± 0.01. Notably, the experimental zone within
the protected area exhibited an annual average EVI of approximately twice that of the
core zone, reaching approximately 0.15 ± 0.02. Furthermore, the average EVI outside of
the protected zones closely resembled that of the experimental zone, being approximately
0.17 ± 0.02 (Figure 3b).
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Figure 3. (a) Spatial pattern of the annual average fused EVI of the YRD in 2020. (b) Mean EVI values
in different regions of the YRD in 2020. COR = core area, BUF = buffer zone; EXP = experimental
area; OUT = outside of the protected area.

3.2. The Temporal Trends of the Fused EVI

There was a remarkable improvement in the vegetation of the whole YRD from 2000
to 2020, as evidenced by a significant increase in the fused EVI. However, the trends of



Remote Sens. 2023, 15, 4332 11 of 22

EVI greatly vary between the core area, buffer zone, experimental area, and area outside
of the protected area in the YRDNNR. Specifically, the core area’s EVI did not exhibit
significant variation before 2010, while there was a rapidly increasing trend after 2010,
with an annual increase rate of 4.59 × 10−3 a−1 (p < 0.01), accounting for approximately
7% of the multiyear average core area’s EVI (Figure 4a). The experimental area’s EVI
exhibited a fluctuating pattern characterized by an initial increase, followed by a subsequent
decrease and, ultimately, a recovery with elevated values, with annual increasing rates
of 8.67 × 10−3 a−1 (p < 0.01) from 2000 to 2006, −6.28 × 10−3 a−1 (p < 0.01) from 2006 to
2011, and 1.62 × 10−3 a−1 after 2011 (Figure 4b). The variations in the EVI of the buffer
area were similar to those in the experimental area (Figure 4c). The area outside of the
protected area’s EVI experienced a rapid increasing trend from 2000 to 2010, having a value
of 5.08 × 10−3 a−1 (p < 0.01), while the trend stabilized after 2010 (Figure 4d).
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Figure 4. The interannual trends of the fused EVI in different areas of the YRD from 2000 to 2020:
(a) depicts the interannual variation trend of the EVI in the core area of the protected zone; (b) depicts
the interannual variation trend of the EVI in the experimental area of the protected zone; (c) depicts
the interannual variation trend of the EVI in the buffer area of the protected zone; (d) depicts the
interannual variation trend of the EVI outside of the protected zone. The dashed red line in the graph
depicts the linear regression line, while the grey straight line depicts the interannual division.
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We also investigated the spatial patterns of the interannual variations in the fused EVI
in the YRD from 2000 to 2020 (Figure 5). Approximately 58% of the study area showed
increasing EVI trends, with 25% of the area exhibiting a significant increasing trend. The
areas with significant EVI upward trends were mainly distributed in the Yellow River North
Estuary and outside of the YRDNNR. Meanwhile, approximately 19% of the study area
showed significant decreasing trends in the EVI; these subareas were mainly distributed in
the northern part of the YRD and the eastern coastal areas.
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3.3. The Driving Factors of Vegetation Variations in the YRD

Notable differences in vegetation trends were observed across various regions of the
YRD from 2000 to 2020, which were primarily attributable to several distinct driving factors.
The invasion of Spartina alterniflora has been identified as the predominant driver behind the
significant increasing trend in the EVI of the core area of YRDNNR since 2010. Following its
initial appearance in the Yellow River Estuary in 2010, the Spartina alterniflora invasion area
has expanded rapidly (Figure 6c). The distribution area of Spartina alterniflora substantially
overlapped with the areas of remarkable EVI increase (Figure 6a,b), and the distribution
area of Spartina alterniflora explained 78% of the fused EVI variations identified in the core
zone (Figure 6d). In different seasons, regions with significant increases in EVI were also
highly consistent with areas invaded by Spartina alterniflora (Figure 7).

Within the experimental area of the protected zone, the temporal dynamics of the fused
EVI were primarily influenced by variations in the spring runoff. Additionally, for years
characterized by lower spring runoff levels, the dynamics of the fused EVI were influenced
by the spring precipitation. Specifically, from 2000 to 2020, the temporal variations in the
spring runoff were consistent with those in the EVI, which were characterized by an initial
increase, followed by a subsequent decrease and, ultimately, a recovery with elevated
values, with annual increasing rates of 44.18 m3 s−1 a−1, −47.88 m3 s−1 a−1 (p < 0.01), and
48.78 m3 s−1 a−1 recorded from 2000 to 2006, from 2006 to 2011, and after 2011 (Figure 8a).
Meanwhile, the spring runoff is significantly positively correlated with the EVI of the
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experimental area from 2000 to 2020, recording a R2 value of 0.50 (p < 0.01) (Figure 9a). In
particular, for years with relatively lower spring precipitation, such as 2000, 2001, 2012, 2014,
2016, 2017, 2019, and 2020, when the spring precipitation was below 85 mm (Figure 8c),
the R2 between the spring runoff and EVI in the experimental area reached 0.71 (p < 0.01)
(Figure 8d). Additionally, this study revealed that there was no statistically significant
correlation (p > 0.05) between the spring precipitation and the EVI of the experimental area
from 2000 to 2020 (Figure 9b); however, in years with relatively low spring runoff levels,
such as 2000–2003, 2005, 2007, 2009–2011, and 2016, when the spring runoff was less than
200 m3 s−1 (Figure 8a), the experimental area’s EVI and the spring precipitation showed a
significant positive relationship, recording a coefficient of determination of 0.70 (p < 0.01)
(Figure 8b).
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to 2020, (b) the distribution frequency of Spartina alterniflora since 2010, (c) the distribution area of
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The significantly increasing trend of the EVI outside of the protected area from 2000
to 2010 was primarily driven by the expansion of farmland and the rapid increase in the
EVI per unit area (Figure 10). Specifically, during this period, the farmland area rapidly
expanded, having a notable increase of 31%. Meanwhile, the fused EVI per unit area of
farmland increased at an average annual rate of 6.48 × 10−3 a−1 (p < 0.01). However, both
the area of farmland and the EVI per unit area remained relatively stable after 2010, leading
to the relative stability of the EVI outside of the protected area.
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Figure 8. (a) The interannual trends of the spring runoff in the YRD from 2000 to 2020, with a
focus on years with runoff of less than 200 m3 s−1 (shaded area). (b) The correlation between the
spring precipitation and the experimental area’s EVI, specifically for years with runoff of less than
200 m3 s−1. (c) The interannual trends of the spring precipitation in the YRD from 2000 to 2020, with
a focus on years with precipitation of less 85 mm (shaded area). (d) The relationships between the
spring runoff and the experimental area’s EVI for years with precipitation of less than 85 mm.
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4. Discussion
4.1. Accuracy of the Fused Data

Generating high-quality and high-spatial–temporal resolution satellite-based data
is essential when investigating vegetation variations in estuarine wetlands. The FSDAF
method utilized in this study integrates the unmixing-based method and the concept of
STARFM into a unified framework; meanwhile, the FSDAF method could adaptively select
coarse pixels related to each endmember, which contain similar land cover types, to preserve
more spatial information in the predicted high-resolution images [22]. Additionally, the
TSLFM methods were employed to correct the temporal variations in the simulated results
obtained via the FSDAF method. The TSLFM method utilizes linear regression techniques
to accurately capture the temporal variation information of low-spatial resolution data [48].
We validated the accuracy of the fused EVI in terms of capturing the spatiotemporal
variations in vegetation in the Yellow River Delta based on Landsat and MODIS data.

The spatial distribution patterns of Landsat, fused, and MODIS EVIs were compared
in the YRD on around day 233 of 2008 (Figure 11). The spatial distribution patterns of
these three datasets were remarkably similar. Specifically, the regions along the banks
of the Yellow River exhibited the highest EVI values, surpassing 0.5, while the coastal
regions displayed the lowest EVI values, being below 0.2. Furthermore, we investigated the
relationships between Landsat and fused EVIs at the pixel scale (Figure 11d). The results
showed a significant correlation between the two factors (p < 0.01), recording a coefficient
of determination of 0.92 and an RMSE of 0.05. The RMSE accounted for approximately
15.36% of the mean EVI values in the whole YRD.

This study also compared the three datasets to evaluate their capacity to capture
fine-scale vegetation spatial patterns (Figure 12). Due to the spatial resolution constraint,
MODIS EVI data cannot provide sufficient detailed information to accurately reflect the
spatial heterogeneity in vegetation conditions at a small scale (Figure 12c). Conversely,
the fused EVI data exhibited excellent spatial details, allowing the delineation of field
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boundaries, roads, river distributions, and other small-scale features (Figure 12b). The
spatially resolved information conveyed by the fused EVI data had strong consistency with
that derived from Landsat EVI (Figure 12a), attesting to its efficacy in capturing intricate
spatial nuances.
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the 233rd day of 2019. Latitude: 37◦44′8.63′′–37◦52′53.24′′; longitude: 118◦52′2.29′′–119◦0′47.73′′).
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The interannual and seasonal variations between the fused EVI and MODIS EVI
are compared in Figure 13. At the interannual scale, both the fused EVI and MODIS
EVI exhibited a statistically significant increasing trend (p < 0.01), and the vegetation
growth rates were 1.8 × 10−3 and 1.9 × 10−3, respectively, which suggested a consistent
increase in vegetation productivity over time (Figure 13a1). Meanwhile, a strong and
significant correlation between the two fused EVI and MODIS EVI, with a coefficient of
determination of 0.95 and an RMSE of 5.2 × 10−3, accounted for approximately 3.52%
of the average annual EVI (Figure 13a2). At the seasonal scale, the fused EVI, MODIS
EVI, and Landsat EVI demonstrated unimodal patterns, which were characterized by a
peak in vegetation productivity (Figure 13b1). Specifically, the highest average EVI values
were observed within the period ranging from the 200th to the 260th day, with values
reaching approximately 0.25. Meanwhile, the EVI values were comparatively lower, falling
below 0.10 during the period ranging from 0 to 100 days. Furthermore, their daily-scale
relationship indicated a strong and significant correlation, with a R2 of 0.98 and an RMSE
of 10.4 × 10−3, accounting for approximately 7.04% of the average daily EVI (Figure 13b2).
In addition, the Fused EVI and Landsat EVI exhibited a strong correlation (p < 0.01), with
a R2 of 0.94 and a RMSE of 10.4 × 10−3. These results demonstrate that the fused dataset
not only enhances the spatial representation of details in remote sensing-based vegetation
monitoring, but also effectively captures the dynamics of vegetation change processes. This
study demonstrated that the fused data successfully captured the vegetation variations in
the YRD, which supports past vegetation dynamic studies of estuarine wetlands.
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nual trends of the fused EVI and MODIS EVI in the YRD from 2000 to 2020; (a2) the relationships
between the annual fused EVI and MODIS EVI in the YRD from 2000 to 2020; (b1) the seasonal
variations in the fused EVI, MODIS EVI, and Landsat EVI of the multiyear average EVI; (b2) the
relationships between the seasonal fused EVI and seasonal MODIS EVI, as well as between the
seasonal fused EVI and seasonal Landsat EVI. The dashed lines in the graph represent the linear
regression lines.

4.2. Driving Factors of Vegetation Dynamics

The estuarine wetlands of the YRD exhibited an overall increasing trend in the EVI, and
the dominant factors significantly varied across different regions. For the core area of the
YRDNNR, the increasing EVI was primarily driven by the invasion of Spartina alterniflora.
Spartina alterniflora, originating from North America, is widely regarded as one of the most
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detrimental invasive species in several regions [52]. The invasion of Spartina alterniflora in
the YRD may date to 1989, when it was initially brought from Fujin Province with the aim of
protecting the fragile and muddy coast from erosion caused by tides and ocean currents [53].
Spartina alterniflora predominantly thrives in the lower intertidal zone, colonizing areas
in which most local plant communities cannot survive [54,55]. After a prolonged latency
period, the invasive range of Spartina alterniflora exhibited rapid expansion after 2010 [39,40].
Data provided by the Lijin Hydrological Station (the nearest hydrological station to the
YRD) indicate that in 2010 and 2013, the Yellow River underwent water and sediment
diversion activities, which led to a significant deposition of sediment in the Yellow River
Delta, resulting in a substantial increase in the area of the Spartina alterniflora community on
the northern bank of the Yellow River estuary [31]. The expansion resulted in a significant
increase in the EVI within the invaded areas and positively contributed to coastal protection.
However, it also resulted in significant degradation of the local ecosystem and brought
forth a multitude of adverse effects [56].

The interplay between the spring runoff and the spring precipitation played a cru-
cial role in shaping the vegetation trends within the experimental area. The vegetation
in the YRD is strongly influenced by groundwater depth and salinity gradients [57,58].
Freshwater inflow has a significant impact on water and salt regulation, thereby affecting
plant communities and vegetation dynamics [59,60]. Previous studies have indicated that
vegetation NDVI in the YRD is higher in areas closer to the river channel [36]. In years
in which the spring runoff was abundant, it acted as the main driving force behind the
variations in fused EVI, with higher runoff levels generally correlating with increased
vegetation productivity. Spring is characterized by relatively low precipitation, accounting
for only 15% of the total annual precipitation, making runoff an important water source for
vegetation growth, especially when precipitation is scarce. In years with less pronounced
spring runoff, the influence of the spring precipitation became more pronounced, and the
vegetation response showed a strong positive correlation with the amount of precipitation
during this period. These findings highlight the complexity of vegetation dynamics within
the protected zone and underscore the significance of both the spring runoff and the spring
precipitation as key determinants of vegetation productivity. Understanding the interactive
effects of these hydrological factors can contribute to the performance of more accurate and
comprehensive assessments of ecosystem dynamics in the study area.

Human activities dominated the vegetation changes outside of the YRDNNR. In
recent years, the YRD has experienced a substantial increase in human activities and
the expansion of artificial landscapes, and anthropogenic influence has emerged as a
primary driver of ecosystem transformations [15]. Notably, during the 2000s, there was
a rapid expansion of agricultural land in the YRD, which was facilitated via effective
irrigation management, resulting in a notable increase in the maximum vegetation index
during the growing season [36]. In November 2009, the State Council of the People’s
Republic of China approved the “Development Plan for a High-Efficiency Ecological and
Economic Zone in the Yellow River Delta,” highlighting the pivotal significance of ecological
construction and environmental protection. This development led to a diminishing trend
in the expansion of agricultural land, eventually resulting in the reduction in the total
farmland area. Meanwhile, the hydrological connectivity in the YRD had a gradually
increased in recent years [61]. Human activities play a significant role in influencing the
vegetation dynamics changes in the Yellow River Delta.

Additionally, a considerable conversion of natural wetlands and grasslands located
outside of the reserve into artificial wetlands has led to a significant decline in the vegetation
index in coastal regions (Figure 14).

There were also limitations in this study, such as the absence of on-site data validation
and an insufficient understanding of driving factors. In further studies, we will conduct
field data sampling to determine changes in vegetation biomass and productivity. Simulta-
neously, we will integrate factors like soil salinity and hydrological connectivity to delve
deeper into the mechanisms driving the vegetation dynamics.
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Figure 14. The land use and land cover changes in the YRD from 2000 to 2020. (a,b) show the land
cover and land use in 2000 and 2020, respectively. (c) indicates the newly added areas of each land
use type. Furthermore, climate change played a significant role in the vegetation variations observed
in the YRD. Previous research has indicated that temperature is a key driving factor for spring
and autumn vegetation growth, while precipitation is an important hydrological factor affecting
vegetation growth, besides the impact of runoff [7]. This study demonstrates the enormous potential
of multisource remote sensing data fusion methods for the monitoring of vegetation changes in
estuarine wetlands. The research methodology can be applied in global and regional estuarine
wetlands, as well as areas with complex land surface coverage.

5. Conclusions

This study integrated the FSDAF and TSLFM methods to construct a novel fused EVI
dataset with a high spatiotemporal resolution and analyzed the variations in the vegetation
dynamics and their driving factors within and outside of the YRDNRR from 2000 to 2020.
The main conclusions were as follows:

(1) In the core area of the YRDNRR, the fused EVI did not exhibit a significant trend
before 2010, while a notable increasing trend was observed after 2010, with an annual
increase of 7%; the invasion of Spartina alterniflora was identified as the primary
driving factor, explaining 78% of the EVI increment.

(2) In the experimental area of YRDNRR, the fused EVI showed a distinct interan-
nual trend characterized by an initial increase (2000–2006, p < 0.01), followed by
a subsequent decrease (2006–2011, p < 0.01) and, ultimately, a renewed increase
(2011–2020, p > 0.05); the dynamics of fused EVI were mainly affected by the spring
runoff (R2 = 0.71), while in years with lower runoff, they was also affected by the
spring precipitation (R2 = 0.70).

(3) Outside of the protected area, the fused EVI demonstrated a substantial increase
from 2000 to 2010 due to the expansion of agricultural land and human management
practices, followed by stabilization after 2010.

This study has not only enhanced our understanding of the complex vegetation dy-
namics in the YRD, but also has implications for vegetation dynamics research in estuarine
wetlands worldwide.
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