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Abstract: Automatically extracting water bodies is a significant task in interpreting remote sensing
images (RSIs). Convolutional neural networks (CNNs) have exhibited excellent performance in
processing RSIs, which have been widely used for fine-grained extraction of water bodies. However,
it is difficult for the extraction accuracy of CNNs to satisfy the requirements in practice due to
the limited receptive field and the gradually reduced spatial size during the encoder stage. In
complicated scenarios, in particular, the existing methods perform even worse. To address this
problem, a novel boundary-guided semantic context network (BGSNet) is proposed to accurately
extract water bodies via leveraging boundary features to guide the integration of semantic context.
Firstly, a boundary refinement (BR) module is proposed to preserve sufficient boundary distributions
from shallow layer features. In addition, abstract semantic information of deep layers is also captured
by a semantic context fusion (SCF) module. Based on the results obtained from the aforementioned
modules, a boundary-guided semantic context (BGS) module is devised to aggregate semantic
context information along the boundaries, thereby enhancing intra-class consistency of water bodies.
Extensive experiments were conducted on the Qinghai–Tibet Plateau Lake (QTPL) and the Land-
cOVEr Domain Adaptive semantic segmentation (LoveDA) datasets. The results demonstrate that
the proposed BGSNet outperforms the mainstream approaches in terms of OA, MIoU, F1-score,
and kappa. Specifically, BGSNet achieves an OA of 98.97% on the QTPL dataset and 95.70% on
the LoveDA dataset. Additionally, an ablation study was conducted to validate the efficacy of the
proposed modules.

Keywords: remote sensing images; water body extraction; convolutional neural networks; boundary-
guided semantic context

1. Introduction

Water resources play an important role in the Earth’s energy cycles and the develop-
ment of human society [1]. Therefore, accurately mapping water bodies holds immense
significance in various domains, including environmental protection [2,3], urban plan-
ning [4,5], flooding control [6,7], and disaster mitigation [8]. Due to their ability to rapidly
capture extensive surface information at a minimal cost [9], remote sensing images (RSIs)
have emerged as the predominant data source for water mapping. RSIs exhibit inher-
ent complexity [10] that encompasses various types of disturbance information such as
man-made structures, forests, and snow, making water body extraction difficult and chal-
lenging [11]. In addition, the diversity of water distribution and the variation in shape and
size also limit the extraction accuracy [12]. The purpose of this study is to achieve accurate
water body extraction from RSIs.
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Automatically mapping water bodies from RSIs is a significant and actively researched
area within the field of remote sensing and pattern recognition. In the early days, the thresh-
old method was primarily employed for water body extraction, aiming to distinguish water
bodies from other objects within one or multiple spectral bands by selecting an appropriate
threshold. Unfortunately, this method has proven to be unsuitable for extracting small wa-
ter bodies and challenges are frequently encountered in determining the optimal threshold
value [13]. Subsequently, spectral water index methods emerged, taking into account the
inter-band correlation and offering improved mapping accuracy. Among these, the Normal-
ized Difference Water Index (NDWI), initially proposed by McFeeters [14], served as the
pioneering water index method. Since NDWI exhibited limitations in suppressing noise in
built-up areas, the Modified NDWI (MNDWI) was proposed by Xu [15]. Many other water
index methods [16,17] have been proposed over the past few decades. Nonetheless, these
approaches necessitate the manual adjustment of thresholds and fall short of achieving
satisfactory segmentation performance in a complex geographical environment [18].

With the rapid progress of deep learning (DL) techniques and the emergence of mas-
sive remote sensing data, DL-based solutions have been widely implemented in remote
sensing image interpretation. As an indispensable branch of DL, convolutional neural
networks (CNNs) [19] have been widely employed in scene classification [20], semantic
segmentation [21], and object detection [22]. The fully convolutional network (FCN) [23],
an innovative breakthrough in the realm of semantic segmentation, enhances the perfor-
mance of CNNs by eliminating the last fully connected layers and replacing them with
convolutional layers, thereby successfully breaking the constraint imposed by the size of
input images. However, the continuous pooling operation employed in an FCN tends to
discard excessive detailed information, imposing limitations on the overall performance.
To tackle this issue, some optimizations have been proposed. UNet [24] involves shallow
detailed information in the feature map recovery process via skip connections. Badri-
narayanan et al. [25] proposed an encoder–decoder segmentation network (SegNet), which
utilizes an encoder–decoder structure to restore the resolution of feature maps through the
maximum pooling index during upsampling in the decoder. Zhao et al. [26] introduced the
pyramid scene parsing network (PSPNet), which incorporates a pyramid pooling module
to integrate contextual information into the segmentation process. Chen et al. [27] proposed
the DeeplabV3+ model, which expands the receptive field via the utilization of dilated
convolutions and integrates multi-scale semantic information through the atrous spatial
pyramid pooling (ASPP) module.

CNN-based models possess the inherent advantages of autonomously extracting dis-
criminative and representative features. Consequently, considerable endeavors have been
dedicated to the pursuit of water body extraction from RSIs. Miao et al. [28] proposed
the RRFDeconvnet model, which integrates the advantages of deconvolution and residual
units, along with the introduction of a new loss function to mitigate the problem of bound-
ary blurring. However, it cannot deal with noise interference. Based on the improved
UNet, Feng et al. [29] adopted a fully connected conditional random field and regional
restriction to retain the edge structures of water bodies and reduce salt-and-pepper noise.
Wang et al. [30] achieved significant advancements in urban water body extraction by skill-
fully leveraging skip connections to aggregate lower-level information. By the reasonable
augmentation of network depth and the optimization of model training evaluation criteria,
Qin et al. [31] proposed a novel framework specifically tailored for small water bodies.

Diverse distribution, shape and size variations, and complex scenarios significantly
influence the extraction results of water bodies from RSIs. It is imperative to consider
these factors comprehensively to achieve accurate and precise extraction. In this paper, a
boundary-guided semantic context network (BGSNet) is proposed for water body extrac-
tion. BGSNet treats boundary and semantic context as two independent subtasks and then
integrates them effectively. Three modules were embedded to emphasize boundaries and
abstract semantics, namely, the boundary refinement (BR) module, semantic context fusion
(SCF) module, and boundary-guided semantic context (BGS) module. The BR module
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integrates low-level detail features and highest-level semantic features to obtain semantic
boundaries. Based on the channel attention mechanism, the SCF module gradually fuses
high-level feature maps to capture semantic context. Finally, the BGS module leverages
boundary information to guide the fusion of semantic context, promoting the dependence
between the same semantic pixels to obtain more refined extraction results. In summary,
the main contributions are as follows:

1. Based on the encoder–decoder architecture, BGSNet is proposed for extracting water
bodies from RSIs. BGSNet first captures boundary features and abstract semantics,
and then leverages the boundary features as a guide for semantic context aggregation.

2. To accurately locate water bodies, a boundary refinement (BR) module is proposed to
preserve sufficient boundary distributions from shallow layer features. Additionally,
a semantic context fusion (SCF) module is devised to capture semantic context for the
generation of a coarse feature map.

3. To fully exploit the interdependence between the boundary and semantic context,
a boundary-guided semantic context (BGS) module is designed. BGS aggregates
context information along the boundaries to achieve the mutual enhancement of pixels
belonging to the same class, thereby effectively improving intra-class consistency.

2. Related Work
2.1. Semantic Segmentation of RSIs

With the rapid advancements in Earth observation technologies, a substantial number
of RSIs have become readily available. Semantic segmentation of RSIs, which refers to
the per-pixel classification or labeling of images, holds paramount importance for the
interpretation of ground information. In light of the extensive development of CNNs in
natural image processing, recent efforts have focused on extending their applicability to
the semantic segmentation of RSIs, resulting in a notable breakthrough.

Each pixel within an image possesses inherent semantic meaning, rendering the seman-
tic context a pivotal element in the field of semantic segmentation for RSIs [32,33]. To fully
leverage the abstract semantic, researchers have proposed different methods. He et al. [34]
designed a two-branch adaptive context module, aiming to adeptly consider both global
and local information by calculating affinity coefficients and single-scale representations.
Ma et al. [35] proposed a multi-scale skip connection strategy that effectively retains finer
low-level detail features via the utilization of a maximum pooling operation. To address the
issue of interference of similar objects, Li et al. [36] introduced two attention-mechanism-
based modules, which integrate multiple hierarchical features spanning from local to global,
to capture multi-scale contexts. To mitigate the computational complexity associated with
the attention mechanism, Li et al. [37] designed kernel attention, and subsequently extended
it to formulate a multiattention network (MANet) that facilitates hierarchical integration of
context information.

Apart from semantic context, boundaries are also essential elements in images, and
their accurate delineation significantly contributes to augmenting the performance of
semantic segmentation. Boundary optimization, which is a prominent research topic, has
garnered considerable attention in both natural image vision and remote sensing image
interpretation. To enhance the precision of predicting object boundaries, Nong et al. [38]
specifically devised an edge detection subnet that employs elementary pooling operations
to produce intermediate feature maps, which serve as attention guidance for the semantic
network. Li et al. [39] employed boundary detection as an auxiliary task and presented a
boundary distribution module to direct the networks towards emphasizing the acquisition
of spatial details. Noting that the limitation of the general loss function in effectively
addressing boundary regions, Bokhovkin et al. [40] introduced a novel loss function aimed
at enhancing the capability of characterizing boundaries.
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2.2. Water Body Detection of RSIs

Within a certain geographical coverage range, an image can contain diverse water
areas, such as lakes, rivers, and ponds, which exhibit distinct scale characteristics and
variations in shape and size. The heterogeneous distribution and varying sizes of water
bodies present inherent challenges and constraints in the training and reasoning processes
of DL models. Therefore, researchers have endeavored to devise strategies aimed at
effectively exploiting semantic context features to address these limitations.

The fusion of features from multiple scales is the most commonly employed approach
used to address the problem of scale variation. Yu et al. [41] designed a segmentation head
to process feature maps of different resolutions in layers, facilitating the comprehensive
capture of the global context. Kang et al. [42] incorporated Res2Net blocks into the backbone,
achieving fine-grained feature encoding by equally splitting and combining input images
along the channel dimensions. Moreover, certain studies have concentrated on enhancing
feature learning via incorporating attention mechanisms. Xia et al. [43] designed a global
attention upsample (GAU) module to effectively fuse low-level features under the guidance
of high-level features. Zhang et al. [44] incorporated the SE (Squeeze-and-Excitation)
module and dynamically adjusted the weight distribution across each channel to mitigate
the presence of redundant information. Yu et al. [45] developed self-attention modules and
context augmentation to augment the interdependence of relevant information, thereby
enhancing the overall performance.

Although the previously mentioned methods demonstrate effectiveness in leveraging
detailed spatial information to refine semantic features, they may still encounter difficulties
in accurately classifying pixels located on the boundary. Influenced by the surrounding
environment, boundary regions are intricate and changeable, thus posing challenges in
preserving their integrity throughout the training process.

In early studies, boundaries were often addressed as a post-processing step. Condi-
tional random field (CRF) [46], an effective post-processing algorithm, was widely utilized
in many works. Extensive experiments [30,47] have demonstrated its utility boundary
detection. Concurrently, researchers have also focused on developing specialized bound-
ary loss functions. Miao et al. [28] proposed Edges Weighting Loss (EWLoss) to identify
accurate boundaries. Jin et al. [48] proposed a new boundary-aware loss that applied the
Laplacian operator to refine the accuracy of boundary predictions. Although the exper-
imental results of these methods show their efficacy in improving boundary detection
accuracy, it is noteworthy that the majority of these approaches primarily focus on general
post-processing optimization strategies or the formulation of specific loss functions. There
are few algorithms specifically tailored to the meandering boundaries of water bodies.
Recently, some researchers began to treat boundary extraction as an independent subtask.
Zhang et al. [49] adopted an MSF module in the final stage of the prediction to refine con-
tours of water bodies. Wang et al. [50] proposed SADA-Net, which integrates shape feature
optimization to enhance the comprehensive representation of shape features throughout
the network.

In conclusion, the existing methods tend to focus on either learning semantic context
features or extracting boundaries separately, without fully exploiting the potential benefits
of their combination. In our study, we further designed a novel approach by utilizing
boundaries as guidance to fully exploit the dependencies of boundary and semantic context
information, thereby enhancing the overall accuracy of segmentation.

3. Method

This section first outlines the proposed framework of the boundary-guided semantic
context network. The three modules are then introduced in detail.

3.1. Architecture of BGSNet

Boundary and semantic context information dominate the accuracy of mapping water
bodies. However, focusing solely on one aspect without considering their interdependence
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may lead to suboptimal segmentation results. Therefore, a boundary-guided semantic
context (BGS) network is proposed to process semantic context and boundary information
separately in the decoder, thereby realizes their efficient integration. The overall architecture
is illustrated in Figure 1.
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Similar to most water body extraction models, our approach also adopts the classic
encoder–decoder structure. In the encoder stage, ResNet-50 is utilized as the backbone
to capture features at different levels. The backbone produces five feature maps: F1 and
F2 contain low-level detail features, while F3, F4, and F5 contain high-level semantic infor-
mation. Moving to the decoder stage, three modules are designed to mine and leverage
boundary and semantic context, namely, the boundary refinement (BR) module, semantic
context fusion (SCF) module, and boundary-guided semantic context (BGS) module. These
modules work together to fully exploit the boundary and semantic context of water bodies,
yielding accurate segmentation results.

3.2. Boundary Refinement Module

The BR module is designed to preserve boundary distributions. With several convo-
lutional layers, a CNN can capture spatial details on shallow layers, while progressively
increasing the receptive field to capture abstract semantic information. Due to their higher
resolution, low-level feature maps preserve abundant spatial details, including intricate
shape representations, distinct edge features, and fine-grained texture information. There-
fore, feature maps F1 and F2 are leveraged for water body localization. However, RSIs
often exhibit small inter-class variance, making shallow feature maps susceptible to noise
interference. Therefore, relying solely on the fusion of low-level feature maps may not
accurately segment the boundary under complex backgrounds. To address this challenge,
the highest-level semantic features are also employed to generate semantic boundaries,
thereby producing more differentiated feature maps.

Figure 2 illustrates the structure of the BR module. The BR receives two inputs and
employs the multiplication operation to fuse them. The utilization of multiplication is
advantageous as it facilitates the elimination of redundant information and the suppression
of noise. Subsequently, the fused features pass through two 3 × 3 convolution layers with
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BN and ReLU to enhance their robustness and discriminative capability. The above process
can be formulated as follows:

Fout = δ(c1(δ(c1(Fi ⊗ Fj)))) (1)

where c1 denotes 1 × 1 convolution, δ and ⊗ present ReLU function and element-wise
multiplication, respectively, Fi and Fj are input feature maps, Fout is the output of the
BR module.
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The semantic boundary Fb can be obtained by fusing two low-level feature maps (F1,
F2) with the highest-level semantic feature map (F5).

Fb = BR(F1, BR(F2, F5)) (2)

In addition, noting that the resolution of feature maps is inconsistent across each layer
of the network, to ensure compatibility before fusion, it is necessary to resample them to a
uniform size. In the decoder stage, various upsampling methods can be employed, such
as deconvolution, up-pooling, and interpolation algorithms. Among these alternatives,
bilinear upsampling is effective and reduces computing requirements. Thus, in the decoder,
bilinear upsampling is used to restore the high-level feature map to its original shape.

3.3. Semantic Context Fusion Module

Semantic context and global context are pivotal factors in achieving accurate seg-
mentation of water bodies. High-level feature maps (F3, F4, F5) are adept at capturing
various pieces of semantic information due to different receptive fields, rendering them
suitable for pixel classification. Hence, these feature maps are used to capture rich semantic
context. The SCF module is designed to fuse them. Since different channels correspond
to different semantic information, the design of the SCF module is based on the channel
attention mechanism.

As depicted in Figure 3, the fusion process involves two feature maps of different scales
(Fi and Fj, i < j). These feature maps are first concatenated along the channel dimension.
Subsequently, a 1 × 1 convolution with BN and ReLU is carried out to reduce the number
of channels by half. The integration of channel attention facilitates the acquisition of crucial
weights, so global average pooling followed by 1 × 1 convolution and the Sigmoid function
were performed to generate the feature map Fm with weights, which can be calculated
as follows:

Fm = σ(c1(avg(δ(c1(concat(Fi, Fj)))))) (3)
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where c1 denotes 1 × 1 convolution, concat and avg represent concatenation and global
average pooling, respectively, δ and σ represent ReLU and Sigmoid functions, respectively,
and Fi and Fj are inputs.
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In this way, the generated feature map Fm can serve as a weight guide for the fusion of
different semantic features through multiplication. This enables the automatic learning of
semantic dependencies between feature map channels. The formulation of this process can
be expressed as follows:

Fout = Fi ⊗ Fm + Fj ⊗ Fm (4)

where ⊗ denotes element-wise multiplication.
Finally, the SCF module hierarchically fuses the three high-level feature maps (F3, F4,

F5), leading to the generation of the final fused feature map Fs.

Fs = SCF(F3, SCF(F4, F5)) (5)

3.4. Boundary-Guided Semantic Context Module

The final output of the SCF module contains rich semantic context, which can generate
an initial rough water feature map, while the final output of the BR module retains salient
boundary information. These two outputs complement each other in describing water
bodies. Consequently, the key is to find ways to aggregate them.

The BGS module is specifically designed to fuse boundary and semantic context. By
leveraging the intrinsic partitioning capability of boundaries, BGS employs the extracted
semantic boundary Fb as a guide to integrate the fused semantic features Fs, thereby re-
inforcing intra-class consistency. The BGS module adopts the method of double-branch
cross-fusion, which employs details to guide the feature response of semantic context. Un-
like simple compositions, this approach focuses on the hierarchical dependencies between
two branches. Global average pooling is also used in the semantic branch. As such, pixels
belonging to the same object exhibit a higher degree of activation in corresponding attention
areas, whereas pixels from different objects demonstrate relatively fewer similarities in
their activation patterns. The specific structure is shown in Figure 4.
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In general, the multiplication operation serves to selectively emphasize boundary-
related information, while the addition operation facilitates the complementary combina-
tion of two features. By cross-multiplying and adding, the fusion of two complementary
features effectively captures the comprehensive information of an object. The process can
be defined as:

Fb1 = δ(c3(Fb)) (6)

Fb2 = δ(c3(up(Fb))) (7)

Fs1 = δ(c3(Fs)) (8)

Fs2 = δ(c3(avg(Fs))) (9)

Foutput = δ(c3(up(Fb1 ⊗ Fs2))) + Fb2 ⊗ Fs1 (10)

where c3 denotes 3 × 3 convolution, up and avg represent bilinear interpolation and global
average pooling, respectively, δ represents the ReLU function, ⊗ denotes element-wise
multiplication, Fbi and Fsi are the median feature map of each branch, and Foutput is the
output of the BGS module.

4. Experiment
4.1. Dataset

To verify the validity and generalizability of BGSNet, a comprehensive set of experi-
ments was conducted on the Qinghai–Tibet Plateau Lake (QTPL) [51] and the Land-cOVEr
Domain Adaptive semantic segmentation (LoveDA) dataset [52].

4.1.1. The QTPL Dataset

The QTPL dataset is a collection of visible spectrum RSIs extracted from Google Earth.
It consists of RGB images where only lakes are regarded as positive instances for analysis
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and classification. The dataset comprises a total of 6774 RSIs, all of which have a fixed size
of 256 × 256. For the purpose of model training and evaluation, we randomly selected
6096 images for the training phase, while the remaining 678 images were allocated for
testing.

The Tibetan Plateau region has a highland lake community characterized by a concen-
tration of salt and brackish water lakes. The genesis of the lakes is complex and varied, but
most of them are developed in intermountain basins or giant valleys parallel to mountain
ranges. As illustrated in Figure 5, the lakes are surrounded by complex environments,
where black lakes have similar spectral characteristics to mountain and cloud shadows,
and white lakes are similar to snow. In addition, the presence of discrete clusters of small
water bodies adds an additional layer of challenge to achieving accurate extraction.
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4.1.2. The LoveDA Dataset

The LoveDA dataset was specifically introduced to advance research in semantic and
transferable learning. The dataset contains urban and rural scenes sourced from three cities
in China: Nanjing, Changzhou, and Wuhan. In urban scenes, water bodies exhibit spectral
similarity to the shadows of tall buildings, which are hard to distinguish. By comparison,
in rural scenarios, weeds and silt on both sides of the water body may lead to incoherent
boundaries. Consequently, the accurate extraction of water bodies within heterogeneous
geographical environments is challenging. Some samples are provided in Figure 6.
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The LoveDA dataset contains a total of 5987 high-resolution RSIs that were collected
from both urban and rural areas. To meet the requirements of the experiment, all images
were cropped to a standardized size of 256 × 256 and only water in the six categories
was treated as positive. Finally, a collection of 78,800 high-resolution RSIs was obtained.
Similarly, these cropped images were randomly split into a training set and a test set,
consisting of 63,050 and 15,750 images, respectively.

4.2. Evaluation Metrics

Water body extraction is fundamentally a semantic segmentation task. In order
to assess the performance of our BGSNet, four commonly used metrics for semantic
segmentation were employed: overall accuracy (OA), F1-score, mean intersection over
union (MIoU), and kappa. OA is the ratio of pixels correctly classified to the total number
of pixels in the image. Precision and recall assess the model’s ability to correctly identify
positive samples and capture all relevant positive samples, respectively. Ideally, maximizing
both metrics is desirable, but this may lead to conflict while evaluating the performance
of model. To balance them, the F1-score, which is their harmonic mean, was chosen as
the evaluation metric. The kappa coefficient is employed as a measure of consistency and
can also gauge the effectiveness of classification. It provides insights into the agreement
between labels, accounting for the possibility of agreement occurring by chance. MIoU is
calculated as the average of intersection and union ratios across all categories, indicating
the extent of overlap between the predicted and ground truth regions for each class. Their
formulas are as follows:

OA =
TP + TN

TP + TN + FP + FN
(11)

F1-score = 2 × precision × recall
precision + recall

(12)

precision =
TP

TP + FP
(13)

recall =
TP

TP + FN
(14)

kappa =
p0 − pe

1 − pe
(15)

p0 = OA =
TP + TN

TP + TN + FP + FN
(16)

pe =
(TP + TN)× (TP + FP) + (FP + FN)× (TN + FN)

N2 (17)

MIoU =
1

k + 1

k

∑
i=0

TP
TP + FP + FN

(18)

where k refers to the number of all categories. TP indicates a true positive case, i.e.,
water pixels are correctly classified as water pixels. TN indicates a true negative case, i.e.,
background pixels correctly classified as background pixels. FP indicates a false positive
case, i.e., background pixels are incorrectly classified as water pixels. FN indicates a false
negative case, i.e., water pixels are incorrectly classified as background pixels.

4.3. Experimental Settings

The proposed BGSNet was implemented using the PyTorch deep learning frame-
work, with Python version 3.8. All experiments were conducted on a single NVIDIA A40
GPU. During the training phase, the max epoch number of 200 was specified, and the
batch size was set to 8. To optimize the network parameters, the Root Mean Square prop
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(RMSProp) [53] was utilized as the optimizer, with a momentum of 0.9. To facilitate the
convergence of the network during training, the initial learning rate of 1 × 10−5 was set.
Cross-entropy loss [54] was applied as the loss function. Its formula is as follows:

LBCE = ∑
i
−yi logŷi − (1 − yi) log(1 − ŷi) (19)

where yi and ŷi are the true label and predicted value, respectively. Table 1 lists all hyperparameters.

Table 1. Hyperparameter settings.

Items Settings

Max epoch 200
Batch Size 8
Optimizer RMSProp

Momentum 0.9
Initial learning rate 1 × 10−5

Loss function Cross-entropy loss

We compared our approach with nine methods: UNet [24], PSPNet [26], DeeplabV3+ [27],
SENet [55], Attention UNet [56], LANet [57], RAANet [58], BASNet [59], and DecoupleSeg-
Net [60]. The settings of the above hyperparameters also apply to these methods. Notably,
all comparative methods except BASNet are implemented under the same settings to enable
a convincing comparison. The loss function adopted by BASNet is a novel hybrid loss
function composed of cross-entropy, structural similarity, and IoU loss, which aims to
emphasize the quality of water body boundaries.

4.4. Comparative Analysis

To verify the performance of the proposed BGSNet in mapping water bodies, a com-
parative analysis was conducted with nine advanced semantic models. These selected
models represent a range of advanced techniques in semantic segmentation. UNet, PSPNet,
and DeeplabV3+ are fundamental networks in the field of semantic segmentation. SENet
and AttentionUNet are attention-based methods that leverage attention mechanisms to
enhance intra-class consistency. BASNet uses a new hybrid loss, comprising cross-entropy,
structural similarity, and IoU loss, to emphasize the quality of boundaries. DecoupleSegNet
explicitly models the target object and its boundaries. Similarly, LANet and RAANet also
deal with low-level details and high-level semantic information, respectively. Furthermore,
to prove the generalization ability of our BGSNet, a series of experiments were conducted
on the QTPL dataset and the LoveDA dataset.

4.4.1. Results on the QTPL Dataset

Table 2 reports the results of the quantitative analysis in the QTPL dataset. The
performance evaluation reveals that the proposed BGSNet achieves the highest scores
for OA, MIoU, F1-score, and kappa (98.97%, 97.89%,99.14%, and 0.9786, respectively).
Compared with the second-best method, UNet, BGSNet improves the four metrics by
0.19%, 0.38%, 0.16%, and 0.0039, respectively, indicating that our method exhibits notable
advantages in the detection of water bodies and is capable of effectively handling more
complex water samples. In comparison to DeepLabV3+ and PSPNet, the well-known
models for image segmentation, BGSNet demonstrates an increase in performance of at
least 0.7% in OA. Attention-based methods, including Attention UNet and SENet, obtained
similar results. BASNet uses the mixed loss function, but it did not perform well in the water
extraction task. LANet enriches feature representation through the effective integration of
features from diverse hierarchical levels, achieving 98.7% in OA. RAANet also adopts the
strategy that separately deals with low-level detail information and high-level semantic
information and realizes their effective fusion. Unfortunately, it failed to achieve superior
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results in the QTPL dataset. DecoupleSegNet decouples the body and boundary, achieving
98.84% in OA, which was second only to our approach.

Table 2. Quantitative results on the QTPL dataset.

Method OA (%) MIoU (%) F1-Score Kappa

RAANet 97.48 94.92 97.89 0.9478
BASNet 98.86 97.14 98.82 0.9709

DecoupleSegNet 98.89 97.37 98.92 0.9733
DeeplabV3+ 98.27 96.48 98.54 0.9642

PSPNet 98.74 97.43 98.95 0.9740
LANet 98.73 97.40 98.93 0.9737

Attention UNet 98.67 97.29 98.88 0.9725
SENet 98.65 97.24 98.86 0.9720
UNet 98.78 97.51 98.98 0.9747

BGSNet 98.97 97.89 99.14 0.9786

The representative results are visualized in Figure 7, where the first column shows
water bodies of various sizes, shapes, and distributions. Overall, all models basically
perform well in segmenting lake water bodies, but subtle differences can be observed in
certain details, as indicated by the yellow boxes in the images. For relatively small and
discrete water bodies (rows 1, 2), BGSNet obtains better segmentation results by using the
BR module to extract shallow information to assist in localization, while other methods
exhibit some degree of leakage. Similarly, for the small, narrow, and isolated water bodies
in the third row, the segmentation of BGSNet is closer to the ground truth. Shadow and
water often exhibit similar spectral characteristics, making them prone to misclassification.
This similarity in spectral information can adversely affect the extraction accuracy. For
example, in the fifth row, AttentionUNet, DeeplabV3+, PSPNet, and UNet misclassified
some shadow areas as water bodies, and RAANet and BASNet misclassified almost all
of the shaded parts. Compared with other methods, DecoupleSegNet can segment small
water bodies (rows 1, 2, 3), but it has some difficulties in dealing with noise interference
(row 5). By embedding channel attention in the SCF module, our model focuses better
on water bodies with almost no misclassification. SENet and LANet, which also use the
attention mechanism, perform better in distinguishing shadow areas. However, when
confronted with irregularly distributed water bodies (row 6), SENet fails to describe its
contour well, and LANet could not even identify the water body. BASNet specifically used
the loss function to improve the quality of the boundary, but the performance here was
mediocre. Since our BGS module integrates the semantic boundary and semantic context
effectively, the boundary extracted by BGSNet is more complete. This can be seen from the
last two lines, where BGSNet was able to completely draw the shape of irregular water
bodies. Benefiting from the fact that three modules working in tandem to learn features
from the whole semantic object level, our BGSNet still yields segmentation results with
more complete boundaries in complicated scenarios.

The number of trainable parameters and the Flops (floating point operations) are listed
in Table 3. It is worth noting that BGSNet has half the computational complexity of the
multi-scale networks DeeplabV3+ and PSPNet. The quantitative results of DecoupleSegNet
are second only to our method, but the computational complexity is much higher than
ours. SENet possesses the fewest parameters, while the proposed BGSNet does not increase
much but performs better, achieving a balance of accuracy and efficiency.
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Figure 7. Visualizations on the QTPL dataset: (a) image, (b) ground truth, (c) proposed BGSNet,
(d) Attention UNet, (e) SENet, (f) Deeplabv3+, (g) PSPNet, (h) LANet, (i) UNet, (j) RAANet, (k) BAS-
Net, (l) DecoupleSegNet. The yellow boxes indicate obvious differences.

Table 3. Comparison results for model complexity and training Flops. The input size is 3 × 256 × 256.

Methods Params (M) Flops (G)

RAANet 64.204 186.201
BASNet 87.080 1021.531

DecoupleSegNet 137.100 1457.126
DeeplabV3+ 54.608 166.053

PSPNet 46.707 368.898
LANet 23.792 66.475

Attention UNet 34.879 66.636
SENet 23.775 65.93
UNet 34.527 524.179

BGSNet 24.221 79.596

4.4.2. Results on the LoveDA dataset

The proposed BGSNet was further evaluated by conducting the same experiment
on the LoveDA dataset to validate its performance. Consistent with the results of the
QTPL dataset, BGSNet still achieved the highest scores (95.70%, 80.86%, 97.59%, and 0.7745,
respectively) for all evaluation metrics in Table 4. In comparison to other methods, BGSNet
demonstrated superior improvements across all indicators.
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Table 4. Quantitative results on the LoveDA dataset.

Method OA (%) MIoU (%) F1-Score Kappa

RAANet 93.11 71.69 96.15 0.6359
BASNet 93.07 71.86 96.45 0.6382

DecoupleSegNet 94.95 75.99 95.12 0.6366
DeeplabV3+ 92.45 71.84 95.71 0.5867

PSPNet 93.41 73.36 96.30 0.6634
LANet 95.47 79.71 97.47 0.7583

Attention UNet 94.27 73.92 96.83 0.6715
SENet 95.01 78.84 97.19 0.7463
UNet 94.62 75.95 97.01 0.7032

BGSNet 95.70 80.86 97.59 0.7745

Figure 8 displays some samples for the LoveDA datasets. Compared with other
models, prediction results of BGSNet are closer to the real situation. Similarly, all mod-
els can segment large areas of water bodies, but the boundary extracted by BGSNet and
SENet is obviously smoother and more detailed (rows 1, 2). However, for areas with
shadow interference (row 3) and multiple adjacent water bodies (row 4), SENet fails to
yield improved results despite its inclusion of an attention mechanism, while, due to the
accurate localization of the BR module and the focusing of the SCF module, BGSNet sig-
nificantly outperforms the other methods according to the segmentation results. LANet
also integrates shallow spatial information to facilitate water body localization, but the
processing at the boundary area is not satisfactory. RAANet and DecoupleSegNet struggle
to effectively distinguish the regions with similar spectral characteristics from water bodies
(rows 3, 5). Similarly, BASNet was able to identify most water bodies, but the segmenta-
tion of easily confused areas was unsatisfactory (rows 3, 5 6). PSPNet and Deeplabv3+
proved more suitable for processing large areas of water bodies (rows 2, 8). By integrating
three modules, BGSNet can achieve accurate segmentation results within intricate and
challenging scenarios.

4.5. Ablation Analysis

In order to suppress the noise interference, the highest-level feature map was used to
obtain semantic boundaries in the boundary extraction stage. Therefore, the ablation study
was first performed to ascertain the efficacy and indispensability of the fusion of feature
map F5. Two low-level feature maps F1 and F2 were fixed, and then fused as F3, F4, and F5
respectively. The results can be seen in Table 5. Fusion (F1, F2, F5) is the proposed BGSNet.
Compared with F4, F3, and no fusion, fusion F5 can achieve the best segmentation accuracy.
In particular, in the LoveDA dataset, the reduction is more obvious. Although the number
of parameters decreased by 0.074 when only using F1 and F2, the OA, MIoU, F1-score, and
kappa decreased by 0.11%, 0.22%, 0.09%, and 0.0021, respectively on the QTPL dataset and
0.33%, 1.61%, 0.17%, and 0.0266 on the LoveDA dataset. We suggest that it is acceptable to
sacrifice time for significant improvements.

Table 5. Quantitative results of different inputs on two datasets. Fusion (F1, F2, F5) is proposed BGSNet.

Dataset Methods OA (%) MIoU (%) F1-Score Kappa Params (M)

QTPL

Fusion (F1, F2) 98.86 97.67 99.05 0.9765 24.147
Fusion (F1, F2, F3) 98.93 97.81 99.10 0.9778 24.221
Fusion (F1, F2, F4) 98.96 97.86 99.12 0.9784 24.221
Fusion (F1, F2, F5) 98.97 97.89 99.14 0.9786 24.221

LoveDA

Fusion (F1, F2) 95.37 79.25 97.42 0.7519 24.147
Fusion (F1, F2, F3) 95.47 80.05 97.46 0.7633 24.221
Fusion (F1, F2, F4) 95.36 79.69 97.40 0.7582 24.221
Fusion (F1, F2, F5) 95.70 80.86 97.59 0.7745 24.221
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Net, (l) DecoupleSegNet. The yellow boxes indicate obvious differences.

Further, to evaluate the effectiveness of the three involved modules, the ablation
study was also performed on two datasets. The quantitative results are presented in
Table 6, illustrating the positive impact exhibited by all three modules in enhancing the
performance of the model across both datasets. A more noticeable difference in accuracy
was also observed in the LoveDA dataset. For the LoveDA dataset, after removing BE, the
OA, MIoU, F1-score, and kappa decreased by 0.45%, 1.98%, 0.25%, and 0.028, respectively.
After removing SCF, the corresponding decreases were 0.64%, 2.6%, 0.35%, and 0.0369,
respectively. Similarly, when BGS was removed, the decreases were 1.42%, 5.47%, 0.78%,
and 0.0798, respectively. It can also be determined from the downward trend that the BGS
module made a greater contribution to improving accuracy. Regarding the parameters, an
increase of 0.222 M was deemed acceptable.

Figures 8 and 9 depict the visualizations of the ablation study. The visualization
results revealed that when three modules are removed separately, some tiny water bodies
are missing (Figure 9 row 2). After removing BR, water bodies covered by the shadow
(Figure 9 row 3) and similar to the background (Figure 10 rows 1, 2) were misclassified
as background. Likewise, when SCF was removed, it also misclassified water bodies as
background, but it can correctly classify water in complex scenarios (Figure 10 rows 1, 2).
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Table 6. Quantitative results of ablation study on two datasets.

Dataset Methods OA (%) MIoU (%) F1-Score Kappa Params (M)

QTPL

BGSNet 98.97 97.89 99.14 0.9786 24.221
BGSNet (without BR) 98.89 97.72 99.06 0.9769 24.073

BGSNet (without SCF) 98.87 97.68 99.05 0.9765 24.131
BGSNet (without BGS) 98.82 97.59 99.01 0.9756 23.999

LoveDA

BGSNet 95.70 80.86 97.59 0.7745 24.221
BGSNet (without BR) 95.25 78.88 97.34 0.7465 24.073

BGSNet (without SCF) 95.06 78.26 97.24 0.7376 24.131
BGSNet (without BGS) 94.28 75.39 96.81 0.6947 23.999
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5. Conclusions

In this paper, we propose a boundary-guided semantic context network (BGSNet) to
accurately segment water bodies from RSIs. Striving to bridge boundary representations
and semantic context, three specific modules are designed:

(1) The BR module is designed to obtain prominent boundary information which is
beneficial for localization.

(2) The SCF module is embedded to capture semantic context for generating a coarse
feature map.

(3) The BGS module is devised to aggregate context information along the boundaries,
facilitating the mutual enhancement of internal pixels belonging to the same class,
thereby improving intra-class consistency.

Extensive experiments were conducted on the QTPL and the LoveDA datasets, demon-
strating the superiority of the proposed method compared to existing mainstream methods.

With the advancements of aeronautics and space technology, a large number of detailed
remote sensing images have been captured. Due to the influences of imaging conditions
and water quality, the distinctiveness among water bodies has been progressively amplified.
Furthermore, due to the presence of silt along riverbanks and the blurred shadows cast
by towering vegetation, there is increasing resemblance between water bodies and their
surrounding environments. These factors pose a further challenge to the extraction of
water bodies. In future, our endeavors will focus on model refinement to adapt to these
demanding scenarios.
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