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Abstract: Night-time vehicle detection plays a vital role due to the high incidence of abnormal
events in our daily security field. However, existing studies mainly focus on vehicle detection
in autonomous driving and traffic intersection scenes, but ignore urban scenes. There are vast
differences between these scenes, such as viewpoint, position, illumination, etc. In this paper, the
authors present a night-time vehicle detection dataset collected from urban scenes, named Vehicle
Detection in Night-Time Urban Scene (VD-NUS). The VD-NUS dataset consists of more than 100 K
challenging images, comprising a total of about 500 K labelled vehicles. This paper introduces a
vehicle detection framework via an active auxiliary mechanism (AAM) to reduce the annotation
workload. The proposed AAM framework can actively select the informative sample for annotation
by estimating its uncertainty and locational instability. Furthermore, this paper proposes a computer-
assisted detection module embedded in the AAM framework to help human annotators to rapidly
and accurately label the selected data. AAM outperformed the baseline method (random sampling)
by up to 0.91 AP and 3.0 MR−2 on the VD-NUS dataset.

Keywords: night-time vehicle detection; urban scenes; redundancy reduction; active learning

1. Introduction

With economic development and the rapid explosion in the number of vehicles,
vehicles have played a crucial role in daily life in recent years. Vehicle detection, which
aims to locate the position of the vehicle in the image or video, has a very important role
in the security of people’s daily lives [1]. However, existing vehicle detection algorithms
achieve good results in daytime scenes but poorer outcomes in night scenes [2] due to the
lack of discriminative information. Night-time is the period of most significant concern
for security applications [3] due to the high incidence of abnormal events. Night-time
vehicle detection is helpful for anomaly detection and facilitates the analysis of security
cases [4].

Existing studies have mainly focused on vehicle detection in autonomous driving
(KITTI [5] and BDD100K [6] benchmark) and traffic intersection scenes (UA-DETRAC [7]
benchmark), which ignore urban scenes. Figure 1 illustrates these scenes respectively. There
are vast differences between these scenes, such as viewpoint, position, and illumination.

• Viewpoint. For autonomous driving, vehicles are photographed by cameras at parallel
angles. For urban scenes, vehicles are photographed by cameras at downward angles,
as illustrated in Figure 1. Difficult cases (small scale, occlusion, and rain) in such a
situation are more challenging.
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• Position. For traffic intersection, cameras are placed in the centre of the road to obtain
more visible vehicle information, such as license plates. For urban scenes, the cameras
are placed anywhere on the road to obtain any angle of the vehicles.

• Illumination. There are also significant differences in the distribution of the light
at night. In autonomous driving, the light distribution is more concentrated in the
bottom and middle of a picture, with a light source mainly coming from the car itself.
At traffic intersections, the camera often captures an image with the aid of the flash,
so the images obtained are very clear. However, the illumination in urban scenes is
relatively imbalanced at night-time, involving street lights and vehicle lights.

(a) KITTI (b) BDD100K

(c) UA-DETRAC

(d) VD-NUS (Ours)

Urban 

Scenes

Traffic

Intersection

Autonomous 

Driving

Figure 1. Comparison of the existing datasets and our dataset. (a–d) exhibit samples from KITTI,
BDD100K, UA-DETRAC, and our VD-NUS datasets, respectively. The scenes are shown with related
datasets.

In summary, existing datasets and ours cannot meet the actual requirements of
night urban scenes, and it is crucial to introduce datasets for realistic settings. In this
paper, the authors build a new vehicle detection dataset of an urban night scene (VD-
NUS, https://github.com/Txy21012/VD-NUS, accessed on 1 July 2023), aiming to locate
the position of every vehicle in the still image from the urban surveillance. VD-NUS is
collected from urban surveillance, covering 50 cameras, 100 K images, and 510 K bbox
annotations.

It is noteworthy that surveillance devices in urban scenes have the unique charac-
teristic of working day and night for 24 h. The amount of data to be annotated in urban
security applications is exceedingly large. Reducing the manual workload and producing
informative annotations for datasets is an urgent problem for night-time vehicle detection
in practical applications.

A straightforward solution to this specific problem is to learn the detector from
weak annotations [8] or partially labeled datasets [9]. Another solution is to learn an

https://github.com/Txy21012/VD-NUS
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unsupervised [10] or transfer mechanism [11] to employ unlabeled data. However, the
performance of these strategies is generally inferior [12]. The main reason is the lack
of labeled discriminative information in every camera since the amount of labeled data
significantly influences the detector’s performance [13].

Motivated by the success of active learning in vision tasks [14], such as image classi-
fication [15,16], human pose estimation [17], and semantic segmentation [18], this paper
introduces a vehicle detection framework via an active auxiliary mechanism (AAM) to
reduce the manual workload and select informative samples in vehicle detection, which
can train an effective vehicle detector with the least labeling efforts. AAM focuses on
learning from scratch with incremental labeling via minor human annotators and model
feedback. First, an incremental annotation process of active learning has been adopted
to select information from an unlabeled set in each iteration. Second, these samples are
labeled by humans to update the detector. Then, AAM can automatically select informative
samples containing informative patterns. Finally, the author proposes a computer-assisted
identity recommendation module embedded in the AAM framework to further save the
detection time by recommending a few images to human annotators. After being labeled
by human annotators, the selected samples are progressively fed into the training set to
retrain the vehicle detector until the desired performance is attained. Experimental results
indicate that AAM achieves optimal performance with an equivalent number of images
compared to random sampling and other active sampling strategies.

The main contributions of our work include the following:

1. Under the background of a high incidence of abnormal events at night, this paper
presents the first night-time vehicle detection dataset VD-NUS in urban surveillance
scenarios. The dataset differs significantly from existing vehicle detection datasets in
terms of viewpoint, position, and illumination.

2. Considering the problem exists that the amount of data to be annotated is exceed-
ingly large in urban security applications, this paper presents an effective auxiliary
labelling system. The system reduces the annotation workload through an active
learning sampling strategy (AAM) and a computer-assisted identity recommendation
module.

3. The effectiveness of the approach is demonstrated on the proposed VD-NUS dataset.
AAM outperforms the baseline method (random sampling) by up to 0.91 AP and
3.0 MR−2 on the VD-NUS dataset. The AAM framework reduces manual labeling
and selects informative samples. It is suitable for a wide range of other detection
labeling tasks.

2. Related Work
2.1. Vehicle Detection Datasets

Existing vehicle detection research includes two categories, remote sensing [19,20]
and surveillance scenes [5–7,21,22]. This paper focuses on vehicle detection in surveillance
scenes. Existing vehicle detection datasets include KITTI [5], BDD100K [6] (Berkeley
DeepDrive), and UA-DETRAC [7] (University at Albany DEtection and TRACking). KITTI
and BDD100K are collected from autonomous driving. In the field of autonomous driving,
there are numerous vehicle detection works [23–25], especially in night-time scenes [26,27].
UA-DETRAC is collected from traffic intersection scenes. There are obvious differences
between the two scenes and the urban surveillance scene in terms of viewpoint, position,
and illumination. Therefore, they are not suitable for urban applications.

2.2. Vehicle Detection Methods

Deep-learning-based models have achieved great success in existing computer vision
tasks. But the main challenges of vehicle detection in urban scenes are the limited amount
of labeled samples and expensive labeling costs. Regarding data collection in vehicle
detection, the scope of a collected dataset is relatively limited and partial compared to
the spatial and temporal distribution of real data. According to data utilization, existing
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methods can be divided into three aspects: full annotations, weak annotations, and active
learning.

Full annotations. Vehicle detection is a special case of object detection [28], which
is mainly used to locate vehicles in images. Most of the existing detection tasks use
fully supervised methods. This type of research can learn discriminative and powerful
representations for robust detectors. In particular, Liu et al. [29] present TBox (Trapezoid
and Box), which extends the bounding box by restricting the spatial extent of a vehicle to
a set of key points and indicating semantically significant local information. Sivaraman
et al. [30] proposed that enough data can indeed improve the performance of the detector.
In [31], data from several domains were utilized to train an effective model to extract
discriminative features. To achieve better performance, detection models based on deep
learning [32,33] almost all rely on fully annotated data; these are also named supervised
learning.

Supervised learning has achieved ever-higher levels of performance in recent years.
However, the requirement for large amounts of hand-labeled training data makes it labor-
intensive. This study focuses on reducing the labeling efforts in night-time vehicle detection
for urban surveillance.

Weak annotations. A straightforward solution for reducing annotation efforts for
vehicle detection is to train a detector from weak annotations. Chadwick et al. [34] used a
radar to automatically generate noisy labels and clean these labels to give good detector per-
formance without the need for hand labeling. Another solution is based on semi-supervised
learning [35,36], whereby the annotations for some images are avoided. More specifically,
Waltner et al. [35] finetuned a prototype classification network and applied the resulting
model on a large set of unannotated images to obtain more labels. Feng et al. [36] developed
a semi-automatic moving object annotation method for improving deep learning models.
Moreover, some other methods involved training a vehicle detector in an unsupervised
setting where the annotation is not necessary [37,38]. In particular, Li et al. [37] presented
an unsupervised vehicle anomaly detection framework, which contains a box-level tracking
branch and a pixel-level tracking branch. Khorramshahi et al. [38] designed an unsuper-
vised algorithm to detect and localize anomalies in traffic scenes, which uses the results
obtained from tracking to generate anomaly proposals.

The above methods assume the labeled data are fixed and generally exhibit perfor-
mance degradation compared to the full-annotation-based methods. Therefore, this work
focused on the fully supervised setting, whose goal is to reduce redundant samples when
building large-scale vehicle detection datasets.

Active learning. Active learning has made certain achievements in object detec-
tion [39–42]. Brus et al. [39] adopted margin sampling within the uncertain query strategy,
which is biased towards the category most likely to confuse the detector. Elezi et al. [40]
chose data with poor category predictions based on the categorical inconsistency of the
detection results before and after the image flip. However, the above approaches disregard
the localization properties of the object detection task and simply rely on the classification
information. Relatively few studies have designed active learning methods specific to the
localization properties of object detection. Choi et al. [43] obtained the uncertainty of classi-
fication and localization by introducing mixture density networks. Kao et al. [44] estimated
the localization tightness by comparing the discrepancy between the intermediate region
proposals and the final bounding boxes of a two-stage network. The former can only be
applied in two-stage networks, and the latter incorporated noise is too homogeneous.

Our method exploits both the uncertainty and robustness of the detector and con-
centrates on changes in vehicle localization when the image suffers from noise, while
implementing a more sensible combination of data augmentations in conjunction with the
characteristics of our dataset itself.
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3. VD-NUS Benchmark
3.1. Description

The purpose of the VD-NUS dataset is to provide a new benchmark for vehicle
detection and to improve the vehicle detection module at night-time. VD-NUS is the key
catalyst for vehicle detection in the security system. In this section, this paper describes the
details of the VD-NUS data from three aspects, including data collection, bounding box
annotation, and diversity.

Data Collection. The dataset was collected from real urban surveillance cameras
with a total of 100G data, where the resolution of each image is 1920 × 1080. All these
recordings were collected from 50 cameras during a period of time from 17:00 to 23:00. The
dataset contained both blurred and sharp images. Finally, the collected data were cleaned
and labeled.

Bounding box annotation. The VD-NUS dataset needs to provide a bounding boxes
level for vehicles. For annotations, the coordinates of the upper left and lower right of the
vehicle in the image should be recorded. The whole annotation process consists of several
stages, as follows:

• Keyframe extraction. For each video, the authors utilized FFmpeg to extract sixteen
keyframes per second, resulting in a total of 500 K keyframes.

• Annotation. This paper employed a detector (YOLOX [45] pre-trained on MSCOCO [46]
(Microsoft Common Objects in Context dataset)) to detect the vehicle in the keyframes,
and 300 k bounding boxes were obtained.

• Manual correction. To ensure the accuracy of the intercepted bounding boxes, the
authors added a manually assisted verification phase using the colabeler (http://
www.colabeler.com/, accessed on 1 July 2020) tool. Eight volunteers were invited to
check and correct the bounding boxes for vehicles. Since fewer vehicles are active at
night, there are a large number of frames with no vehicles at night-time than in the
daytime. To reduce these invalid frames, most of the invalid frames without vehicles
were removed.

After the cleaning, the number of frames in VD-NUS is 100 K. The number of annotated
vehicles is approximately 500 K. The average number of objects per frame in VD-NUS is 5.7.
Similar to existing datasets, the attributes of the VD-NUS have been classified into several
groups to allow more fine-grained evaluation using different settings. The rest of the data
were divided into train, val, and test portions according to the ratio of 6:1:3, and the overall
distribution is shown in Table 1. In the overall comparison, it can be seen that the VD-NUS
not only focuses on night-time urban scenes, but also has the highest resolution.

Table 1. Overall distribution of VD-NUS and existing vehicle detection datasets.

Dataset
Train Val Test

Imagesize Scene
Images Boxes

(Car)
Night-Time

Images Images Boxes
(Car)

Night-Time
Images Images Boxes

(Car)

KITTI 7481 28,742 - - - - 7518 - 1242 × 375 Autonomous Driving
BDD100K 70,000 714,121 28,028

(40.04%) 10,000 102,540 3929
(39.29%) 20,000 205,214 1280 × 720

UA-DETRAC 83,791 503,853 22,819
(27.23%) - - - 56,340 548,555 960 × 540 Traffic Intersection

VD-NUS 60,137 305,223 60,137
(100%) 10,023 51,290 10,023

(100%) 30,058 153,163 1920 × 1080 Urban Scenes

3.2. Diversity

The characteristics are entirely different from existing datasets, such as scale (as shown
in Figure 2) and illumination (as shown in Figure 3).

http://www.colabeler.com/
http://www.colabeler.com/
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BDD100K DETRAC VD-NUS (Ours)

Aspect
Ratio

Relative
Size

Absolute
Size

Figure 2. Comparison of the existing datasets and our dataset. The distribution of aspect ratio,
relative size, and absolute size is exhibited from top to bottom.

BDD100K DETRAC VD-NUS (Ours)

Illumination
image

Illumination
vehicle

Figure 3. Comparison of the existing datasets and our dataset. The first and second rows exhibit the
illumination distribution for the whole image and the vehicle section, respectively.

• Scale. The camera has a long shooting distance in urban surveillance. Its scale is large
when the vehicle is closer to the camera, while the scale is small when the vehicle is
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far from the camera. The diversity of different scales increases the difficulty of vehicle
detection. The authors observed differences in several different scales of vehicles in
BDD100K, DETRAC, and our VD-NUS datasets. In the case of aspect ratio and relative
size, the distribution is relatively similar. However, the absolute size and the data
distribution in our VD-NUS dataset are relatively diverse and rich.

• Illumination. This paper examines the distribution of light in images and vehicles
in several existing night-time datasets. Compared with the existing datasets, the
VD-NUS dataset has a more concentrated distribution of light in the entire image and
a more divergent distribution of light in the vehicles.

4. Active Auxiliary Mechanism for Vehicle Detection

Our goal is to train a robust vehicle detector with incomplete labeled samples in urban
scenes. The detector can automatically build more annotation samples, alleviating the
annotation workload when building the dataset. This study proposes a vehicle detection
framework via AAM. The proposed AAM considers the localization instability and selects
part of the training set, which contributes the most to the performance improvement in
the detector. This section first introduces the overall framework of active learning for
vehicle detection, and then describes how to select samples based on the uncertainty and
robustness of the detector.

4.1. Overview

As shown in Figure 4, active learning is an iterative process of human–computer
interaction. We initially collect a large number of unlabeled images Su from night-time
urban scenes where active learning is applied to real-world scenes. In the first cycle, small
portions of images are randomly selected from SU for manual labeling to construct the
initial labeled set SL. Then, SL is used to train the detector for the initial detection model.
After that, active learning enters an iterative process. Specifically, this process first relies
on the meaningful information obtained by the detector to determine the next batch to be
annotated. Secondly, this batch of images and their annotation information are updated to
the set SAL after being manually annotated by the annotator. During the third step, SU is
updated to SU − SAL and SL is updated to SL ∪ SAL. Eventually, the updated annotated
pool SL will be used as the training set to retrain the detector. The above process will be
repeated until the detector performs satisfactorily.

Labeled imagesAnnotator

Detector

Augmented Predictions

Predictions

Mixup
Augmented images

Unlabeled images

Uncertainty

Inconsistency

Sample Selection

Figure 4. The overall framework of AAM. In each active learning cycle, the sampling strategy
scores each bounding box by considering the uncertainty within the detection result itself and the
inconsistency between it and the augmented image detection result. These box-level scores are then
aggregated into image scores, which are used to select images for annotation.

4.2. Mixup

The challenge in active learning is how to effectively use the valid information from
the model feedback in deciding the next training batch. In each round, the selected SAL
according to the evaluation metric should have more information than SL, and the detector
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has not yet fully grasped this information. When the image is affected by noise such as illu-
mination changes and occlusion, the detection result does not change drastically, indicating
that the model already understands information in this part well enough. Therefore, these
unlabeled images do not need to be labeled. In contrast, our method prefers to annotate
images that show a dramatic change in detection results when some noise is added. To effec-
tively filter out this type of image, AAM automatically selects images for human annotation
depending on the image localization instability score ranking. Since several targets exist in
the image, the sampling strategy requires first calculating the box scores in each image and
then aggregating them to obtain per-image scores. Specifically, these scores are determined
by both uncertainty and inconsistency. The former is defined by the confidence score within
the detection result itself. The latter is estimated by comparing the inconsistency of the
detection results between the original image and its augmented version.

Furthermore, a key factor that contributes to AAM choosing the data with the greatest
improvement in detector performance via the consistency metric is robust data augmen-
tation. This study adopts a series of data augmentation strategies for the images in SU ,
considering that vehicle detection at night is susceptible to noise such as imbalanced illumi-
nation, occlusion, and blurring. These include hue and saturation adjustments, horizontal
flip, cutout, and Gaussian noise.

The current detection model was first used to obtain bounding boxes on the original
image and the augmented image, respectively. The detection result of the original image is
R{b, c}, where R{bi, ci} is the i-th prediction box. Each bounding box consists of localization
information and classification information, where the former is defined by its central
coordinates (x, y), width w, and height h. In addition, augmentation operations were
performed on each image in SU to obtain the set S

′
U . Correspondingly, the detection results

of the augmented image are R
{

b
′
, c
′
}

, where R
{

b
′
i , c
′
i

}
is the i-th prediction box.

Before calculating the inconsistency of the prediction box, it is necessary to match the
two detection results R{b, c} and R

{
b
′
, c
′
}

. In this matching process, the detection boxes bi

in R{b, c} will be matched one by one with each detection box b
′
i in R

{
b
′
, c
′
}

. B
′
i will be

chosen as the matching box for bi if the Intersection over Union (IoU) between B
′
i and bi is

maximal. The process can be described as follows:

B
′
i = arg maxb′i∈{b′} IoU(b

′
i , bi) (1)

In particular, in Equation (1), this method additionally considers the situation where
detection box bi does not have a matching detection box b

′
i . Former inconsistency-based

approaches simply and violently match detection frames, while not taking into account the
false-positive boxes due to their own instability. If two detection boxes with no overlap are
enforced to be matched, that instead disrupts the normal matching of the other detection
boxes. Consequently, in this paper, the authors artificially provide a matching box for bi
and set the IoU between them to 0.

4.3. Sample Selection

After the detection boxes are matched, IoU is directly used to assess whether the
localization of the paired boxes is consistent. For any paired detection boxes bi and B

′
i , their

localization inconsistency is defined as follows:

Lincon f (bi, B
′
i) = 1− IoU(bi, B

′
i) (2)

Furthermore, our method not only consider the localization instability based on
inconsistency, but also the uncertainty of detecting itself. Given a detection box R{bi, ci},
its uncertainty is defined as

U(bi) = 1− ci (3)
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Therefore, the final score of the detection box is

S(box) = Lincon f (bi, B
′
i) + U(bi) (4)

In Equation (4), a higher S(box) for the detection box demonstrates that the detector
has greater uncertainty, while it is also more easily influenced by noise. Accordingly,
in theory, a higher box score implies that the corresponding region of the box is more
informative. However, during the practical procedure, this study discovered that the boxes
with extremely high scores are most likely to be noisy interference boxes. The reason behind
this, as explained in this paper, is that even if the authors perform post-processing on the
results (e.g., confidence filtering, non-maximum suppression), several background and
redundant boxes are inevitably generated. Such boxes generally have rather low confidence
scores to be high S(box), which consequently misleads the data selection. This study should
not simply conclude that a higher detection box score represents a more informative region,
because this score would most probably be erroneously derived from the detector instability.
On the other hand, a box approaching a score of 0 represents a high confidence level and
an extremely well-matched overlap, which indicates a good understanding of this region.
For this reason, the sampling strategy prefers to select detection boxes whose scores remain
away from the minimum limit of 0, whilst also maintaining a reasonable distance from the
maximum score of 2. Eventually, this method sets the detection box final score to

S
′
(box) = min(1, | S(box)− q |) (5)

The value of S’(box) is restricted to be between 0 and 1 by means of Equation (5),
where the parameter q is determined empirically. The significance of the parameter q is
that if the S(box) is around q, the information in the corresponding region is indeed not
mastered by the detector. Finally, the minimum of all S’(box) in each image is taken as
the score of that image, because the sampling strategy’s decision on whether an image is
difficult or not is usually determined by some difficult objects and is not relevant to most
simple objects.

5. Experiment
5.1. Datasets

This research validated the effectiveness of our active-learning-based method on the
VD-NUS dataset (Figure 5). The VD-NUS comprises a total of 100,218 images, where the
trainval set contains 70,160 images and the test set contains 30,058 images. We used the
trainval set as the initial unlabeled set SU for our active learning process. In the evaluation
phase, the active learning method was evaluated over VD-NUS’s test with the Average
Precision (AP) [47] and log-average miss rate (MR−2) [48] metrics, where higher AP and
lower MR−2 indicate better performance of the detection results.
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Figure 5. Comparison with other state-of-the-art active learning methods on VD-NUS dataset.
(Left) Log-average miss rate metric. (Right) Average Precision metric.
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5.2. Evaluation Metrics

AP. Before calculating the AP metric, precision and recall need to be obtained. The
precision metric refers to the proportion of predictions that are truly correct compared to
the predictions that the detector believes to be correct. Recall is the proportion of correctly
detected objects to all ground truth. The two evaluation metrics, precision and recall, have
been defined, respectively, as follows:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

In the above equation, true positive (TP) indicates the number of vehicles correctly
detected, where both the detection result and the ground truth are vehicles. False positive
(FP) means that the detector incorrectly considers the background as a vehicle, and false
negative (FN) indicates the number of vehicles that the detector missed detecting. The AP
summarizes the shape of the precision/recall curve, and is defined as the mean precision at
a set of eleven equally spaced recall levels [0, 0.1, . . . , 1]:

AP =
1
11 ∑

r∈{0,0.1,...,1}
pinterp (r) (8)

The precision at each recall level r is interpolated by taking the maximum precision
measured for a method for which the corresponding recall exceeds r:

pinterp (r) = max
r̃:r̃≥r

p(r̃) (9)

MR−2. The evaluation metric is often used for pedestrian detection and reflects the
false detection of the algorithm. This metric is obtained by quantizing the MR-FPPI curve,
where the miss rate (MR) and false positive per image FPPI are, respectively, defined as
follows:

MR =
FN

TP + FN
(10)

FPPI =
FP
N

(11)

The parameter N in Equation (11) is the number of images, so FPPI can obtain the
average number of false positives per image.

5.3. Implementation Details

Single-stage detector YOLOv4 [49] was selected as our base object detector. As shown
in the Figure 6, the backbone feature extraction network component, this detector chose
CSPDarknet53 [50] as the backbone. YOLOv4 adds the SPP [51] module to separate out
the most significant context features uses PANet as the method of parameter aggregation
from different backbone levels for different detector levels. In each active learning cycle,
this paper trains the model for 300 epochs and set the batch size to 8 in the initial 50 epochs
during the freezing training stage and 4 in the latter 250 epochs of the unfreezing stage. In
addition, in each cycle, the images in SL were re-divided into a training set and a validation
set in a ratio of 9:1 for the model training. The model is initialized with weights trained on
the COCO 2017 [52] training set. For VD-NUS, 1000 images were randomly selected from
its training set as the initial labeled set SL. This work performed altogether 6 iterations of
active learning, where 1000 images are selected from the remaining training set into SL in
each active cycle.
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DarknetConv2D_BN_Mish(416,416,32)

Resblock_body(208,208,64)*1

Resblock_body(104,104,128)*2

Resblock_body(52,52,256)*8
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Figure 6. The overall framework of the YOLOv4 detector, which includes CSPDarknet53 backbone,
SPP additional module, PANet path-aggregation neck, and YOLOv3 [53] (anchor-based) head.

5.4. Comparison with the State-of-the-Art Detection Models

To demonstrate the effectiveness of our method, random sampling was used as the
baseline whilst comparing against other active-learning-based SOTA methods, including
Learning Loss [42], LS+C [44] and CALD [54]. For the task-agnostic Learning Loss approach,
this experiment introduced the loss prediction module and utilized the three feature layers
output from the PANet part of the YOLOv4 model as a multi-layer feature to input into
the loss prediction module for data selection and model training. For the CALD approach,
only the first stage of the method was applied in the experimental setup. The detection
results on the VD-NUS are shown in Figure 5, where our approach consistently achieves
optimal performance in almost all active learning cycles, demonstrating the effectiveness
of the proposed sampling strategy. In particular, AAM results in a 1% to 3% reduction in
MR−2 in each active learning cycle compared to the random sampling strategy. For the
metric AP, our approach outperforms random sampling by 0.91% and 0.49% when using
2000 and 3000 images, respectively.

This demonstrates the effectiveness of the method on the VD-NUS dataset, which
is able to efficiently choose difficult samples through the uncertainty and localization
instability of the detection results. Moreover, the overall trend shows that the performance
of the respective approaches varies considerably in the early stages of iterative training, and
gradually converges in the later cycles. This is due to the fact that with the increase in active
learning iterations, the training data contain less knowledge that has not yet been learned by
the detector. For the task-agnostic active learning method Learning Loss, it performed the
worst, and even significantly lower than random sampling. The reason is that this type of
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method does not consider the characteristics of the localization for the object detection task.
Therefore, the sample selected by this approach contains less knowledge that the detector
has not yet mastered, whereas random selection at least ensures uniform sampling.

5.5. Discussion and Analysis

Scoring aggregating functions. This part of the experiment compares the active
learning performance under different approaches to aggregating the bounding box scores
S
′
(box) into an image score. In order to verify whether it is reasonable to choose the

minimum score of all detection boxes in each image as the image score, we also conducted
an ablation study by averaging the scores of all detection boxes as image scores. The
comparison of the experimental results between the two aggregation methods is shown in
Table 2, where the performance of the detector degrades during the active learning iterations
when the aggregation function changes from ’minimum’ to ’average’. The experimental
results illustrate that whether an image is challenging or not has no relevance to the larger
number of simple samples in the image, but depends on the few difficult objects.

Table 2. AP (%) by using different components of the AAM.

Method Inconsistency-Based Scoring q Min Average
Number of Labeled Images

2000 3000 4000 5000 6000 7000

Random 75.53 78.58 80.12 81.42 82.46 83.46

Ours
X X 75.95 78.34 80.21 81.92 82.75 83.95
X X X 76.44 79.07 80.16 81.95 82.77 83.66
X X X 72.89 75.75 77.31 78.25 79.19 80.92

Optimum threshold q. S(box) in Equation (4) was directly applied as the final score
of the bounding box to verify the reasonableness for the existence of q in Equation (5). As
shown in Table 2, there is an overall significant drop in detection performance after the
parameter q is removed. This experiment demonstrates that q can filter out some noise
samples from the detection results. The optimal parameter q requires further confirmation.
To this end, we conducted a series of experiments by taking the middle value 1 for q and
then increasing or decreasing the value of q in 0.1 intervals in turn. The experimental results
are shown in Figure 7. The performance drops slightly as q increases from 1.0 to 1.1, so
the experimental setup did not continuously improve the value of q. In the process where
q is varied from 1.0 to 0.6, it can be observed that the optimal performance is achieved
by the experiment when q is set to 0.8. As q decreases further, the performance of the
detector decreases. The reason for this is that the optimal value of S(box) will approach 0;
consequently, the active learning selects samples that the detector has already mastered.
On the other hand, when q is constantly rising, the detection box information becomes
unstable, which also causes performance degradation.

Representative examples of images with different scores are presented in Figure 8. For
(a), the detector performs well enough on the image, which indicates that this image is
unable to provide the detector with any more new information. It can be observed that
the vehicles within the two pairs of images in situation (b) are correctly detected by the
detector, but at the same time, many false-positive predictions are produced. Without
q to constrain the false-positive boxes, the image score is dominated by the noise in the
image background. In situation (c), the vehicle suffers from various degrees of exposure,
occlusion, blurriness, etc., and the corresponding detection results are extremely unstable.
These images with relatively reliable but unstable detection results are the ones that our
sampling strategy favors.
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Detector scalability. This method is not only applicable to one-stage object detectors.
Therefore, the scalability of the approach was validated on the two-stage network Faster
R-CNN [55] with Resnet-50 [56]. Likewise, random sampling was utilized as the baseline
to validate whether our approach remains effective on the two-stage network. The experi-
mental results are presented in Table 3. As shown in Table 3, our method outperforms the
random sampling strategy, whether based on the one-stage object detector or the two-stage
object detector. Particularly, based on the Faster R-CNN, our approach improves the de-
tection performance AP by 0.53% and 0.96%, respectively, compared to random sampling
when the number of annotated images is 3000 and 4000. For the MR−2 metric, AAM can
improve performance by up to 3% compared to random sampling. In conclusion, our
approach can be extended to other object detection networks.

75
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q=1.1

Figure 7. Performance of the detector under different q parameter.

Table 3. Performance of our approach on VD-NUS based on different detectors.

Model
Method Number of Labeled Images

Metric
Random AAM 1000 2000 3000 4000 5000 6000 7000

YOLOv4

X 68.22 75.53 78.58 80.12 81.42 82.46 83.46
AP

X 68.22 76.44 79.07 80.16 81.95 82.77 83.66

X 0.65 0.55 0.49 0.46 0.43 0.41 0.39
MR−2

X 0.65 0.52 0.46 0.44 0.41 0.40 0.37

Faster R-CNN

X 82.18 83.97 84.76 84.96 85.39 85.51 85.89
AP

X 82.18 84.17 85.29 85.92 85.81 86.38 86.06

X 0.4 0.37 0.36 0.36 0.35 0.35 0.33
MR−2

X 0.4 0.38 0.35 0.33 0.33 0.32 0.32
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(c)

(a)

(b)

Low-value 

images

High-value 

images

Figure 8. Visualization of the detection results for original and augmented images: (a) Detector
performs well on the image. (b) Image score is dominated by false-positive predictions. (c) Images
that our active learning approach utilized.

6. Conclusions

In this paper, the authors present the first vehicle detection dataset collected from
urban surveillance scenes, named VD-NUS, which exhibits a large number of vehicles from
a variety of viewpoints. Capturing images from video to construct a dataset inevitably
generates data redundancy. To address this challenge, this paper proposed a vehicle detec-
tion framework through AAM, which can train an effective vehicle detector with minimal
labeled data. The proposed AAM framework can actively select informative images for
annotation by estimating the localization instability of the detection results, consequently
reducing the annotation workload and selecting informative samples. Additionally, this
paper proposed a computer-assisted detection module embedded in the AAM framework
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to help annotators quickly and accurately label data. The experimental results demonstrate
the effectiveness of our approach on the VD-NUS dataset.

6.1. Limitations

Although the uncertainty and localization instability scoring rules provided by the
sampling strategy have achieved positive results and reduced the annotation workload
when there is redundancy in the data, they did not take into account the diversity of the
data when no redundancy exists. In future work, we will continue this study by further
considering the diversity of the distribution of the data in the sampled set. On the other
hand, the proposed VD-NUS dataset aims to compensate for the absence of a night-time
vehicle detection dataset in urban surveillance scenes. Night-time vehicle detection in this
scene has not been further investigated, so how to address such challenges as severe vehicle
occlusion, richer viewpoints, and uneven illumination in this scene remains our future
research direction as well.

6.2. Prospects

To explore the reason that the performance of these detectors is unsatisfactory on
the VD-NUS dataset, further exploration is important. There are several challenges to
night-time vehicle detection, such as light, scale, occlusion, and blur.

• Light. The biggest difference between a night scene and a day scene is the absence
of natural light. Night-time light sources mainly come from streetlights and vehicle
headlights on the roadside. There is often low light when the vehicle is stopped.
Exposure often exists when the vehicle is in motion. Enhancement of low light and
suppression of exposure are important topics that favor vehicle detection at night.

• Scale. Vehicles often traverse the entire frame when moving. They are easy to find
when they are closer to the camera; however, they can be missed when they are farther
away from the camera. Vehicles farther away from the camera are small in scale. The
optimization of super-resolution or detection methods for small-scale vehicles at night
is intuitively important for night-time vehicle detection research.

• Occlusion. On peak congested roads, vehicles are closer to each other. It is difficult
to see the full outline of the vehicle from the camera’s point of view, resulting in
severe occlusion. This situation can bring about serious performance degradation.
Completing the occluded area with information about the visible area of the vehicle
can solve this problem to some extent.

• Blur. The surveillance camera’s recording is uninterrupted, including at day and
night. Due to long-term recording, equipment easily ages, and as a result this affects
the camera imaging quality. The large temperature difference between day and night
leads to increased fog, leading to seriously blurred images. On the other hand, the
quality of images also reduces when images are sampled from the second night of
surveillance due to the lower light. The current methods cannot be directly applied to
practice, and the corresponding optimization techniques are needed to overcome the
above problems.
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