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Abstract: Inversion of atmospheric ducts is of great importance in the field of performance evaluation
for radar and communication systems. Since the model parameters in machine learning play a
crucial role in prediction performance, this paper develops a random forest (RF) model integrated
with Bayesian optimization (BO) called BO-RF for atmospheric duct prediction, and the BO is
adopted to determine appropriate model parameters during the training process. In addition, the
K-fold cross-validation (CV) method is also incorporated into the model to obtain the best model
partition and overcome the overfitting problem. To test the performance of the proposed model,
the results obtained by the BO-RF are compared with other commonly used methods, such as
classical RF, extreme gradient boosting (XGBoost) with/without BO, and K-nearest neighbor (KNN)
with/without BO. Comparisons demonstrate that BO-RF has the best accuracy and anti-noise ability
for the estimation of duct parameters.

Keywords: atmospheric duct estimation; random forest; radar sea clutter; parabolic equation;
orthogonal experiment design

1. Introduction

An atmospheric duct is an anomalous electromagnetic propagation phenomenon that
commonly appears in the maritime environment and can have a significant impact on
radar and communication systems, such as communication blind areas, increased radar sea
surface clutter, etc. Therefore, accurate analysis of radar echoes and efficient estimation
of atmospheric duct parameters have become active research fields. Atmospheric ducts
generally consist of three types, including evaporation ducts, surface-based ducts (SBDs),
and elevated ducts. Evaporation ducts and SBDs are two common types in maritime
environments due to the rapid changes in vertical atmospheric and humidity profiles with
altitude above the sea surface [1]. It should be noted that SBDs exhibit a lower probability
of occurrence than evaporation ducts, but their influence on radar and communication
systems is much greater than that of evaporation ducts.

Estimation of atmospheric duct refractivity parameters with the refractivity from clut-
ter (RFC) technique has attracted considerable interest in the field of optimization theory.
Numerous methods have been proposed to retrieve atmospheric refractivity parameters.
Gerstoft et al. [2,3] published simulation results for an eleven-parameter refractivity profile
with five parameters in the vertical direction and six parameters in the horizontal direc-
tion, solved using a genetic algorithm, and presented the key steps and the latest research
progress regarding the RFC technique. Douvenot et al. [4] first employed the least squares
support vector, which belongs to a class of machine learning based on the pregenerated
radar sea clutter power (RSCP) database produced by the parabolic wave equation (PWE),
to estimate SBD. Wang et al. [5] inverted the evaporation duct using particle swarm opti-
mization with RFC. Zhang et al. [6] proposed a four-parameter evaporation duct model
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and retrieved refractivity parameters from it. Zhao et al. [7] applied classical simulated
annealing to the remote sensing of an atmospheric duct. Yang et al. [8–11] performed
the inversion of an atmospheric duct with standard and improved swarm intelligence
optimization and presented a comparison of the machine learning algorithm for evapo-
ration duct estimation. Tepecik et al. [12] introduced a novel hybrid model based on an
artificial neural network and a genetic algorithm for the inversion problem of refractivity
estimation. Lentini et al. [13] calculated the global sensitivity of radar wave propagation to
environmental parameters at the maritime atmospheric boundary layer. Penton et al. [14]
studied the influence of rough ocean surfaces on evaporation duct atmospheric refractivity
inversion with a genetic algorithm. Pozderac et al. [15] adopted a novel transmit–receive ar-
ray system named the X-band beacon-receiver array to determine the maritime evaporation
duct. Yan et al. [16] proposed an estimation method for evaporation ducts using a neural
network. Zhu et al. [17] predicted evaporation duct height based on a multilayer perceptron
network. Sit et al. [18,19] showed that deep learning and artificial neural networks can
be efficiently used to classify and predict atmospheric ducts. It is of great significance to
obtain instantaneous environmental information for assessing the performance of radar
and communication systems. It can be distinctly seen from the above study that more
and more attention has been paid to the field of monitoring the atmospheric environment
in the maritime boundary layer with machine learning due to its superiority in real-time
compared with swarm intelligence optimization. Random forest (RF) [20,21] is a powerful
machine learning algorithm inspired by the ensemble learning method that works by
incorporating many decision trees into one algorithm model to enhance its performance.
However, the hyper-parameter in RF that directly relates to the performance of machine
learning is difficult to determine. In this paper, a combination of RF with Bayesian opti-
mization (BO) is presented to predict atmospheric duct parameters, where BO is adopted
to search for the most appropriate hyper-parameter during the training process. To test the
performance of the proposed BO-RF model, the RSCP versus propagation distance is nu-
merically simulated by the PWE method with the combinations of refractivity parameters
generated with an orthogonal experiment design (OED) method; the results obtained by
the BO-RF are compared with the commonly used methods, such as classical RF, extreme
gradient boosting (XGBoost) [22] with/without BO, and K-nearest neighbor (KNN) [23]
with/without BO. Comparisons demonstrate that BO-RF has the best accuracy and noise
immunity for the estimation of atmospheric duct parameters.

2. Forward Model

The forward model commonly includes two parts: the refractivity model and the radar
propagation model. In the subsequent section, we will introduce the basic concept in the
field of atmospheric ducts.

2.1. Refractivity Model

As the radio wave travels in the electromagnetic duct, the propagation features of the
radio wave are controlled by the index of refraction:

n = c/v, (1)

where c is the speed of light in a vacuum and v is the speed of light in the medium. The
value of n is close to unity, typically 1.00035; however, even a tiny variation in the refractive
index may cause a huge change in the propagation features. Hence, a useful dimensionless
physical variable N, which is the part-per-million change in the index of refraction, named
refractivity, is introduced:

N = (n− 1)× 106. (2)
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To further account for the curvature of the earth, another variable M called modified
refractivity is provided by

M(z) = N +
z

Re
× 106 = N + 0.157z, (3)

where Re is the radius of the earth and z is the height above the earth’s surface. As
dM/dz < 0, an electromagnetic duct that can confine radio wave propagation and act like a
waveguide is formed [24,25]. In this paper, our emphasis is placed on the three parameters
of SBD shown in Figure 1, according to [26].

M(z) = M(0) +


c1z z ≤ zb

c1zb −Md
z−zb
zthick

zb < z < zthick

c1zb −Md + c2(z− zb − zthick) z ≥ zthick

, (4)

where M(0) is the modified refractivity at the mean sea level, typically taken as
330 M-units, z describes the height from the mean sea level, zb and zthick represent the
thicknesses of the base layer and trapping layer, c1 and c2 denote the slopes of the base
layer and top layer, and Md is the duct strength. Obviously, there are three parameters in
the SBD refractivity profile model, and we will employ the parametrization refractivity
model of SBD via M = (zb, zthick, Md). The tri-linear refractivity profile for SBD is shown
in Figure 1.
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Figure 1. Tri-linear refractivity profile for SBD.

2.2. PWE Method

PWE can be divided into a narrow-angle and a wide-angle PWE. The propagation
elevation of the narrow-angle PWE has good accuracy when it does not exceed 15◦. An
atmospheric duct usually occurs when the trapping angle does not exceed 1◦. Therefore, the
narrow-angle PWE is selected for studying the radio wave for long-range propagation in
atmospheric ducts [27]. In order to analyze the two-dimensional tropospheric propagation
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problem, the scalar wave equation taking the index of refraction n into account is provided
by [28]:

∂2 ϕ

∂x2 +
∂2 ϕ

∂z2 + k2
0n2 ϕ = 0, (5)

where ϕ(x, z) represents the electric or magnetic field component, k0 is the wavenumber in
a vacuum, and x and z are the range and height, respectively. It is a good approximation
if the index of refraction varies slowly with the propagation direction. With the help of
the reduced function ϕ(x, z) = u(x, z)e−ik0x and the paraxial approximation, the PWE is
expressed by

∂2u
∂z2 + 2ik0

∂u
∂x

+ k2
0(n

2 − 1)u = 0. (6)

Then, the split-step Fourier-transform solution to the PWE can be written as [29]

u(x0 + ∆x, z) = eik0 M(z)10−6∆xF−1
{

e−ip2∆x/2k0F{u(x0, z)}
}

, (7)

where p is the transform variable, and F and F−1 denote the forward Fourier transform
and inverse Fourier transform, respectively. If the initial field u(x0, z) is provided, the field
distribution along the vertical direction at each range interval can be easily marched in a
horizontal range.

Once the field distribution of the entire computational region is obtained with Equation (7),
the RSCP can be easily expressed in dB at range x by radar theory [2],

Pc(x, M) = −2L(x, M) + 10 log(x) + σ◦ + C0, (8)

where M is the parameterized vector of the atmospheric environment, σ◦ is the normalized
scattering coefficient from the sea surface, C0 is a constant that contains the parameters of
the radar system, and L(x, M) is the propagation loss in the atmospheric duct environment
that can be conveniently computed from the field distribution.

3. Optimization Algorithm
3.1. Principle of RF Regression

Decision tree is the primary component of RF and belongs to a class of machine
learning that generally includes three main steps: feature selection, decision tree generation,
and pruning of the decision tree. RF commonly adopts the decision tree that has not
completed the pruning optimization operation. Each decision tree makes a prediction for
the sample, and the final prediction can be achieved by taking the average of the combined
predictions of all decision trees [30]. It has strong robustness and flexibility in dealing with
regression problems. However, it has the shortcomings of falling into the local optimum,
leading to high complexity and overfitting.

RF is an integrated learning algorithm using decision tree modeling, consisting of
multiple independent decision trees. Different decision trees are constructed from random
samples, but there is no relationship between them, and the output of the model is deter-
mined by each decision tree. In the process of training decision trees, randomly selected
features further improve the model’s accuracy and avoid insufficient generalization ability.
The detailed steps are given as follows:

1. A bootstrap method is adopted to randomly selected M sample points from the
original sample dataset S to construct a decision tree and its training subset.

2. The training subset is used to train each decision tree. Assume that the number of
input features to the dataset is N. The split rule for each node is to randomly select k′

features from the N features as alternative branch features, and then select the best
split node from the k′ features to divide the left and right subspaces. Each split node
performs a binary test on each subset, and the test result is sent to the left or right
sub-node. The test randomly chooses a subset of features and finds a value with the
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lowest mean square error κ to group and determine its optimal branch, and it can be
expressed as

κ =
1

D1
∑i∈D1

(Ei − C1)
2 +

1
D2

∑i∈D2
(Ei − C2)

2, (9)

where Ei is the true value of the ith sample, and C1 and C2 are the sample predictions
for the left and right subspaces D1 and D2, respectively.

3. Multiple decision trees can be generated via the first two steps above. The final
prediction of each decision tree depends on the average of the leaf nodes where the
sample points are located. The accuracy of RF is further improved by optimizing
parameters such as the number of decision trees, the maximum depth of the decision
tree, the minimum number of samples required for node division, the minimum
sample number of the leaf nodes, and the number of features in the tree.

4. Finally, a RF model is produced by taking the average of the multiple decision trees
as follows:

f (x) =
1
k′

k′

∑
i=1

Ei(x), (10)

where f (x) denotes the combined regression model.

3.2. BO Algorithm

BO is a novel and efficient hyper-parameter tuning algorithm [31,32]. In BO, the
objective function distribution is first evaluated by Bayes’ theorem, and the new hyper-
parameter for the algorithm are then selected according to the optimal sampling point
distribution of the objective function. In addition, the update of the hyper-parameter for
the next time depends on the objective function value of the optimal sample point. BO
is mainly composed of the probabilistic proxy model and the acquisition function. In the
following, we will briefly introduce the two parts.

3.2.1. Probabilistic Proxy Model

The updated formula in the probabilistic proxy model is given by

p( f |D1:t) =
p(D1:t| f )p( f )

p(D1:t)
, (11)

where f represents the objective function, D1:t = {(x1, f1), (x2, f2), L(xt, ft)} denotes the
collection of sampling point, p(D1:t| f ) is the likelihood distribution of observation set,
p( f ) is the prior probability distribution of f , and p( f |D1:t) represents the posterior proba-
bility distribution of f and is used to modify and test the unknown target function.

The probabilistic proxy model can be divided into parametric and non-parametric
models. The Gaussian process is a commonly adopted non-parametric model that has a
strong ability to fit functions and is widely used in the field of regression.

A Gaussian process is entirely defined by the mean function m(x) and the covariance
function K(x, x′) as

f (x) ∼ GP
(
m(x), K

(
x, x′

))
, (12)

where the mean function is a vector and the covariance function is a matrix.
If we assume that there is a collection of sample points D = {(x1:t, y1:t)}, its covariance

matrix is given by

K =


k(x1, x1) k(x1, x2) · · · k(x1, xt)
k(x2, x1) k(x2, x2) · · · k(x2, xt)

...
...

. . .
...

k(xt, x1) k(xt, x2) · · · k(xt, xt)

. (13)
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When a set of sample (xt+1, ft+1) is added to the collection of historical evaluation
points, supposing that k =

[
k(xt+1, x1) k(xt+1, x2) . . . k(xt+1, xt)

]
, the corresponding

covariance matrix can be updated by

K =

[
K kT

k k(xt+1, xt+1)

]
. (14)

Using the updated covariance matrix, the posterior probability distribution of ft+1 is
computed from the first t samples

p( ft+1|D1:t, xt+1) ∼ N(µ, δ2)

µ = kTK−1 f1:t

δ2 = k(xt+1, xt+1)− kTK−1k

. (15)

3.2.2. Acquisition Function

In the Gaussian process, the acquisition function is adopted to balance the ability of
exploration and exploitation and search for the optimal objective function value for the next
iteration to obtain the optimal hyper-parameter. Currently, the probability of improvement
(PI), expected improvement (EI), and upper confidence bound (UCB) are widely used for
acquisition functions. In this paper, PI is selected as the acquisition function, and it can be
expressed as follows:

∂t(x; D1:t) = p( f (x) ≤ v∗ − ξ) = φ

(
v∗ − ξ − µt(x)

δt(x)

)
, (16)

where v∗ represents the current optimal function value, φ(·) is the cumulative density
function of the standard normal distribution, and ξ is the balance parameter. The problem
of local optimum can be overcome to a certain extent and the optimal value can be globally
searched by adjusting the parameter ξ.

4. A Hybrid BO-RF Model
4.1. Orthogonal Experimental Design Method

In order to train the RF model, an OED method is used to generate the combinations
of refractivity parameters. It is well known that OED is a robust way to effectively handle
multi-dimension and multi-factor problems because it can select a few representative
combinations in the experimental database to obtain the optimal result. The key in OED
is the orthogonal array (OA) that can reflect the characteristics of each dimension. Thus,
we first need to construct an appropriate OA. Here, we use LM(QN) to represent an OA
with N factors and Q levels per factor, where M is the number of combinations of levels.
Then, we take a three-factor problem as an example by setting Q = 3 and N = 3 to obtain
an orthogonal table L9(33) [33–35]:

L9(33) =



1 1 1
1 2 2
1 3 3
2 1 2
2 2 3
2 3 1
3 1 3
3 2 1
3 3 2


. (17)

In L9(33), there are three columns, showing that it is suitable for the problem with
three parameters at most, and nine rows, demonstrating that one can do nine experiments
for a combination with different levels. Each row in (17) represents an experiment with
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different levels. Normally, we should carry out 33 = 27 combinations of experiments for
a three-factor and three-levels-per-factor problem. However, this task can be reduced to
32 = 9 combinations of experiments with the help of OA.

An orthogonal expansion is made based on OED. Assuming the lower and upper
boundaries of a D-dimension parameter are u = (u1, u2, . . . uD) and t = (t1, t2, . . . tD), the
range of the corresponding cross-solutions are determined by

low = (min(u1, t1), min(u2, t2), . . . min(uD, tD)), (18)

up = (max(u1, t1), max(u2, t2), . . . max(uD, tD)). (19)

In the cross-solution, the range of the ith dimension variable xi is [lowi, upi] =
[min(ui, ti), max(ui, ti)]. The ith dimension variable xi can be quantized into Q levels
according to the following formula:

li,j =


lowi j = 1
lowi +

j−1
Q−1 (upi − lowi) 2 ≤ j ≤ Q− 1

upi j = Q

. (20)

Then, we use LM(QN) to construct M feasible combinations. More detailed informa-
tion can be found in [33–35].

The inversion of SBD is a three-parameter problem, and the lower and upper bound-
aries are given by t = (0, 20, 20) and u = (100, 100, 100), respectively [4]. Let us first
construct an appropriate OA LM(QN) with Q = 100, N = 3, and M = 10, 000 for the
purpose of generating 10, 000 training datasets [4].

4.2. Range of the Hyper-Parameter in RF

The hyper-parameter in RF mainly includes the number of decision trees, maximum
depth, minimum samples of split, minimum samples of leaf, and maximum features in the
tree. The range of hyper-parameter is shown in Table 1.

Table 1. Range of hyper-parameter in RF.

Description Hyper-Parameter Search Range

number of decision trees n_estimator (10, 500)
maximum depth of trees max_depth (5, 50)

minimum samples of split min_sample_split (1, 50)
minimum samples of leaf min_sample_leaf (1, 50)

maximum number of features max_features (4, 100)

4.3. BO-RF Model

The core of the RF model lies in the selection of the hyper-parameter. In this paper, a
BO-RF is adopted to predict the refractivity parameter of an atmospheric duct, and the BO
is incorporated into the RF to find the best hyper-parameter. In addition, we apply K-fold
cross-validation (CV) technology [36] to the BO-RF, which is commonly used to evaluate
the training effect and avoid overfitting phenomenon. The CV makes full use of limited
data, and the evaluation results may be as close as possible to the performance of the model
on the test set, which can be used as an indicator for model optimization.

In BO-RF, the input and output datasets are first used to train the RF model and
optimize the RF parameters. Then, the probabilistic proxy model for the estimation of
atmospheric duct is constructed and optimized to obtain the best hyper-parameter in
RF. Up to this point, the BO-RF model has been successfully established. The flowchart
of the BO-RF is shown in Figure 2 for atmospheric duct estimation. The corresponding
optimization process is given as follows:
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Figure 2. Flowchart of the BO-RF for atmospheric duct estimation. Figure 2. Flowchart of the BO-RF for atmospheric duct estimation.

1. An OED method is used to generate the combinations of refractivity parameters.
2. The split-step Fourier-transform solution to the PWE is adopted to generate the RSCP

samples according to the combinations of refractivity parameters.
3. A bootstrap method is used to produce decision trees from the training set and then

form a random forest.
4. A group of hyper-parameter is randomly selected within the scope of the parameter

to produce the corresponding initialization point of the sample, then substituted into
the RF model to obtain the corresponding objective function f and the initial sample
set D.

5. The probabilistic proxy model in BO is applied to fit (x, f ) and find the most possible
evaluation point xt in the sample, which can be used to obtain the optimal acquisition
function. Furthermore, the hyper-parameter is then assigned to RF model to find
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the objective function value ft of the optimal sample point and use it as the basis for
selecting the hyper-parameter next time.

6. A new set of sampling points (xt, ft) is added to the historical sample set Dt−1, and
the Gaussian process is adjusted to optimize the objective function in it.

7. The BO stops updating as soon as it reaches the maximum number of iterations. That
is to say, the best hyper-parameter, the optimal value of the objective function, and
the corresponding BO-RF model are determined.

8. The test set is then used to examine the BO-RF model.
9. The results are evaluated and analyzed.

5. Results and Discussion
5.1. Simulations of the RSCP in SBD

In this section, the RSCP versus propagation distance are numerically simulated by
Equation (8) via the PWE method. In order to estimate the refractivity profile with the
RFC technique, the RSCP should be sensitive to the refractivity parameters of SBD. In the
simulations, the radar system parameters are given in Table 2, and the parameterized vector
of refractivity profile for SBD is M = (30, 42, 71).

Table 2. Radar system parameters.

Parameters Value

Frequency 2.84 GHz
Transmitting power 91.4 dBm

Beamwidth 0.4◦

Antenna height 30.78 m
Transmitting antenna gain 52.8 dB

Polarization VV

Firstly, the curve of RSCP versus the propagation distance at different receive heights
are shown in Figure 3. It can be clearly seen that the RSCP in SBD is distinctly sensitive to
the receive height.
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Furthermore, the coverage diagrams are presented in Figures 4–6 to examine the
change in RSCP in SBD with every dimension of the parameterized vector. It is obvious that
the spatial distributions of RSCP change as each parameter in refractivity profile changes.
In other words, the spatial distributions of RSCP vary obviously with the parameters
in SBD.
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5.2. Estimation of SBD

To test the performance of the BO-RF, the estimation study of three parameters SBD
with RFC is carried out, and the results obtained by the BO-RF are compared with the
results obtained from commonly used methods, such as classical RF, XGBoost with/without
BO, and KNN with/without BO. The radar system parameters are identical to those given
in Table 2. In order to fully consider the propagation characteristics of the SBD and reduce
the number of training samples, the OED method is adopted to randomly select 10,000 sets
of samples of the refractivity parameter (zb, zthick, Md), namely a matrix with ten thousand
rows and three columns, and 10,000 sets of RSCP from 10.2 km to 50.0 km at an interval of
200.0 m, namely a matrix with ten thousand rows and two hundred columns, generated by
the PWE method. It should be noted that we randomly selected 80% of the samples used for
training the model, and the other 20% were used to test the regression model. Furthermore,
5% Gaussian noise is also added to 20% of the samples to examine the anti-noise ability.
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Finally, the chosen RSCP matrix with eight thousand rows and two hundred columns and
the refractivity parameter matrix with eight thousand rows and three columns are treated
as the input and output matrix to train the regression model, repsectively. In this paper, the
default and BO-optimized hyper-parameter are given in Table 3.

Table 3. Default and BO-optimized hyper-parameter.

Hyper-Parameter Default Value Optimized Value

n_estimator 30 382
max_depth 6 42

min_sample_split 4 2
min_sample_leaf 4 1

max_features auto 50

In addition, the following three evaluation indicators, namely the coefficient of deter-
mination R2, mean absolute error (MAE), and mean square error (MSE), are introduced to
test the performance of the BO-RF model for atmospheric duct estimation. Smaller MAE,
MSE, and closer R2 value to one mean that the algorithm has better performance. The
evaluation indicators are defined as follows:

R2 = 1−

m′

∑
i=1

(Xi −Yi)
2

m′

∑
i=1

(
Y−Yi

)2
, (21)

MAE =
1

m′
m′

∑
i=1
|Xi −Yi|, (22)

MSE =
1

m′
m′

∑
i=1

(Xi −Yi)
2, (23)

where Xi is the predicted ith value, Y is the actual ith value, Y is the mean of the true values,
and m′ is the number of datasets.

Firstly, a more informative and truthful evaluation indicator, the coefficient of determi-
nation R2 is adopted to assess the generalization ability of the regression model [37] based
on the test sets with different regression models with/without noise, and the values of the
coefficient of determination R2 are shown in Table 4, in which the best results are high-
lighted in bold. From Table 4, we can see that the BO-RF model obtains the best results in
the with/without noise case. That is to say, the BO-RF model exhibits good generalization
performance and anti-noise ability compared with the other regression models.

Table 4. Coefficient of determination R2 for the regression model.

Algorithms R2 without Noise R2 with Noise

RF 98.92% 98.46%
BO-RF 99.93% 99.82%
KNN 90.67% 87.51%

BO-KNN 91.76% 88.72%
XGBoost 94.68% 93.73%

BO-XGBoost 95.96% 94.83%

Then, the corresponding statistical analysis with respect to MAE and MSE is used to
further test the accuracy of the regression model. It can be observed from Table 5 that the BO-
RF outperforms the other models, such as RF, KNN, BO-KNN, XGBoost, and BO-XGBoost,
for the estimation of SBD, and the rank order of the prediction accuracy is followed by
BO-XGBoost and BO-KNN from greatest to least. Overall, the regression models optimized
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with BO are obviously better than those without BO regardless of whether the 5% Gaussian
noise is taken into consideration or not. These results suggest that BO is an effective way to
find the best hyper-parameter in the regression model.

Table 5. Comparison of the MAE and MSE for the test results without noise and with 5% Gaussian noise.

Algorithms Parameters

MAE MSE

Without
Noise

With 5%
Gaussian

Noise

Without
Noise

With 5%
Gaussian

Noise

RF
zb/m 0.48 0.49 0.44 0.82

zthick/m 0.35 0.67 0.71 1.18
Md/M-units 0.48 0.50 0.40 0.95

BO-RF
zb/m 0.14 0.39 0.05 0.62

zthick/m 0.09 0.36 0.06 0.51
Md/M-units 0.16 0.40 0.09 0.84

KNN
zb/m 1.57 1.91 3.63 7.24

zthick/m 1.96 2.09 8.44 8.37
Md/M-units 2.61 2.85 9.57 9.91

BO-KNN
zb/m 1.47 1.85 3.45 5.30

zthick/m 1.76 1.84 5.64 6.03
Md/M-units 2.46 2.70 6.30 8.80

XGBoost
zb/m 0.93 1.06 2.78 4.00

zthick/m 1.42 1.69 4.07 4.15
Md/M-units 1.12 1.67 3.55 5.06

BO-XGBoost
zb/m 0.64 0.91 1.16 3.14

zthick/m 0.75 0.90 2.11 2.79
Md/M-units 0.98 0.97 2.08 2.97

Furthermore, we randomly select 100 sets of predicted vectors of the refractivity pa-
rameter with 5% Gaussian noise from 2000 sets of predicted results to show the distributions
of each parameter in SBD. From Figures 7–9, it can be roughly observed that the predicted
parameters, such as the thickness of the base layer, the thickness of the trapping layer, and
the duct strength obtained with BO-RF, BO-KNN, and BO-XGBoost, are in good agreement
with the true values. In order to carefully examine the performance of the three methods,
the partial enlarged drawing in each figure is also provided. It is clearly shown that the
BO-RF obtains the best performance compared with BO-KNN and BO-XGBoost.

Another analysis focused on the accuracy and stability based on 50 independent runs
for the inversion of SBD with/without 5% Gaussian noise is provided. Figures 10 and 11
demonstrate the comparison of the histograms of the estimation results achieved by BO-RF,
BO-KNN, and BO-XGBoost. It should be pointed out that the red lines denote the position
of the true parameter in SBD. It can be seen that the estimation parameters of BO-RF
distribute closely to the true parameter compared with the other two models; these mean
that the performance of BO-RF performs better than those of BO-KNN and BO-XGBoost in
the case of with/without noise. Additionally, the difference between the true and predicted
parameters, named inversion error, for the thickness of the base layer, the thickness of the
trapping layer, and the duct strength based on the above 50 independent runs is given in
Figures 12–14. It is clearly shown that the inversion error of BO-RF is also much lower than
those of the two models; these also suggest that the accuracy of BO-RF is superior to those
of BO-KNN and BO-XGBoost.
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Figure 9. Comparison of the predicted duct strength for the BO-optimized models.
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Figure 10. Comparison of the histograms of BO-RF, BO-KNN, and BO-XGBoost without noise.
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Figure 11. Ccomparison of the histograms of BO-RF, BO-KNN, and BO-XGBoost with 5% Gaus-
sian noise.
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Figure 12. Comparison of the inversion error with the thickness of the base layer: (a) without noise
and (b) with 5% Gaussian noise.
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Figure 13. Comparison of the inversion error with the thickness of the trapping layer: (a) without
noise and (b) with 5% Gaussian noise.
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In addition, a comparative study focused on the refractivity profile and propagation
loss between the true and predicted parameters in SBD is given in the subsequent section.
The average inversion parameters of SBD with BO-RF, BO-KNN, and BO-XGBoost are
given in Table 6.
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Table 6. Average inversion results of SBD.

Parameters
BO-RF BO-KNN BO-XGBoost

Without Noise Noise Without Noise Noise Without Noise Noise

zb/m 32.28 32.43 33.77 34.26 32.92 33.37
zthick/m 40.30 40.54 41.95 42.44 41.10 41.62

Md/M-units 66.03 66.33 67.69 68.11 66.76 67.28

zbzthick MdFigures 15–17 give comparisons of the refractivity profile and propagation
loss between the true and predicted parameters. Furthermore, a partial enlarged drawing of
each figure is presented to exhibit the details. Compared with BO-KNN and BO-XGBoost,
we can conclude that the predicted refractivity profiles and their propagation loss ob-
tained with BO-RF exhibit good agreement with the results simulated with true parameters
with/without noise. In addition, we can see from Figures 16 and 17 that there are some-
what large deviations between the propagation loss simulated by the true and predicted
parameters. This is due to the fact that a small variation in the index of refraction can cause
a relatively large change in propagation loss.
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Figure 15. Comparison of the (a) refractivity profile and (b) propagation loss between the true and
predicted parameters obtained by BO-RF.
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Figure 16. Comparison of the (a) refractivity profile and (b) propagation loss between the true and
predicted parameters obtained by BO-KNN.
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Figure 17. Comparison of the (a) refractivity profile and (b) propagation loss between the true and
predicted parameters obtained by BO-XGBoost.

6. Conclusions

The accurate inversion of atmospheric ducts is of great significance to the performance
evaluation and design of radar and communication systems. In this paper, a BO-RF model
is presented to predict the atmospheric duct parameters. Since the hyper-parameter plays a
crucial role in the prediction performance of machine learning, BO is adopted to find the
appropriate hyper-parameter in RF, and the results suggest that BO is an effective way to
find the best hyper-parameter in RF. In addition, OED is used to sample the combinations
of refractivity parameters from a range of hyper-parameter since it is a robust way to
effectively handle multi-dimension sampling problems. To test the performance of the
proposed BO-RF model, the results obtained by the BO-RF are compared with the results
obtained by commonly used methods, such as classical RF, XGBoost with/without BO,
and KNN with/without BO, with respect to the coefficient of determination R2, MAE, and
MSE, as well as inversion error. The statistical and comparative analysis indicates that the
BO-RF obtains the best results in the case with/without noise and outperforms the other
algorithms adopted in this paper for the estimation of atmospheric duct parameters. Future
work will mainly focus on the estimation study based on real data with machine learning
and the improvement of the existing refractivity model.
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