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Abstract: As an essential technology for intelligent transportation management and traffic risk
prevention and control, vehicle detection plays a significant role in the comprehensive evaluation of
the intelligent transportation system. However, limited by the small size of vehicles in satellite remote
sensing images and lack of sufficient texture features, its detection performance is far from satisfactory.
In view of the unclear edge structure of small objects in the super-resolution (SR) reconstruction
process, deep convolutional neural networks are no longer effective in extracting small-scale feature
information. Therefore, a vehicle detection network based on remote sensing images (VDNET-RSI)
is constructed in this article. The VDNET-RSI contains a two-stage convolutional neural network
for vehicle detection. In the first stage, a partial convolution-based padding adopts the improved
Local Implicit Image Function (LIIF) to reconstruct high-resolution remote sensing images. Then, the
network associated with the results from the first stage is used in the second stage for vehicle detection.
In the second stage, the super-resolution module, detection heads module and convolutional block
attention module adopt the increased object detection framework to improve the performance of small
object detection in large-scale remote sensing images. The publicly available DIOR dataset is selected
as the experimental dataset to compare the performance of VDNET-RSI with that of the state-of-the-
art models in vehicle detection based on satellite remote sensing images. The experimental results
demonstrated that the overall precision of VDNET-RSI reached 62.9%, about 6.3%, 38.6%, 39.8%
higher than that of YOLOv5, Faster-RCNN and FCOS, respectively. The conclusions of this paper can
provide a theoretical basis and key technical support for the development of intelligent transportation.

Keywords: deep learning; satellite remote sensing images; vehicle detection; super-resolution recon-
struction; Local Implicit Image Function (LIIF)

1. Introduction

With the vigorous development of surveying and mapping technology in China,
the ability and quality of remote sensing data acquisition have been improved, and are
now widely applied to the fields of smart cities, intelligent transportation, environmental
monitoring, emergency command, etc. [1,2]. As one of the key issues in the realization of
intelligent transportation based on satellite remote sensing data, vehicle detection is of great
application value in promoting the development of road traffic planning [3,4]. Nevertheless,
the small size of vehicles, insufficient texture features and unclear edge structure are still
challenges in the application of remote sensing images to vehicle detection at present [5]. In
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the field of remote sensing images, compared to general object detection, it is more difficult
to detect small objects and improve the precision of this as the inherent characteristics of
small objects make it difficult for the model to obtain satisfactory features of the target
area. CNN obtains high-dimensional representations of images by stacking convolutional
and pooling layers. However, small objects in remote sensing images often have complex
backgrounds. After passing through convolutional layers, the features of the target area
are easily disturbed by the background or other instances, which leads to the loss of
discriminative information, and increases the difficulty of subsequent object detection tasks.
On the other hand, small objects often have blurry edges and their visual structure depends
on the quality of the original image, making it difficult to accurately obtain their outline
information through CNN. With the widespread application of deep learning in image
processing, image classification, object identification, and other fields, the existing literature
has achieved some research results [6–8].

Nowadays, object detection methods based on a one-stage model, such as YOLO [9,10],
SSD [11], and FCOS [12], directly give the final detection results without generating explicit
candidate regions. Object detection based on a two-stage model, such as Faster R-CNN [13],
UA-CMDet [14], and RepDarkNet [15], first generates candidate regions that may contain
objects, then further classifies and calibrates the candidate regions, and finally obtains
the detection results. The research shows that the average precision for small objects is
approximately 10 times lower than that for large objects [16]. When such methods are
directly applied to small object detection in multi-source remote sensing images, their effect
is still poor. Meanwhile, these methods are far from satisfying the precision requirements
when applied directly to the detection of small objects in remote sensing images. At present,
small object detection methods in remote sensing optical images are mainly divided into
the following types. The first type is methods based on data augmentation [17], in which
an important reason for the difficulty in detecting small objects in remote sensing images
is the lack of enough samples for training. To address the problem of great differences in
object size and dense distribution of small objects in remote sensing images, a dynamic
adjustment of the image block size is adopted to balance the object size. Mosaic and other
operations are introduced for object detection in remote sensing images, increasing the
sample size of small objects. The second type is methods based on feature fusion [18]. In
mainstream object detection methods based on deep learning, object identification is mainly
accomplished by the deep feature output of the backbone network. Existing methods
integrate feature maps from different stages to obtain efficient feature representations that
balance semantic and detailed information, thereby improving the precision of small object
detection while ensuring the precision of other size objects. The third type is methods based
on SR reconstruction [5,19–21]. Compared to medium- to large-sized objects, small target
areas are limited and often accompanied by challenges such as blurry structures. The idea
of designing a network for SR of small target areas and obtaining detection performance
comparable to large and medium-sized objects is to enhance the structural information of
small objects and obtain better feature representation. Inspired by the stunning success of
SR reconstruction based on CNN, the inherent spatial resolution of the image is improved
by image post-processing technology, to increase the detection performance for small
objects in remote sensing images.

SR reconstruction refers to the processing of a single or several low-resolution image(s)
with complementary information to obtain one or several high-resolution image(s) [22,23].
With the in-depth research into image processing technology, SR reconstruction technology
has realized significant progress and development [24,25], from traditional SR reconstruc-
tion based on interpolation [26,27] to SR reconstruction methods based on reconstruc-
tion [28] and then to SR reconstruction methods based on deep learning [29,30]. Among
these methods, reconstruction based on deep learning is more effective, and both the initial
convolutional neural network and the later generative adversarial network [31–33] show
great performance. However, owing to the artifacts introduced in the process of SR recon-
struction, it is difficult to ensure the quality of spatial resolution improvement for small
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objects. It can be seen that SR reconstruction can further increase the utilization efficiency of
images by improving the spatial resolution of images through image processing technology,
but image processing algorithms still need to be improved and optimized.

Inspired by these studies, the main problem addressed in this paper is to optimize
the SR reconstruction’s representation of the structure of small objects, preserve the edge
structural features of small objects, and integrate them into the object detection framework
to improve the performance of vehicle detection in remote sensing images. To achieve
this goal, a vehicle detection network based on remote sensing images (VDNET-RSI) that
considers SR reconstruction is proposed in this study, in order to solve the problem of the
small size of vehicles in large-scale remote sensing images and the negative effect of deep
convolutional neural networks on feature interpretation and identification. Firstly, an SR
reconstruction module is established considering the improvement of small object edge
structure and spatial resolution; secondly, based on the integration of spatial resolution
improvement modules, the attention mechanisms are added, the detection heads are
optimized, and a VDNET-RSI network is constructed to improve the performance of small
object detection in large-scale remote sensing images. The main contributions of this paper
are as follows:

(1) An SR construction module is established with the improved Local Implicit Image
Function (LIIF) of a partial convolution-based padding to reconstruct high-resolution
remote sensing images. Experimental results show that our module preserved clear
edge structure and obtained better detection effects for small vehicle objects in remote
sensing images.

(2) An integrated framework of VDNET-RSI is constructed. In addition to SR recon-
struction, the attention mechanisms and detection heads are added to expand the
receptive field of vehicles, to further improve the robustness of vehicle detection, and
to alleviate the problem of semantic information and spatial information.

2. Methods

The main research aim of this paper is SR reconstruction and improving the robustness
of vehicle detection. In the first part, SR reconstruction focusing on the problem of the small
object edge reconstruction effect was introduced. In the second part, the performance of
small object detection was improved by using SR results and an object detection network.
A schematic diagram of the proposed method is shown in Figure 1.
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2.1. Multi-Scale SR Reconstruction Module Considering Edge Optimization

In Stage One, the LIIF-based partial convolution module retains the advantages of
learning a continuous representation for the arbitrary-scale SR images, and adds a partial
convolution to preserve the edge structure of small objects. In continuous representation,
each remote sensing image I(i) is represented as a 2D feature map M(i) ∈ RH × W × C.
To predict the SR value of the arbitrary-scale image, LIIF utilizes a learnable implicit
function, which predicts the SR value by taking the coordinate and the nearest feature as
the input. The implicit function is parameterized by the multi-layer perceptron fθ (with θ
as its parameter). The mathematical expression is as follows.

s = fθ(z, x) (1)

where z is a vector, and each vector z can be considered to represent the function fθ(z, ·);
x ∈ χ is a 2D coordinate in the continuous image domain, which can be understood as a
latent feature code; s ∈ S is the predicted signal, such as the radiation information of the
remote sensing images.

According to fθ , the radiation information of any position xq can be reconstructed:

I(i)(xq) = fθ(z∗, xq − v∗) (2)

where I(i) is the continuous image domain; z* is the nearest latent code from xq; v* is the
coordinate of z*. A latent code is the concatenation of the 3 × 3 neighboring latent codes,
and its outside border is padded by zero vectors.

Secondly, the 2D feature map is unfolded to fully utilize the feature map information.
The subsequent step is local ensemble. Since each z* can only determine a part of

the domain, the selection of z* can suddenly switch from one to another. The area ratio is
adopted as the weight to optimize Equation (2), in order to preserve the total weight of any
point among the four equal eigenvectors. Finally, cell decoding is required to prevent the
prediction value s from depending on the pixel size. Therefore, the function is modified
as follows:

s = fcell(z, [x, c]) (3)

where c = [ch, cw] contains two values that specify the height and width of the query pixel;
[x, c] refers to the concatenation of x and c.

Given that the convolution kernel can meet all elements in the LIIF module, using
zero padding will bias the results and lead to artifact effects. In order to solve the problem
of artifact effect, the bias terms are adjusted and decomposed. Consequently, all bias terms
have the same form and are independent of each other. When the elements have residuals,
the corresponding components of the bias terms also need to be removed, and thus the
corresponding bias is eliminated, which is mathematically described as follows:

x′(i,j) = WT
(i,j) · X(i,j) +

∥∥∥W(i,j)

∥∥∥
1

‖W‖1
b (4)

where X(i,j) is the eigenvalue within the window of the convolution layer centered on (i, j),
and the convolution kernel size is the same as the convolution layer window size. W(i,j)
is the weight of the convolution kernel corresponding to X(i,j). W is the full convolution
kernel weight, and b is the bias. x′(i,j) is the eigenvalue in the next convolutional layer
window centered on (i, j).

2.2. Vehicle Detection Network Considering SR Reconstruction

The phase of object detection mainly includes four parts: Input, Backbone, Neck
and Prediction. The Backbone network is for feature extraction. Specifically, the feature
extraction network consists of three modules: Focus, Cross-Stage Partial (CSP) and Spatial
Pyramid Pooling (SPP). In order to further improve the precision of small object detection,
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the object detection module is further optimized based on the fusion of SR reconstruction
results. In the PAN part, the attention mechanism module is utilized. The attention mecha-
nism module includes a channel attention mechanism and spatial attention mechanism.
The structure diagram of the convolutional block attention module (CBAM) is shown in
Figure 2. In the network, the structure of the channel attention mechanism includes three
parts. Firstly, the feature map with the size of H×W× C is imported into the network, and
two feature maps with the size of 1 × 1 × C are obtained after global maximum-pooling
and global average-pooling operations. Secondly, the feature map with the size of 1× 1× C
is imported into the shared neural network, which is composed of a multi-layer percep-
tron and hidden layer; finally, the two output feature elements are added and multiplied,
and the channel attention map Mc is obtained through the sigmoid activation function.
The spatial attention mechanism consists of two parts. Firstly, the channel information is
aggregated by dimensionally compressing each channel of inputting features by average
pooling and maximum pooling, and then the two channel attention features with the size
of H ×W × 1 pass the convolutional layer with the size of 7 × 7 for fusion; secondly, the
weight coefficient and the input feature F’ are multiplied by the sigmoid activation function
to get the spatial attention map Ms.
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The attention mechanisms identify the importance of the feature information by
weight adjustment. In the small object detection process, the fusion of secondary features
has little impact on the detection results and requires a certain amount of computation.
Therefore, the computation work can be reduced by reducing the weight of secondary
features and suppressing the expression of irrelevant feature information. To improve the
object detection performance, the CBAM module is embedded into the Neck network of
the object detection network based on the improvement of multi-scale feature detection.
Before feature fusion, the CBAM module is added to enhance the attention of the network
to important features, and to improve the feature fusion effect of the Neck network. In this
way, the module can learn more effective features and the feature extraction ability of the
network can be enhanced.

Furthermore, small objects have relatively small sizes and contain less information,
which will result in severe loss of feature information after multiple downsampling. It is
difficult to effectively extract the vehicles by the original three scale feature maps of the
network. To fully utilize the shallow feature information of images, this paper expanded
the detection scale by adding a feature map with the size of 200 × 200 to predict small
objects. The schematic diagram of multi-scale object detection improvement is shown in
Figure 3. The improved network model can detect objects on four different scale feature
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maps, in order to enhance the network’s ability for multi-scale object detection and to
improve the network’s detection performance for small objects.
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In the Prediction part, an extra detection layer is added based on the YOLOv5 network
for small object prediction. The feature map of the 18th layer is upsampling, and connected
with the feature map of the 2nd layer to generate a new feature detection layer for small
object detection. This new feature map obtained has richer shallow fine-grained features
and high-level semantic feature information, which can provide the module with a better
performance in small-object detection. On the basis of the first stage, the results from the SR
module are utilized in the second stage of the VDNET-RSI framework. Then, the SR results
are split by the Focus module. Suppose the size of the feature map imported is 4 × 4 × 3;
after splitting and channel insertion, the feature map size becomes 2 × 2 × 12 and the
image information is converted from the spatial dimension to the channel dimension. This
reduces the input size, retains the input information, and increases the speed of network
training and detection. On this basis, CSP and SPP are introduced to optimize the detection
effect, so as to retain more features and adapt to different scales of object detection. In
the experiments, to ensure that the images in the input network are of the same size, the
SR reconstructed images are segmented and overlapping sliding window segmentation is
conducted for the images to alleviate the loss of object edge information caused by image
segmentation. The segmented images are imported into the object detection network and
finally the images are re-fused to obtain the final detection results. The prediction of object
detection contains the border Loss function and non-extreme value suppression.

The Loss function contains the location, confidence, and category information of the
prediction box. The overall loss value is obtained by weighting. The specific mathematical
description is as follows:

Lossobject = losslocation + losscon f idence + lossclassi f ication (5)

where losslocation, losscon f idence, lossclassi f ication are location Loss function, confidence Loss
function and category Loss function, respectively.

The CIoU position Loss function is used in the experiment to improve the slow
convergence of the model and make the boundary regression box more stable when the
gradient drops. The mathematical model is described as follows:

LossCIoU = 1− IOU +
ρ2(b, bgt)

c2 + αν (6)

where b and bgt denote the central points of the predicted box and target box, ρ is the
Euclidean distance, and c is the diagonal length of the smallest enclosing box covering the
two boxes. α is a positive tradeoff parameter, and ν measures the consistency of the aspect
ratio. The expressions are as follows:

ν =
4

π2 (arctan
ωgt

hgt − arctan
ω

h
)

2

(7)
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α =
ν

(1− IoU) + ν
(8)

where ω, h, ωgt, hgt represents the height and width of the predicted box and the height
and width of the real box, respectively.

This object detection network considers the improvement of small target edge structure
and spatial resolution and adds the attention mechanisms, optimizes the detection heads,
then a VDNET-RSI network is constructed to improve the performance of small object
detection in large-scale remote sensing images. The detailed parameters are listed in Table 1.

Table 1. Parameters of VDNET-RSI.

Layer Input/Output Channel Layer Input/Output Channel Layer Input/Output Channel

Mean shift [3, 3] Conv_4 [256, 512] Upsampling_3 [256, 256]

Conv_1 [3, 64] C3_3 [512, 512] Concat_3 [256, 328]

ResBlock [3, 64] Conv_5 [512, 1024] C3_CBAM_2 [328, 256]

Feature unfolding [64, 576] SPP [1024, 1024] Conv_9 [256, 256]

Local ensemble [576, 580] Conv_6 [1024, 512] Concat_4 [256, 512]

Linear_1 [580, 256] Upsampling_1 [512, 512] C3_CBAM_3 [512, 256]

Linear_2 [256, 256] Concat_1 [512, 1024] Conv_10 [256, 512]

Linear_3 [256, 3] C3_4 [1024, 512] Concat_5 [512, 1024]

Foucs [3, 64] Conv_7 [512, 256] C3_CBAM_4 [1024, 512]

Conv_2 [64, 128] Upsampling_2 [256, 256] Conv_11 [512, 512]

C3_1 [128, 128] Concat_2 [256, 512] Concat_6 [512, 1024]

Conv_3 [128, 256] C3_CBAM_1 [256, 256] C3_5 [1024, 1024]

C3_2 [256, 256] Conv_8 [256, 256]

3. Experiments
3.1. Experiment Data

DIOR [34] dataset is utilized in this experiment. The dataset has a total of 23,463 images
and 190,288 annotation instances, and the image size is 800 × 800 pixels, with a spatial
resolution of 0.5–30 m. Since the original DIOR dataset does not indicate the spatial
resolution information of each image, the spatial resolution information of the displayed
image is not listed in this paper. Ubuntu16.04 system is adopted as the experimental
environment, GeForce1080 Ti(11G) is applied as the GPU, and Intel core i9-9900K is selected
as the CPU. The training parameters should be initialized in the experiment. The specific
settings are as follows: the training epoch is set to 100 times; the initial learning rate is set
to 0.01; the batch size is set to 8; the learning rate is adjusted to 10% of the original learning
rate after 80 iterations, and 1% after 90 iterations. Other parameters are consistent with the
official parameters of the algorithm.

3.2. Data Preprocessing

In the experiment, after SR reconstruction for the image, the image size changes
according to the scale of SR reconstruction. For example, the size of the original image is
800 × 800 pixels, while the image size becomes 1600 × 1600 pixels after reconstruction
after 2X SR. In the object detection stage, in order to ensure consistency with the original
network input size and avoid detection difficulty for small objects caused by the scaling of
images, the images after SR reconstruction are preprocessed in the experiment, as shown in
Figure 4, the red square in the right image is the object detection result border.
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Figure 4. Schematic diagram of image preprocessing.

Firstly, the image is segmented based on overlapping sliding windows to alleviate
the loss of edge object information caused by image segmentation. The input image
size is 1600 × 1600 pixels; the segmentation step size is set to 600 pixels, and the size
of the overlapping area is 200 pixels. Finally, 9 images are obtained, each with a size of
800 × 800 pixels. The calculation formula for the number of image slices obtained after
image segmentation is as follows:

n = (W − w)/(w− w1) + 1 (9)

m = (H − h)/(h− h1) + 1 (10)

where W and H are the width and height of the original image size, respectively. w and
h are the width and height of the image slice, respectively; w1 and h1 are the width and
height of the overlapping area, respectively, while n and m are the number of rows and
columns in the image slice.

Secondly, in the object detection stage, to avoid repeated detection of vehicles in
the overlapping areas, the segmented images are concatenated, as shown in Figure 4.
The segmented images are imported into the object detection stage to obtain temporary
results, and then the segmented images are re-fused to obtain the detection results of the
original image. The fusion method means to calculate the relative coordinates of the upper
left corner of the image slice and the corresponding original image coordinates based
on Equations (9) and (10), and to restore the detected object position information in the
image slice to the absolute coordinates of the original image. For the results at the edge
of the image fusion, the NMS non-maximum suppression method is used to eliminate
the redundant detection results generated by the overlapping areas, and then the final
detection result is obtained.

3.3. Evaluation Index

In the experiment, Precision (P), Recall (R), and Average Precision (AP) are adopted as
evaluation indexes for the detection performance of small objects. Precision can reflect the
proportion of correctly predicted positive and negative samples in the model, while recall
rate can reflect the proportion of correctly predicted positive samples in the model. The
equation is as follows:

P =
TP

TP + FP
(11)

R =
TP

TP + FN
(12)

where TP is the number of true positive samples; FP is the number of false positive samples;
FN is the number of false negative samples.
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The samples after detection are classified with a neural network classifier to obtain
different confidence intervals for classification. The samples are divided according to the
confidence threshold set by the network. Samples with a confidence level greater than the
threshold are classified as positive samples, while samples with a confidence level less than
the threshold are classified as negative samples. The proportion of positive and negative
samples in the model varies with the confidence threshold. After the confidence threshold
is set, the precision and recall curves are plotted. The average precision is the area enclosed
under the precision–recall curve, which is a common index to evaluate the detection effect
of single-category objects. The higher the average precision value, the better the prediction
performance of the model. The equation is as follows:

AP =
∫ 1

0
P(R)dR (13)

where P is the precision; R is the recall rate; AP is the average precision.

3.4. Result Analysis

(1) Comparative Experimental Analysis of Vehicle Detection Using SR Reconstruction on
Different Scales

Small objects in large-scale remote sensing images usually have a low resolution and
lack sufficient texture features, detail information, and edge structure. Object detection
networks are prone to significant information loss or even loss of some feature information
during downsampling, resulting in severe missed detection for small objects, which affects
the precision of small object detection. To address such problems, a multi-scale SR recon-
struction module considering edge structure is introduced in the experiment, to realize SR
reconstruction for the input remote sensing images, improve the spatial resolution of small
objects, and increase their feature information. The results of different experiments on
spatial resolution improvement in the SR reconstruction module are shown in Figures 5–8.
Therein, the red square in the first column on the left represents a partially enlarged win-
dow. The different color squares in other column are the object detection results. From the
figures, it can be seen that the SR reconstruction module can effectively improve the image
resolution and enhance the detailed feature information of vehicles.

Furthermore, to better explain the impact of the SR reconstruction module on the
improvement of detection performance for small-size objects, super resolutions of different
scales are selected for further analysis in this experiment. Meanwhile, the experiment
evaluates the quality of SR-reconstructed images on different scales, as shown in Table 2.
Due to the lack of real high-resolution image data, the experiment evaluates the quality of
SR reconstruction on different scales using two quality evaluation methods, Enhancement
Measure Evaluation (EME) and average gradient (Avegrad) [35,36]. The principle of EME
is to calculate the maximum and minimum ratios of the gray level in the sub-region. The
logarithm of the ratios is the evaluation result of the image detail. This evaluation index
represents the degree of gray change of the local image. The larger the EME value, the richer
the detail information in the image. The average gradient value is the sum of the squares of
the differences between each pixel and its adjacent pixels divided by the total number of
pixels. This method can sensitively reflect the ability of the image to express small details
in contrast, and is used to evaluate the blurriness of the image. The larger the average
gradient, the clearer the image and the better the contrast. From a quantitative perspective,
it can be concluded that 2x SR reconstruction results in the best image quality, which is
also verified by the vehicle detection results. In the 2× SR reconstruction experiment, the
vehicle extraction effect is better. In addition, effective SR reconstruction information can
improve the detection results of vehicles, and increase the robustness of vehicle detection.



Remote Sens. 2023, 15, 4281 10 of 20Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 22 
 

 

 FCOS Sub-image ×2 SR ×3 SR ×4 SR 

Image 1 

     
  Objects detected: 0 Objects detected: 0 Objects detected: 2 Objects detected: 3 

Image 2 

     
  Objects detected: 0 Objects detected: 0 Objects detected: 5 Objects detected: 5 

Image 3 

     
  Objects detected: 0 Objects detected: 1 Objects detected: 0 Objects detected: 0 

Figure 5. FCOS object detection based on SR reconstruction results on different scales. From left to 
right: the original image, local magnification, 2× SR reconstruction results, 3× SR reconstruction re-
sults, and 4× SR reconstruction results. 

 Faster-RCNN Sub-image ×2 SR ×3 SR ×4 SR 

Image 1 

     
  Objects detected: 2 Objects detected: 3 Objects detected: 3 Objects detected: 3 

Image 2 

     
  Objects detected: 0 Objects detected: 10 Objects detected: 17 Objects detected: 19 

Image 3 

     
  Objects detected: 2 Objects detected: 3 Objects detected: 0 Objects detected: 0 

Figure 5. FCOS object detection based on SR reconstruction results on different scales. From left to
right: the original image, local magnification, 2× SR reconstruction results, 3× SR reconstruction
results, and 4× SR reconstruction results.

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 22 
 

 

 FCOS Sub-image ×2 SR ×3 SR ×4 SR 

Image 1 

     
  Objects detected: 0 Objects detected: 0 Objects detected: 2 Objects detected: 3 

Image 2 

     
  Objects detected: 0 Objects detected: 0 Objects detected: 5 Objects detected: 5 

Image 3 

     
  Objects detected: 0 Objects detected: 1 Objects detected: 0 Objects detected: 0 

Figure 5. FCOS object detection based on SR reconstruction results on different scales. From left to 
right: the original image, local magnification, 2× SR reconstruction results, 3× SR reconstruction re-
sults, and 4× SR reconstruction results. 

 Faster-RCNN Sub-image ×2 SR ×3 SR ×4 SR 

Image 1 

     
  Objects detected: 2 Objects detected: 3 Objects detected: 3 Objects detected: 3 

Image 2 

     
  Objects detected: 0 Objects detected: 10 Objects detected: 17 Objects detected: 19 

Image 3 

     
  Objects detected: 2 Objects detected: 3 Objects detected: 0 Objects detected: 0 

Figure 6. Faster-RCNN object detection based on SR reconstruction results on different scales.
From left to right: the original image, local magnification, 2× SR reconstruction results, 3× SR
reconstruction results, and 4× SR reconstruction results.



Remote Sens. 2023, 15, 4281 11 of 20

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 22 
 

 

Figure 6. Faster-RCNN object detection based on SR reconstruction results on different scales. From 
left to right: the original image, local magnification, 2× SR reconstruction results, 3× SR reconstruc-
tion results, and 4× SR reconstruction results. 

 YOLOv5 Sub-image ×2 SR ×3 SR ×4 SR 

Image 1 

     
  Objects detected: 2 Objects detected: 4 Objects detected: 3 Objects detected: 3 

Image 2 

     
  Objects detected: 0 Objects detected: 30 Objects detected: 18 Objects detected: 17 

Image 3 

  Objects detected: 1 Objects detected: 4 Objects detected: 1 Objects detected: 1 

Figure 7. YOLOv5 object detection based on SR reconstruction results on different scales. From left 
to right: the original image, local magnification, 2× SR reconstruction results, 3× SR reconstruction 
results, and 4× SR reconstruction results. 

  

Figure 7. YOLOv5 object detection based on SR reconstruction results on different scales. From left
to right: the original image, local magnification, 2× SR reconstruction results, 3× SR reconstruction
results, and 4× SR reconstruction results.

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 22 
 

 

 YOLOv5_D_CBAM Sub-image ×2 SR ×3 SR ×4 SR 

Image 1 

     
  Objects detected: 3 Objects detected: 4 Objects detected: 3 Objects detected: 4 

Image 2 

     
  Objects detected: 29 Objects detected: 49 Objects detected: 27 Objects detected: 29 

Image 3 

     
  Objects detected: 7 Objects detected: 8 Objects detected: 5 Objects detected: 2 

Figure 8. YOLOv5_D_CBAM object detection based on SR reconstruction results on different scales. 
From left to right: the original image, local magnification, 2× SR reconstruction results, 3× SR recon-
struction results, and 4× SR reconstruction results. 

Furthermore, to better explain the impact of the SR reconstruction module on the 
improvement of detection performance for small-size objects, super resolutions of differ-
ent scales are selected for further analysis in this experiment. Meanwhile, the experiment 
evaluates the quality of SR-reconstructed images on different scales, as shown in Table 2. 
Due to the lack of real high-resolution image data, the experiment evaluates the quality of 
SR reconstruction on different scales using two quality evaluation methods, Enhancement 
Measure Evaluation (EME) and average gradient (Avegrad) [35,36]. The principle of EME 
is to calculate the maximum and minimum ratios of the gray level in the sub-region. The 
logarithm of the ratios is the evaluation result of the image detail. This evaluation index 
represents the degree of gray change of the local image. The larger the EME value, the 
richer the detail information in the image. The average gradient value is the sum of the 
squares of the differences between each pixel and its adjacent pixels divided by the total 
number of pixels. This method can sensitively reflect the ability of the image to express 
small details in contrast, and is used to evaluate the blurriness of the image. The larger the 
average gradient, the clearer the image and the better the contrast. From a quantitative 
perspective, it can be concluded that 2x SR reconstruction results in the best image quality, 
which is also verified by the vehicle detection results. In the 2× SR reconstruction experi-
ment, the vehicle extraction effect is better. In addition, effective SR reconstruction infor-
mation can improve the detection results of vehicles, and increase the robustness of vehi-
cle detection. 

  

Figure 8. YOLOv5_D_CBAM object detection based on SR reconstruction results on different scales.
From left to right: the original image, local magnification, 2× SR reconstruction results, 3× SR
reconstruction results, and 4× SR reconstruction results.



Remote Sens. 2023, 15, 4281 12 of 20

Table 2. Index evaluation results on different-scale SR reconstruction.

×2 ×3 ×4

Image 1 EME: 17.606 EME: 14.766 EME: 11.317
Avegrad: 0.011 Avegrad: 0.005 Avegrad: 0.003

Image 2 EME: 18.708 EME: 15.462 EME: 15.446
Avegrad: 0.011 Avegrad: 0.005 Avegrad: 0.005

Image 3 EME: 20.895 EME: 16.169 EME: 13.089
Avegrad: 0.010 Avegrad: 0.005 Avegrad: 0.003

(2) Comparative Experiment and Analysis of Vehicle Detection Effects with Different
Object Detection Methods

In the previous part, we discussed and evaluated the impact of different-scale SR
reconstruction on object detection. In this part, the proposed model is compared with the
state-of-the-art deep learning models, such as the non-anchor frame object detection model
FCOS, the two-stage object detection model Faster R-CNN, and the single-stage anchor
object detection model YOLOv5, to analyze the performance of the VDNET-RSI framework
proposed in this paper. The experimental results are shown in Figure 9, and the different
color squares in other column are the object detection results.

From the experimental results, it can be concluded that VDNET-RSI is better than
FCOS, Faster-RCNN and YOLOv5. The main reason is that FCOS cannot effectively
detect small objects directly through pixel-by-pixel regression. Although it gets rid of
the dependence on anchor parameters, the multi-scale feature pyramid does not fully
utilize the low dimensional features, leading to the missing of most of the small objects in
detection. Faster-RCNN detects vehicles through the preset anchor. It is not sensitive to
the detection of various types of vehicles in remote sensing images, and there are a large
number of overlapping detection results. In YOLOv5, an adaptive anchor box calculation
module is added. Before training, the optimal anchor box size is calculated according to
different data types. However, the final-generation feature maps on three scales (76 × 76,
38 × 38 and 19 × 19) are used to predict the vehicles. The receptive field size on the feature
map with the largest resolution is 8 pixels, which may cause loss of features of tiny objects
after downsampling.

The experiment utilizes AP, training time, inference time, parameters, and GFLOPs to
comprehensively analyze the performance of four object detection methods; the statistical
results are shown in Table 3. The VDNET-RSI model is little less efficient in terms of model
size (Parameters) and computation complexity (GFLOPs). In terms of object detection
precision, the AP is used as the index for the object detection performance [37]. According
to the statistical results, the object detection performance is better than that of the two-
stage object detection model. The experimental results show that the overall precision
of vehicle detection of VDNET-RSI can reach 62.9%, which is 6.3% higher than that of
the YOLOv5 model, about 38.6% higher than that of the Faster-RCNN model, and about
39.8% higher than that of the FCOS model. The main reason for this is that FCOS does not
require complex operations related to the anchor. Thus, the problem of imbalance between
positive and negative samples can be avoided. However, its feature map has a relatively
large receptive field, which makes it difficult to detect small-size objects. Compared with
FCOS, Faster-RCNN presents a lower detection speed, but higher precision. The size
ratio of the anchor is not suitable for small-size objects. YOLOv5 has a relatively stronger
feature-extraction ability and better detection performance. However, missed detection
still exists in terms of tiny vehicle objects. The training time of VDNET-RSI is relatively
long. Most of the training time is spent on the SR module, while the integration of the SR
module improves the small object detection precision. VDNET-RSI solves the problem of
insufficient spatial resolution of vehicles, and the semantic and spatial information in the
deep convolutional neural network is considered. In the following study, it will be one
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of the key issues to ensure the quality of SR reconstruction, make the SR reconstruction
framework lightweight, and improve the overall detection efficiency.
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Table 3. Comparison results of different deep learning object detection models using DIOR images.

Method AP Training Time/h Inference Time/s Parameters/M GFLOPs

FCOS 0.231 63.367 0.673 32.0 190.0
Faster-
RCNN 0.243 129.617 1.523 39.8 172.3

YOLOv5 0.566 38.915 0.15 47.0 115.4
VDNET-RSI 0.629 155.067 0.278 50.4 168.4

(3) Ablation Experiment

In order to evaluate the method proposed in this paper more intuitively, the perfor-
mance of VDNET-RSI is compared with four corresponding improved methods, namely,
YOLOv5, YOLOv5_CBAM, YOLOv5_D, and YOLOv5_D_CBAM, as shown in Figure 10,
the different color squares in other column are the object detection results. YOLOv5_D
represents a model with a small object detection head; YOLOv5_CBAM indicates a network
including a CBAM module; YOLOv5_D_CBAM denotes a model with both a small object
detection head and a CBAM module; VDNET-RSI refers to a model that includes a small
object detection head, a CBAM module, and an SR reconstruction module simultaneously.
It can be seen that the proposed method can effectively improve the detection performance
for vehicles. The main reason is that the proposed method improves the super resolution
of small objects in the image, to add detailed features of vehicles. Meanwhile, by adding
detection heads and attention mechanism modules, the network can extract more useful
object feature information, to improve the detection precision for small objects.

In order to verify the optimization effects of different improvement modules, an abla-
tion comparison experiment was designed in this paper, and verified on the public remote
sensing dataset DIOR. The AP values and training time on the DIOR dataset were com-
pared, as shown in Table 4. According to Table 4, it can be concluded that adding different
improvement modules to the object detection network improved the model’s performance
to a certain extent, verifying the effectiveness of the proposed method. Compared with
the original YOLOv5 model, the precision of YOLOv5_CBAM was improved by 1.4%,
and the precision of YOLOv5_D improved by 2.8%; the precision of YOLOv5_D_CBAM
where the two improvement modules were added simultaneously was improved by 3.9%.
Composed of SR, detection heads, and CBAM, the precision of VDNET-RSI increased by
6.3%. VDNET-RSI achieved the highest detection precision on the DIOR dataset. How-
ever, due to the addition of small object detection heads and CBAM attention mechanism
modules, the number of network layers and parameter calculations of the model increased.
Compared with the original YOLOv5 model, the training time of the YOLOv5_CBAM,
YOLOv5_D, YOLOv5_D_CBAM and VDNET-RSI models increased by 6.364, 24.024, 29.817,
and 116.512 h, respectively. The inference time of the VDNET-RSI increased by 0.128 s
compared with that of the original YOLOv5 model. Thus, the method proposed in this
paper can effectively increase the model detection precision with a small increase in the
inference time.

Table 4. Comparison of different algorithms in vehicle detection performance on DIOR dataset.

Model Input Image Size/Pixel AP Training Time/h Inference Time/s

YOLOv5 800 × 800 0.566 38.915 0.150
YOLOv5_CBAM 800 × 800 0.580 45.279 0.133

YOLOv5_D 800 × 800 0.594 62.939 0.207
YOLOv5_D_CBAM 800 × 800 0.605 68.732 0.167

VDNET-RSI 800 × 800 0.629 155.067 0.278
Note: The AP values in the table are obtained when the IOU threshold is greater than 0.5.
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(4) Comparative Experiment and Analysis of Vehicle Detection Effects with Different
Small Object Detection Methods

In addition, to better evaluate the performance of the method proposed in this paper,
the comparison results with other small object detection methods were also added in the
experiment. A comparison was made with the methods dedicated to small object detection
(EESRGAN [5], UIU-NET [8]). The experimental results are shown in Figure 11, the different
color squares in other column are the object detection results. EESRGAN utilizes ESRGAN,
EEN, and detection networks to form a small object detection architecture for vehicle
detection. However, EESRGAN does not involve confidence threshold constraints, and
migrating directly it to other databases will result in error detection boxes. For small and
dense vehicle detection, there may be missed detections and false detections. UIU-Net
embeds a tiny U-Net into a larger U-Net backbone, enabling the multi-level and multi-scale
representation learning of objects. Moreover, UIU-Net can be trained from scratch, and
the learned features can enhance global and local contrast information effectively. More
specifically, the UIU-Net model is divided into two modules: the resolution-maintenance
deep supervision (RM-DS) module and the interactive-cross attention (IC-A) module. The
infrared small object detection is modeled as a semantic segmentation problem. Objects
are often missed when the small object detection is vertically applied to the optical image.
For similar intra-class ground objects, there are false detections, and the edge effect of
small object detection is poor. Compared with the EESRGAN network, the proposed SR
method retained the clear edge results of small objects, although the texture details were
not good enough. In comparison, the EESRGAN network improved the texture details, and
small objects presented an obvious edge-ringing effect. Meanwhile, the vehicle detection
precision of VDNET-RSI is 5.1% higher than that of EESRGAN, while its training time is
halved. Compared with the UIU-Net network, the proposed SR method can better detect
small objects and relatively accurately identify the edges of small objects.
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4. Discussion
4.1. Advantages and Disadvantages of Different Object Detection Methods

Through comparative experiments and ablation experiments, the performance of
different methods for vehicle detection is explored. Table 5 summarizes the advantages
and disadvantages of different methods for small object detection. In the DIOR dataset,
vehicles account for a small proportion of the pixels in remote sensing images. The Faster-
RCNN model uses fixed-type anchor boxes for object detection, so it shows poor ability
to extract small objects and poor scale adaptability to the size of objects to be detected.
The FCOS model does not use anchor boxes for prediction, so it takes less time, but with
lower precision. When the vehicles are large, the precision of the YOLOv5_D model is not
much different from that of the original YOLOv5 model. When the objects are less than
8 × 8 pixels, the YOLOv5_D model can detect more small vehicles, showing significant
advantages in detection performance. This is because the original YOLOv5 model can only
detect objects with a size of larger than 8 × 8 pixels, and small objects are often missed.
The YOLOv5_D model incorporates a small object detection head, and the network can
detect objects with a size of larger than 4 × 4 pixels, improving its small object detection
performance. On the basis of the YOLOv5_D model, an attention mechanism is added in
YOLOv5_D_CBAM to suppress the interference of irrelevant information, which can detect
more vehicles under shadow occlusion. This indicates that the attention mechanism module
can filter out the interfering background information in the image, thereby improving the
detection precision of the object detector. After adding the SR reconstruction module, the
precision value for vehicles has increased by 6.3% compared to the original YOLOv5 model,
and 2.4% compared to the YOLOv5_D_CBAM model. While improving the precision for
small object detection, it also increases the time cost. In subsequent research, the focus will
be on the lightweight version of the model.

Table 5. Comparison of different object detection methods.

Model Advantages Disadvantages

FCOS

There is no need to perform complex operations related to
anchor boxes, greatly reducing the computational
complexity of the algorithm and reducing the memory
consumption during the training process.

Insufficient shallow feature extraction leads to a
large number of missed vehicles and low precision.

Faster-RCNN

The multitask Loss function is used to unify object
classification and candidate box regression tasks, optimize
the number of candidate boxes, and improve the
detection speed.

The use of fixed-type anchor boxes for object
detection is not suitable for small-size objects, and
the extraction ability for small objects is poor,
resulting in unsatisfactory vehicle detection
performance in remote sensing images.

YOLOv5
By adding an adaptive anchor box calculation and feature
fusion module, the feature extraction ability is relatively
stronger and the detection performance is relatively better

For small objects smaller than 8 × 8 pixels, there
are many vehicles undetected.

UIU-NET

“U-Net in U-Net” framework to detect small objects in
infrared images realizes multi-level and multi-scale feature
learning of objects, and has good performance for small
object detection in infrared images.

Missed detection of small objects under optical
images, and false detection of similar inter-class
ground objects. The edge effect of small object
detection is poor.

EESRGAN
A small object detection architecture using ESRGAN, EEN,
achieves object detection for oil storage tanks, and vehicles
with GSDs of 30 cm and 1.2 m.

If the object detection network is directly migrated
to other databases, there will be error detection
boxes, which may result in missed and false
detections for small and dense vehicle detection.

VDNET-RSI

Improved spatial resolution of small objects, added
detection heads in the network detection layer for small
object prediction, and added CBAM module in the Neck
network to suppress irrelevant interference feature
information expression in remote sensing images, thereby
improving the detection precision for vehicles.

There are still a small number of missed and false
detections for tiny and small vehicles



Remote Sens. 2023, 15, 4281 18 of 20

4.2. Application Scenarios

A new end-to-end small object detection network with an SR reconstruction module,
a detection head, and an attention mechanism is proposed in this paper, to address the
challenges of detecting small vehicles commonly found in remote sensing images. In our
method, the performance of small object detection is improved through a two-stage net-
work, an improved SR module, a new detection head and an attention mechanism module.
After integration of the SR reconstruction module, the results of small object detection
are significantly improved. In the experiment, with the increase in the SR reconstruction
multiples, the object detection performance does not improve accordingly. The main reason
is that, for SR reconstruction based on a single image, the compensation of image informa-
tion is limited as the SR multiple increases. Meanwhile, at the object detection end, the
detection head does not adaptively adjust with the spatial resolution of the image. In this
respect, experimental research and further exploration needs to be conducted in the future.
In the object detection stage, the detection precision for small objects is further increased
through the replacement of the detection head and introduction of attention mechanisms.
According to the ablation experiment, the proposed end-to-end small object detection
network improves the detection precision. In the experiment, EESRGAN is adopted as the
network with SR detector, and compared with the method proposed in this paper. The
results indicate that the VDNET-RSI method has a better performance than the EESRGAN
method, and spatial resolution enhancement for small objects based on edge preservation
helps to increase the detection precision. Another limitation of our experiment is that it
demonstrates the performance of small object detection only including one multi-source
remote sensing image dataset. We hope to explore the broader performance of our method
in detecting small objects in different datasets. With the rapid development of 5G and
computer vision intelligent perception technology, the cameras in the streets and alleys
have transformed from single video capture devices to multi-source observation and moni-
toring devices. Remote sensing technology has the advantage of a “clairvoyance”, which
can realize wide coverage, high efficiency, and high spatiotemporal resolution monitoring.
From another perspective, it provides auxiliary decision-making information for urban
transportation and supports the construction of smart transportation.

5. Conclusions

In this paper, the public DIOR dataset is used as experimental data. In view of
the characteristics of vehicle detection in remote sensing images with large format and
small objects, a vehicle detection network based on remote sensing images (VDNET-
RSI) is established. This method takes into account SR reconstruction, which solves the
problem that the semantic information and spatial information of vehicle information
are difficult to balance in the deep and shallow layers of the deep convolutional neural
network. The vehicle detection network framework is optimized while taking into account
SR reconstruction, and the receptive field of small objects is increased to improve the
robustness of vehicle detection. The experiment selects representative deep learning models
for comparative analysis. The conclusions are summarized as follows.

Firstly, when the size of the objects to be detected in large-scale remote sensing images
is too small, the existing models cannot effectively extract the vehicle features. It leads to
missed and false detections, and cannot directly migrate to small object detection such as
vehicles in remote sensing images. In this article, the VDNET-RSI containing a two-stage
convolutional neural network for vehicle detection is proposed. The experimental results
indicate that VDNET-RSI can extract vehicle features of different sizes adaptively and the
overall precision is significantly improved. The overall precision of VDNET-RSI reached
62.9%, about 6.3%, 38.6%, 39.8% higher than that of YOLOv5, Faster-RCNN and FCOS,
respectively. Thus, it has got rid of the limitation of traditional feature extraction modules.
The above conclusion indicates that the network is significantly superior to existing models
in detection performance. Secondly, the vehicle detection network containing the integrated
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SR module proposed in this paper presented a better vehicle detection performance in the
experimental results of ×2 SR reconstruction.

In the future, we will continue to investigate how to improve the detection performance
for small objects in large scale SR reconstruction by adding adaptive detection heads and
texture detail information. Therefore, an SR reconstruction model framework of detail
information and true spatial resolution enhancement is one of the important directions for
further research. At the same time, research will focus on lightweight versions of small
object detection models, which can efficiently process real-time scenes, provide technical
support for intelligent processing on submeter level satellites, achieve small object detection
in multi-scale satellite remote sensing images, and provide technical support for intelligent
inspection of vehicles in a wide field of view.
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