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Abstract: A synthetic aperture radar (SAR) has the capability to observe ocean surface winds with a
high spatial resolution, even under extreme conditions. The purpose of this work was to develop a
new method for wind speed retrieval with the combination of SAR dual-polarized signals. In this
study, we collected 28 tropical cyclone imageries observed using the Sentinel-1 dual-polarization
mode. These imageries were collocated with radiometer wind speed measurements and reanalysis
of wind vector products. In the new method, the wind speed was set as the output. VV-polarized
(vertical transmitting–vertical receiving polarized) normalized radar cross section (NRCS), incident
angle, VH-polarized (vertical transmitting–horizontal receiving polarized) NRCS, and wind direction
were set as the inputs. Based on different output combinations, wind retrieval models were developed
with multiple linear regression (MLR). According to the validation and comparison, the proposed
models performed better than the traditional piecewise VH-polarization geophysical model functions
(GMFs). The impact of thermal noise on the retrieval of low wind speeds (<10 m/s) could be partially
reduced. The input of wind direction is unnecessary if the combination of VV- and VH-polarized
imageries has been utilized. These results suggest that the use of MLR and the dual-polarization
combination can improve SAR wind retrieval accuracy. Compared with SMAP measurements, our
SAR retrievals can provide fine structures of TC wind fields.

Keywords: synthetic aperture radar; Sentinel-1 dual-polarized imagery; wind speed retrieval; tropical
cyclone; low wind

1. Introduction

The spaceborne synthetic aperture radar (SAR) has the capability to acquire backscat-
ter from the ocean surface in all-weather conditions [1,2]. This imagery has been widely
used to detect ocean dynamic phenomena, such as wind vectors [3,4], surface waves [5–8],
surface currents [9,10], and internal waves [11,12]. In general, ocean surface roughness is
positively dependent upon wind speed. SAR sensors can receive more Bragg or non-Bragg
backscatter when surface wind speed increases. Based on this theory, wind speeds could be
retrieved from SAR imagery [13]. With the advantages of high resolution, large coverage,
and high accuracy, SAR wind retrievals have contributed to oceanic and atmospheric inves-
tigations, for example, the analysis of sea surface wind distribution [14,15], the estimation of
tropical cyclone (TC) intensity, size and fullness [16,17], and the initialization of numerical
models [18,19].

C-band SAR instruments in orbit, such as RADARSAT-2, Sentinel-1, and Gaofen-3,
generally have a dual-polarization sensing mode. This model has the advantage of re-
ceiving signals in both co- (i.e., VV- and HH-polarization) and cross-polarization (i.e., VH-
and HV-polarization), which contain abundant backscattering information to observe the
ocean surface more effectively. The geophysical model function (GMF), which relates the
microwave normalized radar cross section (NRCS) to the wind speed, has played a key role
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in the wind retrieval from co-polarization and cross-polarization channels of SAR. To date,
many empirical functions have been proposed. For co-polarized data, there is the CMOD
family, including CMOD4 [20], CMOD5.N [21], CMOD7 [22], etc., originally developed
for scatterometers, together with the C_SARMOD [23] and C_SARMOD2 [24] models
re-tuned for SAR. For cross-polarized SAR imagery, there are C-2PO [2], C-2POD [25],
C-3PO [26], and MS1A [27], and a large number of modified models, such as S1IW.NR [28],
S1ER.NR [29] and MMS1A [17]. For most GMFs, the sigma nought (σ0) is on the left side of
the equation. The right side is a function of wind speed, wind direction, and the incident
angle. In wind retrieval, people usually have to pre-set a group of wind speed values
and then input them into a GMF to obtain a first-guess σ0, and finally match them with
SAR-measured NRCS to determine wind speeds. The difficulty of inversing GMFs makes
wind retrieval less direct and leads to greater computational complexity.

According to the relationships between NRCS and wind speed, the most significant
difference between co- and cross-polarization GMFs is the wind retrieval range. Since
co-polarized signals saturate under high wind conditions (>25 m/s), the imagery cannot
recognize the high wind area; therefore, they are often used to retrieve low-to-moderate
wind speeds (<25 m/s) [29]. Meanwhile, cross-polarized acquisitions keep high sensitivity
with high winds but are not good at low-wind retrieval due to the strong impact of thermal
noise compared with conventional co-polarized acquisitions [27,29,30]. In addition, the
wind direction parameter is another difference between co- and cross-polarization GMFs.
Many studies have indicated that cross-polarized NRCS is almost insensitive to wind
direction and, therefore, most cross-polarization GMFs do not require a wind direction
input, making retrieval easier [31,32]. However, co-polarized NRCS is sensitive to wind
direction since wind direction can change the local incident angle to influence Bragg
contribution; thus, the GMFs for co-polarized images generally need a wind direction
input [20,22,33].

With dual-polarized imagery, the differing sensitivity between contemporaneous co-
and cross-polarized SAR signals can be advantageously combined to retrieve winds ranging
from low to high as well as wind directions. Zhang et al. employed CMOD5.N and C-2POD
to construct a cost function to merge information from both VV and VH channels [25].
The minimization of the cost function allows optimum estimates for wind vectors. This
method performs well for the RADARSAT-2 imagery of TCs according to the comparison
of retrievals with collocated QuikSCAT scatterometer winds. Mouche et al. also developed
a cost function for the determination of the maximum probability to obtain a wind vector
based on CMOD5.N, MS1A, and the priori information of wind vectors from ECMWF
(spatial resolution is 0.125◦ with a time step of 3 h) [27]. The combination model performed
better than the single GMF in two aspects. On the one hand, compared with the single use
of the CMOD5.N model, the combination method improved the accuracy of SAR retrieval
for winds larger than 25–30 m/s using the cross-polarization channel of the Sentinel-1
C-SAR sensor. On the other hand, despite noise equivalent sigma zero (NESZ) correction,
the impact of NESZ remains significant at sub-swath boundaries for low wind regions. The
combination model can solve this issue with the contribution of CMOD5.N and ECMWF
references. Overall, excellent consistency was found between the Soil Moisture Active
Passive (SMAP) winds and the results of their method, indicating that the joint use of co-
and cross-polarization can indeed improve wind retrieval under TC conditions.

In this paper, a new approach was explored to retrieve ocean surface wind speed
with the combination of co- and cross-polarized imageries, inspired by the well-designed
empirical wave retrieval model family CWAVE [34–36], instead of a cost function. We
focused on the extra wide swath (EW) mode and the interferometric wide swath (IW) mode
of the Sentinel-1 A/B sensors and collected 28 TC cases with multiple wind collocations
for model development and validation. Different schemes were investigated for inputs.
Multiple linear regression (MLR) was utilized in modeling. A comparison was made
between the proposed models and some traditional models. In addition, wind retrieval bias
was assessed against the rain rate. The remaining sections of this paper are organized as
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follows. Section 2 introduces the Sentinel-1 imagery, wind references, and data collocation.
Section 3 presents a series of functions for the new model. In Section 4, the new models are
validated with TC wind measurements and analyses. Discussion and conclusions are made
in Sections 5 and 6, respectively.

2. Dataset Description
2.1. Sentinel-1 SAR Imagery

The C-SAR sensor on board the European Space Agency (ESA) Sentinel-1 A/B satellites
can be operated in four different modes: the Stripmap (SM) mode, the Interferometric Wide
swath (IW) mode, the Extra Wide Swath (EW) mode and the Wave (WV) mode. For TC
observations, the EW mode and the IW mode are generally used to acquire extensive wind
field information with the largest and second-largest swaths in four modes. Some imagery
parameters are shown in Table 1. Except for these parameters, EW and IW imagery have
different NESZ distributions, leading to different NRCS–wind relationships when surface
wind is weak, which should be particularly considered in model development. In this
study, 16 and 12 TC cases were, respectively, observed in EW and IW modes from 2016 to
2021, with dual-polarization (VV + VH). The TCs were over the Atlantic Ocean (AL), the
East Pacific Ocean (EP), the Southern Hemisphere Ocean (SH), and the West Pacific Ocean
(WP). Sentinel Application Platform (SNAP) 7.0 software was utilized for GRD border
noise removal, thermal noise removal, and imagery calibration.

Table 1. Some imagery parameters of the Sentinel-1 EW and IW modes.

Sensor Mode Ground Swath (km) Spatial Resolution 1 (m) Incident Angle (◦) Sub-Swaths Number

EW 410 30 × 40 20–47 5
IW 250 5 × 20 31–46 3

1 The spatial resolution is range × azimuth.

2.2. SFMR Wind and Rainfall Measurements

The National Oceanic and Atmospheric Administration (NOAA) Stepped-Frequency
Microwave Radiometer (SFMR) on board reconnaissance aircraft can measure the bright-
ness temperature from the sea surface at six C-band frequencies along the flight track over
a storm [37]. Ocean surface wind speeds are retrieved according to a function between the
wind speed and surface emissivity. Rain rate retrieval is based on the relationship between
microwave absorption and rain rate. The SFMR wind speed measurements have an RMSE
of ~3.9 m/s compared with the dropsonde measurements [38]. SFMR wind speeds and rain
rate with a spatial resolution of 0.01◦ have been used as collocations in the establishment
and evaluation of the SAR wind and rainfall retrieval models [39,40]. Our study used data
for model development.

2.3. SMAP Wind Measurements

The L-band radiometer on board the SMAP satellite can measure the bright temper-
ature to retrieve the ocean surface wind speed without being affected by rainfall [41,42].
Its 1000 km swath provides it with a chance to make a complete observation of a storm.
Remote Sensing Systems (www.remss.com/missions/smap/ (accessed on 21 March 2022))
provided the SMAP Final Wind Speed products and considered the equivalent neutral
winds at a 10 m height above the ocean surface. Their grid spacing was 0.25◦ × 0.25◦.
For winds greater than 25 m/s, a consistency was found between SMAP and SFMR mea-
surements, with a bias of 0.5 m/s and a standard deviation of ~3 m/s [38]. In addition,
the evaluation of size values proved that the SMAP winds could be used for TC wind
field monitoring and modeling [43]. In this paper, we used the SMAP Final Wind Speed
products as an independent data source for validation.

www.remss.com/missions/smap/
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2.4. Dropsonde Wind Vector Measurements

To validate the proposed wind retrieval models, we collected NOAA Hurricane
Research Division (HRD) dropsonde data. Dropsondes were released from the aircraft
along the flight track and drifted down on a parachute, measuring vertical profiles of
pressure, temperature, humidity, and wind as they fell. At a 10 m height, the accuracy of
the wind speed measurement was about 0.5–2.0 m/s [44]. In this work, only sea surface
wind vector measurements were used whose pressure level of observation was 1070.0 hPa.
They acquired over 8 TCs. There were 11 observations collocated with EW mode SAR
images and 12 observations collocated with IW mode SAR images. The time difference
between dropsonde observations and SAR images was less than 0.5 h.

2.5. ECMWF ERA5 Wind Vectors

ERA5 is the fifth-generation ECMWF atmospheric reanalysis of the global climate,
covering the period from 1950 to the present. Based on data assimilation, ERA5 combines
model data with observations from across the world into a global dataset with an hourly
temporal resolution and a spatial resolution of 0.25◦ × 0.25◦ [45]. ECMWF wind vectors
have been used as references in investigations of SAR wind retrieval with both signal and
dual polarizations. In this study, all wind direction values were collected from ERA5, except
a case study on Tropical Storm Karl (2016). In addition, most wind speed values lower than
15 m/s were from ERA5 in model development as a supplement to SFMR measurements.

2.6. H*Wind Data

H*Wind is an integrated system that provides a view of the strength and extent of
hurricane wind fields according to the input of all available surface weather observations
with respect to the storm and is used operationally to improve the damage assessment
of hurricane intensity [46]. In general, the total uncertainty of the H*Wind products in
hurricanes is approximately 6% near the storm center, increasing to nearly 13% near the
tropical storm force wind radius [47]. In this paper, a case study of Tropical Storm Karl was
carried out with the wind vectors provided by Risk Management Solutions H*Wind. The
spatial resolution was 0.01◦ × 0.01◦.

2.7. Collocation

To construct the dataset, the Sentinel-1 imagery of TCs was collocated with the wind
data introduced above. There were 13 SFMR and 16 SMAP collocations. All SAR imageries
were matched with ERA5. The time differences between SAR and SFMR were controlled
within 0.5 h. The time difference between SAR and SMAP was just a few minutes. The time
difference between SAR and ERA5 was within 1 h. According to the best tracks provided
by the National Hurricane Center (NHC) and the Joint Typhoon Warning Center (JTWC),
the TC intensities of different matches are shown with the Saffir–Simpson hurricane wind
scale in Figure 1. For Tropical Storm Karl, the time difference between SAR and H*Wind
was about 1 h and 37 min. According to the TC motion vector estimated from the best track
and the time difference, the locations of H*Wind were shifted to match SAR imagery using
the method presented in [28].

To note, a SAR image of Hurricane Michael observed at 23:44 UTC on 9 October
2018 could be matched both with SFMR and SMAP (Figure 2), where the storm eye was
obvious. Figure 2a,b are VV- and VH-polarized images from the EW mode, respectively.
The white and black lines crossing the storm eye are the tracks of flights belonging to the
Air Force Reconnaissance (AFRC) and NOAA, respectively. Figure 2c is the collocated
SMAP final wind with a maximum value of 53.69 m/s. Figure 3 shows an example of IW
mode dual-polarized imagery acquired over Hurricane Irma at 9:07 UTC on 29 October
2017. The white line is the AFRC flight track.
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Figure 2. A collocation example of Hurricane Michael. (a) Sentinel-1 EW mode VV-polarized image
acquired on 23:44 UTC 9 October 2018; (b) Contemporaneous VH-polarized image; and (c) Matched
SMAP final winds measured on 23:36 UTC 9 October 2018. In (a,b), white and black lines crossing
the storm eye are the tracks of flights from AFRC and NOAA, respectively. The SFMR observations
along the tracks are within a 0.5 h time difference from Sentinel-1.
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Figure 3. A collocation example of Hurricane Irma. (a) Sentinel-1 IW mode VV-polarized image
acquired on 9:07 UTC 29 October 2017; (b) Contemporaneous VH-polarized image. White lines show
the AFRC flight track. The SFMR observations along the track are within a 0.5 h time difference from
Sentinel-1.

3. Model Development

After data collocation, the distribution of NRCS was compared with the incident angle
and wind speed (Figure 4). The winds of the unfilled points were measured using SFMR.
Since under TC conditions, most of these winds were larger than 15 m/s, the low winds of
the filled points were collected from ERA5 reanalysis as a supplement for data fitting in
an entire wind speed range. Figure 4a–d shows the VV- and VH-polarization for the EW
and IW modes, respectively. Low winds have a strong linear correlation with VV NRCS.
The range of VV NRCS is wide enough to distinguish specific wind speeds. However, for
the VH channel, the signals of low winds are seriously affected by NESZ (shown with
black curves in Figure 4b,d), making the retrieval difficult. These are the main reasons why
VV-polarized imagery performed well in the retrieval of low wind speed, but VH-polarized
imagery did not. Interestingly, the opposite happened in moderate and high winds. The
linear correlation between NRCS and wind speed was stronger in VH imagery than in VV
imagery and weakly impacted by the incident angle and NESZ. So, if signals from VV- and
VH-polarization channels are combined for model development, the new model could take
advantage of both channels.

Figure 4. Cont.
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Figure 4. Comparison between NRCS, incident angle and wind speed for (a) EW mode VV-
polarization; (b) EW mode VH-polarization; (c) IW mode VV-polarization; (d) IW mode VH-
polarization. The winds of the unfilled points were measured using SFMR. The winds of the filled
points are from the ERA5 reanalysis. Black curves stand for NESZ.

Inspired by the CWAVE family of the SAR empirical wave retrieval models [34–36],
we present a new approach, i.e., Equation (1), to establish the model. Sentinel-1 dual-
polarized signals were combined as fitted data. The output is the wind speed at 10 m height
(U10). There are four inputs: VH NRCS (σVH

0 ), incident angle (θ), VV NRCS (σVV
0 ), and

wind direction (ϕ). To note, the wind direction is the angle between the real and azimuth
directions. We used MLR to automatically decide which parameter was important for
wind retrieval and expressed the relationship by determining coefficients. Three different
schemes were tested for model inputs. We named them Model 1 (inputs: σVH

0 , θ), Model 2
(inputs: σVH

0 , θ, σVV
0 ) and Model 3 (inputs: σVH

0 , θ, σVV
0 , ϕ).

U10 = ∑n
i,j=1 Ai,jXiXj + ∑n

i=1 AiXi + A0, (1)

where A0, Ai and Ai,j are coefficients. For their values, please refer to Table A1. Xi and Xj

are inputs. j ≥ i. X1 = σVH
0 . X2 = θ. X3 = σVV

0 . X4 = ϕ. n = 2, 3, 4 for Model 1, 2, and
3, respectively. Wind retrieval models were separately developed for the EW mode and
the IW mode. Then, for evaluation, the new models were used to simulate wind speeds
from the fitted data. Figures 5 and 6 show the comparison of the simulations and wind
references for two modes.

After MLR fitting, an additional linear regression was utilized to correct the bias,
especially for the retrieval of high winds. The final retrieval was Ufinal

10 = aU10
b. a and b

are coefficients. The values of a and b are listed in Table A2. Finally, the new models were
evaluated again through an error calculation based on the fitted data, including the bias
(retrievals minus fitted data), Pearson correlation coefficient (Cor), and root mean squared
error (RMSE). The calculation methods of Cor and RMSE are given in Equations (2) and (3).
The results are illustrated in Table 2. In general, the error reduced if a proposed model had
more inputs, indicating that the combination of VV- and VH-polarized signals, together
with wind direction, have the potential to improve retrieval accuracy.

Cor =
cov
(
Ufinal

10 , Ureference
10

)
std
(
Ufinal

10
)
std
(
Ureference

10
) , (2)

RMSE =

√√√√∑N
i=1

(
Ufinal

10,i –Ureference
10,i

)2

N
(3)
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where Ufinal
10 is the SAR-simulated wind speed and Ureference

10 is the reference wind speed.
cov
(
Ufinal

10 , Ureference
10

)
stands for the covariance of them. std

(
Ufinal

10
)

and std
(
Ureference

10
)

are
the standard deviations of Ufinal

10 and Ureference
10 .
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Table 2. Evaluation of the new models based on fitted data.

Model
Bias (m/s) Cor RMSE (m/s)

<10 m/s ≥10 m/s All <10 m/s ≥10 m/s All <10 m/s ≥10 m/s All

EW Model 1 0.75 –0.32 0.13 0.04 0.92 0.93 2.66 4.09 3.57
EW Model 2 0.42 –0.17 0.07 0.40 0.92 0.94 2.41 3.79 3.30
EW Model 3 0.38 –0.13 0.08 0.40 0.92 0.94 2.42 3.77 3.28
IW Model 1 1.24 –0.86 0.0045 0.27 0.90 0.91 2.77 5.18 4.36
IW Model 2 0.51 –0.34 0.0097 0.67 0.90 0.93 2.59 4.30 3.69
IW Model 3 0.24 –0.16 0.0049 0.64 0.91 0.94 2.34 4.05 3.45
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4. Validation and Comparison
4.1. Validation with SMAP Winds

To evaluate the accuracy of the proposed models, validation was carried out in this
section. Wind speeds were retrieved via different models from 16 TC imageries observed
using the Sentinel-1 EW and IW modes. Then, retrievals were compared with the collocated
SMAP wind speeds, ensuring the objectivity of validation. ERA5 wind directions were
used as inputs in EW Model 3 and IW Model 3. The sample number distributions of SMAP
wind speeds and ERA5 wind directions are shown in Figure 7. The maximum wind was
up to about 70 m/s. Wind directions were distributed from 0 to 360 degrees.

Models were validated separately for the Sentienl-1 EW and IW modes. For the EW
mode, wind speeds were retrieved by EW Model 1, 2, 3, MMS1A, and S1EW.NR. MMS1A
and S1EW.NR are piecewise functions. The MMS1A model was modified from MS1A
through a correction of SFMR data [17]. The S1EW.NR model was fitted from ERA5 wind
speeds [29]. For wind retrieval, the two models just required VH NRCS and incident
angle inputs.

Comparisons are shown in Figure 8. According to the scatters, error statistics were
carried out for winds lower than 10 m/s, higher than 10 m/s, and for all winds. The results
are illustrated in Table 3. Overall, EW Model 2 performed best. Better consistencies could
be found between the results of the proposed models and SMAP winds. The main reason
was the modeling method: MLR was able to develop a single function that could make
retrievals change more smoothly in adjacent sub-swaths of SAR imagery. However, this
is difficult to realize with a piecewise function. In addition, S1EW.NR has a more serious
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underestimation. Compared with the S1EW.NR model, the MS1A model, was closer to
the new models. It showed another factor that affects model performance: the fitted data.
To note, all the tested models underestimated winds higher than 30 m/s. This issue was
induced by the high wind difference between SFMR, ERA5, and SMAP.
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Table 3. Validation results of the proposed EW Model 1, 2, 3, and traditional MMS1A and S1EW.NR
models. Retrievals were compared with SMAP wind speeds.

Model
Bias (m/s) Cor RMSE (m/s)

<10 m/s ≥10 m/s All <10 m/s ≥10 m/s All <10 m/s ≥10 m/s All

EW Model1 –0.70 –1.47 –1.36 0.26 0.94 0.95 1.76 3.60 3.37
EW Model2 0.10 –1.53 –1.27 0.39 0.95 0.96 1.74 3.30 3.10
EW Model3 –0.16 –1.64 –1.41 0.41 0.95 0.96 1.79 3.34 3.15

MMS1A 0.71 –2.37 –1.88 0.44 0.95 0.96 2.01 4.30 4.02
S1EW.NR –0.77 –3.89 –3.40 0.21 0.92 0.92 3.21 5.92 5.58

For the Sentienl-1 IW mode, wind speeds were retrieved via IW Model 1, 2, 3, MMS1A,
and S1IW.NR. The S1IW.NR model is linear and has a power piecewise function, which
is established with SFMR and SMAP data [28]. Figure 9 shows the comparisons of the
retrievals and SMAP winds. According to the scatters, the performance metrics are il-
lustrated in Table 4. Just like the EW situation, when compared with the two traditional
models, the proposed models had smaller RMSE values. The retrievals of high winds were
smaller than SMAP data. Their reasons are the same as the EW situation. In addition,
since MMS1A was mainly designed for the EW mode, it had the largest error for winds
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lower than 10 m/s, indicating that one GMF is unable to fit low winds for both EW and IW
modes. This is because the low VH NRCS is seriously affected by different thermal noises
for different modes.
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Table 4. Validation results of the proposed IW Model 1, 2, 3, and traditional MMS1A and S1IW.NR
models. Retrievals were compared with SMAP wind speeds.

Model
Bias (m/s) Cor RMSE (m/s)

<10 m/s ≥10 m/s All <10 m/s ≥10 m/s All <10 m/s ≥10 m/s All

IW Model1 1.18 –3.14 –2.26 0.27 0.93 0.94 2.71 4.55 4.24
IW Model2 1.36 –1.79 –1.14 0.58 0.94 0.96 2.43 3.55 3.35
IW Model3 –1.07 –1.73 –1.60 0.47 0.89 0.93 2.56 4.39 4.08

MMS1A 6.45 –4.04 –1.88 –0.01 0.93 0.93 6.96 6.03 6.22
S1IW.NR 0.12 –4.23 –3.33 0.44 0.89 0.92 2.44 5.90 5.38

4.2. Validation with Dropsonde Winds

An experiment was carried out to validate the proposed models with the winds measured
using Dropsonde. The wind directions used in Model 3 were acquired from Dropsonde
wind vectors. Comparisons are shown in Figure 10. The EW and IW Models 1, 2, and 3
are the proposed models. The MMS1A, S1EW.NR and S1IW.NR are traditional models.
Tables 5 and 6 show the validation results for the EW and IW modes, respectively. On
average, the new models performed better than the traditional models. However, due to a
small number of samples, this improvement was not obvious from Models 1 to 3.
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Figure 10. Comparison of Dropsonde measurements with wind speeds retrieved from Sentinel-1
(a) EW mode images; (b) IW mode images, respectively.

Table 5. Validation results of the proposed EW Model 1, 2, 3, and traditional MMS1A and S1EW.NR
models. Retrievals were compared with Dropsonde wind speeds.

Model Bias (m/s) Cor RMSE (m/s)

EW Model 1 0.05 0.90 6.69
EW Model 2 0.37 0.90 6.76
EW Model 3 0.30 0.90 6.71

MMS1A –1.52 0.90 7.26
S1EW.NR –3.60 0.88 9.37
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Table 6. Validation results of the proposed IW Model 1, 2, 3, and traditional MMS1A and S1IW.NR
models. Retrievals were compared with Dropsonde wind speeds.

Model Bias (m/s) Cor RMSE (m/s)

IW Model 1 –0.93 0.95 6.22
IW Model 2 –1.62 0.94 6.75
IW Model 3 –0.77 0.91 7.88

MMS1A –5.42 0.96 10.60
S1IW.NR –4.85 0.94 9.03

4.3. A Case Study of Hurricane Michael

In this study, Hurricane Michael (2018) is very special. This is because it is the only
sample whose SAR image was collocated with both SFMR and SMAP measurements,
making it possible to compare our retrievals with winds and different grid spacings. Based
on EW Model 3, the surface winds of Hurricane Michael were retrieved, as shown in
Figure 11a. It had a grid spacing of 1 km. The storm eye, eyewall, and rain bands could be
identified easily. This is the advantage of our model. It can provide wind fields with small
structures. Figure 11b is the collocated SMAP wind map. Due to a 0.25◦-grid-spacing, it
looks much coarser. There are no storm eyes and other fine structures.
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Figure 11. Comparison of the SAR, SFMR and SMAP wind measurements in a case study on
Hurricane Michael. (a) Surface wind speeds retrieved via EW Model 3 from Sentinel-1 image.
(b) Collocated SMAP wind map. (c) Wind comparison along the SFMR observation track (i.e., the
white line in (a)). The grid spacing of SAR and SFMR winds was about 1 km. The grid spacing of
SMAP winds was 0.25◦.
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In Figure 11a, the white line crossing the storm eye represents the AFRC flight track,
on which the winds were measured by SFMR. The time difference between the SFMR
measurements and the SAR image was less than 0.5 h. To further show the difference
between the three wind products, winds along the track were compared in Figure 11b.
SFMR and SAR retrievals had the same grid spacing; however, SFMR wind values were
slightly lower than SAR. They could observe very low wind speeds in the storm center
and radial wind profile. In the region from the eye wall to the outer region, although the
distribution of SMAP data was similar to SAR and SFMR, it could not show low winds in the
center and the location of maximum wind speed when facing a 50 km-diameter storm eye.

4.4. A Case Study of Tropical Storm Karl

A case study of Tropical Storm Karl was carried out to statistically and visually
compare the retrieval differences between the proposed EW Model 1, 2, 3, MMS1A, and
S1EW.NR and especially investigate the extent of thermal noise’s impact on retrieval. The
Sentinel-1 VV- and VH-polarized imageries, as shown in Figure 12a,b, were acquired at
22:22 UTC 29 on September 2016. Thermal noise had no impact on the VV-polarized image.
However, for the VH-polarized image, the impact was obvious in low wind regions and
the leftmost sub-swath 1. The collocated H*Wind data are shown in Figure 12c. Its time
was 24:00 UTC on 29 September 2016. The retrievals of EW Model 1, 2, 3, MMS1A, and
S1EW.NR models are shown in Figure 12d–i.
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azimuth direction according to the area framed in red in (d).

In the area framed in red in Figure 12d, wind variations were averaged in the azimuth
direction and then compared in Figure 12i. A smaller rise and fall in the winds retrieved by
EW Model 2 and 3 demonstrate that the impact of thermal noise was partially weakened.
Even though the EW Model 1 was developed with the same MLR method as Models 2 and 3,
its retrievals had a larger variation. For all the points whose wind speeds were lower than
10 m/s, the RMSE values were 2.46, 2.06, 2.30, 3.52, and 2.52 m/s for EW Model 1, 2,
3, MMS1A, and S1EW.NR, respectively. These results show the benefit of the VV and
VH combination.

5. Discussion

As shown in Section 4.1, on average, our SAR retrievals were lower than SMAP
measurements if the wind exceeded about 30 m/s. When the wind increased, the difference
became larger. To investigate this reason, we compared the relationships between SAR
VH-polarized NRCS and the winds measured using SFMR and SMAP. As shown in Figure 4
and Table A1, among the parameters of NRCS, the incident angle, and wind direction, VH
NRCS had the strongest impact on wind speed retrieval. Thus, we used it as a medium
to compare two different wind measurements and showed the variation characteristics of
retrieval in different wind regimes.

The results are shown in Figure 13. Black solid and dashed curves represent the mean
variations of scatters with different colors. According to the two curves, the difference in
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SAR retrievals and SMAP winds had two main reasons. First, if the wind exceeded 30 m/s
for the same VH NRCS, the SMAP measurement would be higher than SFMR on average.
Second, the difference between SFMR and SMAP increased with increasing VH NRCS.
As a result, when we used the model developed from SFMR data to retrieve wind, the
results were close to SFMR and lower than SMAP data. This difference became larger with
increasing wind.

Figure 13. Relationships between Sentinel-1 VH NRCS and wind speeds measured using SFMR and
SMAP according to our samples. The black dashed curve stands for the mean variation in SAR and
SFMR. The black solid curve stands for the mean variation in SAR and SMAP.

In the proposed models, wind direction is one of the inputs in EW and IW Model 3.
However, according to the MLR results, it may not be a key parameter in wind speed
retrieval if VV- and VH-polarized imageries are combined. As shown in Table A1, most
A4 and Ai,4 are at least one or two magnitudes smaller than other coefficients. It means
that wind speed and direction are generally not related or are weakly related to each other.
This is true for randomly selected sea areas in nature. Wind direction just modulates the
relationship between co-polarized backscatter and wind speed by influencing the local
incident angle in a cosine way, which is hard to fit using MLR. As a result, although Model 3
has a wind direction coefficient, it is not much better than Model 2 (see Table 2), indicating
that the influence process of wind direction on wind retrieval is not essential if VV- and
VH-polarized imageries are combined, while Model 2 and 3 are an evident improvement
with respect to Model 1, indicating that the dual-polarization combination is an effective
method to improve retrieval accuracy.

Under TC conditions, extreme wind speeds are always accompanied by intense rain-
fall, which can generate an error for wind retrieval. Since the SFMR instrument can measure
contemporaneous wind speed and rain rate along the flight track, its data are an excellent
reference to evaluate the impact of rainfall on wind retrieval [39]. In this study, the wind re-
trieval bias, which was equal to the proposed model retrieval minus the SFMR wind speed,
was compared with the SFMR rain rate and wind speed. These results were used to measure
the impact of rainfall on wind retrieval. For three models of each mode, their bias distribu-
tions were similar. Thus, biases were averaged from the results of Models 1, 2, and 3. As
shown in Figure 14, although high rain rates are generally accompanied by high winds,
there is no evidence that the rainfall had a definite impact on wind retrieval. For all points,
the bias was around zero on average. Due to this ambiguous pattern, reducing errors with
rain rate or further retrieving rain rate is still difficult.
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Figure 14. Comparisons between wind retrieval bias, SFMR rain rate and wind speed for the proposed
models of (a) EW mode; (b) IW mode. For each mode, results are averaged from Model 1, 2, and 3.

6. Conclusions

Inspired by the CWAVE wave retrieval models, this study proposes a new approach
for SAR ocean surface wind speed retrieval in a grid spacing of 1 km with the MLR
method. To develop and validate new retrieval models, Sentinel-1 dual-polarized (VV +
VH) observations were acquired from 28 TC cases over different ocean basins. Collocated
wind data were collected from multiple sources, such as SFMR, SMAP, dropsonde, ECMWF
ERA5, and H*Wind.

According to the comparison between NRCS, incident angle, and wind speed, VV-
and VH-polarized imagery can distinguish wind speeds well, respectively, within low
wind regions and moderate-to-high wind regions. Based on these advantages, new models
were designed with the combination of VV- and VH-polarized signals. In addition, the
GMF form was changed from the traditional σ0 output to the new U10 output, making
the retrieval straighter and faster. Three schemes were investigated for inputs, named
after Model 1 (inputs: σVH

0 , θ), Model 2 (inputs: σVH
0 , θ, σVV

0 ) and Model 3 (inputs: σVH
0 , θ,

σVV
0 , ϕ). According to the MLR results, the model with more inputs could fit data better.

However, the improvement from Model 2 to Model 3 was not as significant as from Model
1 to Model 2.

Validation shows better consistencies between the results of proposed models and
SMAP and dropsonde winds compared with traditional VH-polarization GMFs in the
piecewise function. The big difference between SAR retrievals and SMAP winds over
30 m/s was mainly caused by the observational difference in SFMR and SMAP. A retrieval
case study on Hurricane Michael indicated that our models could provide the wind infor-
mation of a fine structure, for example, TC eye, eyewall, and rainbands. A case study of
Tropical Storm Karl suggested that the impact of thermal noise on wind retrieval could be
partially reduced using Models 2 and 3. These results indicate that the use of MLR and the
combination of VV- and VH-polarized imageries could improve wind retrieval accuracy. In
addition, the input of wind direction is not essential if the combination has been utilized.
Under TC conditions, although intense rainfall is often accompanied by high winds, our
study showed no evidence that rainfall had a definite impact on wind retrieval. Even with
rainfall, the retrieval bias was around zero on average. As a result, it is still difficult to
reduce errors with rain rate or further retrieve rain rate.
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Appendix A

In this section, the coefficients are listed in Table A1 for the proposed wind retrieval
models, i.e., EW Model 1, 2, 3 and IW Model 1, 2, 3. The coefficients in their correction
functions are listed in Table A2.

Table A1. Values of all coefficients in the proposed wind retrieval models.

Model Coefficient

EW Model 1

A0 A1 A2 A1,1 A1,2
134.948527 8.535906 1.1293905 0.1422056 0.038811

A2,2
0.003917

EW Model 2

A0 A1 A2 A3 A1,1
143.812413 11.067208 2.355905 −0.307838 0.204342

A1,2 A1,3 A2,2 A2,3 A3,3
0.036087 −0.071111 −0.023669 −0.064649 −0.035267

EW Model 3

A0 A1 A2 A3 A4
147.348198 11.398898 2.377266 −0.440641 0.000234

A1,1 A1,2 A1,3 A1,4 A2,2
0.209036 0.035286 −0.076520 −0.000547 −0.023973

A2,3 A2,4 A3,3 A3,4 A4,4
−0.065019 −0.000177 −0.033961 0.000105 −0.000017

IW Model 1

A0 A1 A2 A1,1 A1,2
185.593357 12.465933 1.315279 0.141039 −0.054268

A2,2
−0.029085

IW Model 2

A0 A1 A2 A3 A1,1
203.549220 15.088689 1.653653 −0.714153 0.249729

A1,2 A1,3 A2,2 A2,3 A3,3
−0.015968 −0.085755 −0.027735 −0.050190 −0.034910

IW Model 3

A0 A1 A2 A3 A4
217.780636 16.327531 2.159972 −1.552834 −0.163730

A1,1 A1,2 A1,3 A1,4 A2,2
0.269266 −0.016449 −0.108816 −0.003335 −0.035309

A2,3 A2,4 A3,3 A3,4 A4,4
−0.041120 0.000859 −0.020604 0.001688 0.000183

https://pan.baidu.com/s/19A7SVd5fuQscLn2DiVruwg
https://pan.baidu.com/s/19A7SVd5fuQscLn2DiVruwg
https://www.aoml.noaa.gov/
https://www.remss.com/
https://www.remss.com/
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Table A2. Values of all coefficients in the correction functions of the proposed wind retrieval models.

Correction Coefficient
EW IW

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

a 0.73 0.74 0.74 0.70 0.72 0.74
b 1.12 1.11 1.11 1.13 1.12 1.11
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