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Abstract: With the increasing impact of climate change on ecosystems, it is crucial to analyze how
changes in precipitation and temperature affect global ecosystems. Therefore, this study aims to
investigate the spatiotemporal variation characteristics of the Enhanced Vegetation Index (EVI) in
the global forest, grassland, shrubland, and tundra (FGST) from 2000 to 2021. We utilized partial
correlation analysis and grey relation analysis to assess the responses of different vegetation types to
precipitation, temperature, and extreme water and heat indicators. The result shows that, despite
a “warmer and drier” trend in FGST (excluding tundra), global climate change has not adversely
affected the ongoing vegetation growth. It presents a favorable implication for global carbon dioxide
assimilation. Different vegetation types displayed different sensitivities to changes in precipitation
and temperature. Shrubland proved to be the most sensitive, followed by grassland, forest, and
tundra. As the impacts of global climate change intensify, it becomes crucial to direct our attention
toward dynamics of vegetation types demonstrating heightened sensitivity to fluctuations in precipi-
tation and temperature. Our study indicates that, except for forests, extreme precipitation indicators
have a stronger impact on EVI than extreme temperature indicators. Forests and tundra have demon-
strated heightened susceptibility to the intensity of extreme climatic events, while grasslands and
shrublands have been more sensitive to the duration of such events. Understanding these responses
can offer valuable insights for developing targeted strategies for adaptation and preservation. Our
study enhances comprehension of the feedback relationship between global climate change and
vegetation, offering scientific evidence for global climate change evaluation.

Keywords: EVI; spatiotemporal characteristics; climate response; grey relation analysis; global
terrestrial typical vegetation; extreme climate indicators

1. Introduction

Global precipitation patterns have significantly changed due to climate warming [1],
resulting in varying ecosystem impacts [2–4]. Satellite observations have shown a greening
trend to different extents globally in recent decades [5,6]. However, the causes of greening
vary between regions and vegetation types. Recent studies have identified croplands as
contributing significantly to global greening [7]. Nevertheless, the changes in croplands are
not an accurate reflection of the ecological effects of global climate changes because they
are heavily influenced by human activities. Compared with croplands, forests, grasslands,
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shrublands, and tundra (FGST) are usually more directly affected by climate changes and
play a crucial role in maintaining ecological stability, preserving ecosystem diversity [8–10],
and regulating global water and carbon cycles [11,12]. Temperature is a critical factor
that affects the growth of vegetation, and a suitable temperature is a prerequisite for
the normal growth and development of vegetation [13,14], particularly for plants in low-
temperature environments (e.g., tundra) [15]. In addition, temperature plays a vital role in
regulating the physiological activities of plants and soil microorganisms, such as enzymatic
reactions [16]. Precipitation is another key factor affecting the ecosystem, being directly or
indirectly involved in the physiological activities of vegetation [17]. In arid and semi-arid
regions, such as shrublands and grasslands, precipitation (rain and snow) is a pivotal
driver of ecosystems [18]. Fluctuations in precipitation can also trigger changes in nutrient
cycling and productivity [19]. Identifying the patterns of global changes in FGST and their
responses to precipitation and temperature will help us better understand the mechanisms
by which climate change affects global ecosystems.

With different growth environments and physiological habits, FGST have varying de-
grees of sensitivity to changes in precipitation and temperature [20]. Forest ecosystems are
particularly sensitive to shifts in temperature and precipitation [21]. In some regions, forest
cover increases with warmer temperatures and more favorable precipitation [22], whereas
climate disasters caused directly or indirectly by changes in temperature and precipitation,
such as drought, wildfires, heavy rains, and floods, increase tree mortality rates [21,23].
Grassland and shrubland ecosystems are primarily found in arid and semi-arid regions and
are more susceptible to precipitation [24,25]. In contrast, rising temperatures alter vegeta-
tion phenology and accelerate vegetation growth [26]. In addition, the increased frequency
of fire and drought events caused by climate change significantly affects the ecological
structure and community composition of grassland and shrubland ecosystems [27]. The
vegetation growth conditions in the tundra ecosystem in the high latitudes of the northern
hemisphere are harsh, with some regions being situated within permafrost zones [15]. With
climate change, particularly the thawing and melting of permafrost by the accelerated
temperature rise [28], the decrease in albedo caused by melting polar glaciers [15], the
extension of the vegetation growing season [29], and the expansion of shrubs [15] have
become essential factors contributing to Arctic greening. Furthermore, climate change has
increased the intensity and frequency of extreme events globally [30–32]. Considering the
variations in the adaptive range or resilience of different vegetation types to changes in
precipitation and temperature, we need to pay particular attention to the potential impacts
of frequent extreme climate events on ecosystem stability. However, our current under-
standing of how exacerbated extreme climate events under the backdrop of climate change
affect different ecosystems remains inadequate. With the increasing scope and magnitude
of climate change impacts on global ecosystems, there is an urgent need for a global-scale
assessment of the effects of precipitation and temperature changes on different ecosystems
to improve our ability to respond to climate change.

As a large-scale and long-term technical approach, remote sensing monitoring for
vegetation provides possibilities for assessing global FGST ecosystem changes [6]. EVI
(Enhanced Vegetation Index), a more sensitive vegetation index than NDVI (Normalized
Difference Vegetation Index) [33], has been validated for its data reliability [34] and is
widely used in the monitoring of vegetation dynamics [35,36]. In this study, global FGST
ecosystems were selected to investigate the spatiotemporal patterns of EVI and its correla-
tion with precipitation and temperature using linear trend analysis and partial correlation
analysis methods. On this basis, integrating extreme climate indices (ECI), the grey re-
lational analysis method was employed to assess the impact of extreme climate events
on FGST vegetation. The objectives of this research are as follows: (1) analyze the spa-
tiotemporal patterns of vegetation dynamics in global FGST, (2) identify the sensitivity of
different vegetation types to changes in precipitation and temperature, and (3) evaluate the
association between global FGST and extreme climate events.
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2. Materials and Methods
2.1. Data and Processing
2.1.1. Land Cover Data

The global land cover data for this study were sourced from the GlobeLand30 dataset,
obtained from the National Geomatics Center of China (http://www.globallandcover.com,
accessed on 1 February 2023). It is a 30 m resolution global land cover data product with
10 land cover classes and three version years, specifically for 2000, 2010, and 2020.

ArcGIS was used to identify regions where the global land cover classes did not
change in 2000, 2010, and 2020. The regions with typical global terrestrial vegetation, such
as forest, grassland, shrubland, and tundra (Table A1), were then extracted as the study
area (Figure 1).
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Figure 1. The global distribution of forest, grassland, shrubland, and tundra. The whole four
terrestrial typical vegetation regions are defined according to the GlobeLand30 dataset.

2.1.2. EVI Data

In this study, the EVI data were obtained from the MOD13A2 (version:006) dataset,
which was supplied by the Application for Extracting and Exploring Analysis Ready Sam-
ples (AppEEARS) National Aeronautics and Space Administration (NASA) EOSDIS Land
Processes Distributed Active Archive Center (LP DAAC) (https://appeears.earthdatacloud.
nasa.gov/, accessed on 1 February 2023). The data consist of 503 images from 2000 to 2021,
with a spatial resolution of 1 km and a temporal resolution of 16 days. A study showed that
the one-year EVI calculated by the Maximum Value Composite (MVC) method could reflect
the potential productivity of vegetation. In contrast, the one calculated by the arithmetic
mean (AM) method can reflect vegetation’s annual average production status [37]. There-
fore, to determine the average vegetation status in the global FGST region, we used the
AM method to process 23 images (20 images in 2000) in each natural year, generating the
annual mean values of the EVI (EVImean-a). It will be used to analyze the spatiotemporal
variations of vegetation and its response to climatic conditions.

2.1.3. Meteorological Data

Time-series 3 h meteorological data with 0.25◦ spatial resolution were obtained
from the NASA Global Land Data Assimilation System Version 2.1 (GLDAS-2.1) dataset
(available at https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_3H_2.1/summar,
accessed on 1 February 2023). The air temperature and precipitation data units in this
dataset are Kelvin (K) and kg/m2/s. For convenience of calculation, we converted the air

http://www.globallandcover.com
https://appeears.earthdatacloud.nasa.gov/
https://appeears.earthdatacloud.nasa.gov/
https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_3H_2.1/summar
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temperature data units from Kelvin (K) to degrees Celsius(◦C) (1 ◦C = 1 K − 273.15) and
the precipitation data units from rate (kg/m2/s) to amount (mm).

In this study, the daily temperature and precipitation data were obtained by calculating
the AM of all 3 h temperature data and the cumulative values of all 3 h precipitation data for
one day, respectively. Then, the annual mean air temperature (AMT) data were calculated
using the AM method, and the annual precipitation (AP) data were calculated using the
cumulative calculation method. In addition, to analyze the response of vegetation to
climate, we resampled the spatial resolution of temperature and precipitation data to 1 km
using bilinear interpolation to match the EVI data.

2.2. Methods
2.2.1. Liner Regression Analysis

The interannual trends of vegetation EVI in the global FGST region, temperature, and
precipitation from 2000 to 2021 were identified using linear regression analysis. The specific
linear regression equation is shown below:

SLOPE =

n×
n
∑

i=1
(i× xi)−

n
∑

i=1
i×

n
∑

i=1
xi

n×
n
∑

i=1
i2 − (

n
∑

i=1
i)2

(1)

where SLOPE denotes the change rate of each parameter over the time series, xi represents
the value of each parameter in the year i, and n is the total number of years in the study
period. In this study, n = 22. SLOPE > 0 indicates an increasing trend for each parameter,
and SLOPE < 0 indicates a decreasing trend for each parameter. The ENVI-IDL was
used to test the significance of the change trend with a significance level by t-test, where
the significance level (α) was set at 0.05 (α = 0.05). The specific equation of the t-test is
shown below:

t =
SLOPE

Sb̂
(2)

Sb̂ =
Sx̂√

n
∑

i=1
(i− i)2

(3)

Sx̂ =

√√√√√ n
∑

i=1
(xi − x̂i)

2

n− 2
(4)

where Sb̂ represents the standard error of regression coefficient, Sx̂ represents the standard
error of regression, and the x̂i is the fitted value. When t > tα/2, it means the changing trend
is significant. When t < tα/2, it means the changing trend is not significant. According to
SLOPE and t, the change can be classified into four categories, and the classification criteria
are shown in Table A2.

2.2.2. Partial Correlation Analysis

To quantitatively analyze the response of global vegetation EVI in FGST to temperature
and precipitation, this study used the partial correlation coefficient to analyze the correlation
between EVI and temperature and precipitation [36]. The formula is shown as follows:

rxy,z =
rxy − rxz × ryz√
(1− r2

xz)(1− r2
yz)

(5)

where the rxy,z denotes the partial correlation coefficient between variable x and variable
z while keeping the variable y constant. The rxy, rxz, and ryz represent the correlation
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coefficients between variable x and variable y, variable x and variable z, and variable y and
variable z, respectively.

2.2.3. Extreme Climate Indices

To quantify the impact of extreme climate on vegetation EVI in the global FGST
region, this study selected eight temperature indices and seven precipitation indices, which
were recorded by the Expert Team on Climate Change Detection and Indices (ETCCDI)
(http://etccdi.pacificclimate.org/list_27_indices.shtml, accessed on 5 February 2023). To
facilitate understanding and analysis, we have categorized these indices based on the
duration and intensity of extreme climate events. Their classification and definitions are
detailed in Table A3.

2.2.4. Grey Relation Analysis

Grey relational analysis (GRA) is a method that assesses the closeness of relationships
between corresponding sequences based on the similarity of their geometric shapes. The
closer the sequence curves are, the stronger their relationship. It is not affected by sample
size or probability distribution.

In this study, GRA was conducted by calculating the grey relational grade (GRG)
between different ECI and EVImean-a. It aimed to quantify the impact of varying extreme
climate conditions on the vegetation of the global FGST region. The calculation process
and the main equations are as follows:

1. Establish a comparison sequence and a reference sequence.

The EVImean-a was set as a reference sequence which can be expressed as:

X0 = {X0(k)}, k = 1, 2, . . . , n (6)

The ECI were set as a comparison sequence which can be expressed as:

Xi = {Xi(k)}, i = 1, 2, . . . , n, k = 1, 2, . . . , m (7)

2. Standardized sequence.

To eliminate the impact of the dimension, we standardized the processing of the
original reference sequence and comparison sequence as follows:

X′0(k) =
X0(k)− X0

σ0
(8)

X′i(k) =
Xi(k)− Xi

σi
(9)

where X0 and Xi are the means of the reference and comparison sequences, respectively. The
σ0 and σi are the standard deviations of the comparison and reference sequences, respectively.

3. Calculate the relation coefficient.

ξ(k) =
min

i
min

k
∆i(k) + α×max

i
max

k
∆i(k)

∆i(k) + α×max
i

max
k

∆i(k)
(10)

where ξk is the grey relation coefficient, ∆i(k) is the absolute value of the difference between
the comparison sequence and the reference sequence, max

i
max

k
∆i(k) and min

i
min

k
∆i(k)

are the maximum and the minimum values of ∆i(k), and α is the resolution coefficient
(α = 0.1) [38].

http://etccdi.pacificclimate.org/list_27_indices.shtml
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4. Calculate the grey relation grade.

ri =

n
∑

k=1
ξi(k)

n
(11)

where ri is the GRG and ranges from 0 to 1. When the GRG is larger, it indicates that the
impact of the comparison sequence on the reference sequence is more obvious.

3. Results
3.1. Spatiotemporal Characteristics of EVI in FGST
3.1.1. Interannual Variation Characteristics of EVI in FGST

The interannual mean EVI variation in global FGST from 2000 to 2021 is shown
in Figure 2. Overall, the global FGST presents varying degrees of increasing trends.
Among the different ecosystems, the EVImean-a increase rate of the tundra is the fastest at
7.1 × 10−4/a. The shrublands demonstrate the slowest EVImean-a increase rate, which is
3.6 × 10−4/a. Forest and grassland have EVImean-a increase rates of 4.1 × 10−4/a and
5.5 × 10−4/a, respectively.
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From the changes in anomalies, the number of years with positive anomalies and
the number of years with negative anomalies in the EVImean-a are the same for the forest,
grassland, and tundra ecosystems, i.e., 11 years. However, for the shrub ecosystem, the
number of years with positive anomalies exceeds those with negative anomalies by 6 years.
It is worth noting that since 2009, the anomalies of EVImean-a for the global FGST have
mostly been positive. In the forest, only in 2018 and 2019 did the EVImean-a rapidly decline
below the multi-year mean values of the EVI (EVImean-m), before ascending quickly in 2020.
This situation occurred in the grassland, shrubland, and tundra in 2012, 2012, and 2014.

3.1.2. Spatial Characteristics of EVI in FGST

The spatial distribution of the EVImean-m of global FGST from 2000 to 2021 is shown in
Figure 3. The EVI spatial distribution generally has a distinct latitudinal zonation ranging
from 0 to 0.8, with a decrease from the equator toward the poles. In terms of different
ecosystems, the EVImean-m of global forest ranges from 0.02 to 0.6854, with a mean value of
0.3241 (Figure 3a). From the perspective of spatial distribution characteristics, the forest
EVI is highest at the equator and gradually decreases towards the north and south, with
this pattern being particularly evident in the northern hemisphere. In the equatorial region,
such as northern South America, central Africa, and Southeast Asia, it generally exceeds
0.4, and some regions can reach above 0.6. As the latitude increases to 50◦N–70◦N, it drops
below 0.3.
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tem, where the red fork is the mean value, and the line in the box is the median line.

The EVImean-m of the global grasslands ranges from 0.005 to 0.61, with a mean value of
0.1938 (Figure 3b). Similar to forests, the spatial distribution of the grassland EVI also has a
latitudinal zonation distribution pattern. However, it varies among different continents.
In Africa, the grassland EVI decreases gradually from the equator towards the south. It is
centered in Central Asia and increases radially outwards in Eurasia. The grassland EVI in
central-western and southern South America is less than 0.3. It mostly remains below 0.2 in
Australia and only ranges from 0.2 to 0.3 in the northern and eastern coastal regions.

The EVImean-m of the global shrublands ranges from 0.008 to 0.54, with a mean value
of 0.189 (Figure 3c). The shrubland EVI is mostly below 0.2. It is mainly concentrated in
western North America, southern South America, and southern Africa. The regions with
EVI above 0.3 are distributed primarily in eastern South America.
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The EVImean-m of the global tundra ranges from 0.0001 to 0.46, with a mean value of
0.1897 (Figure 3d). Overall, the tundra EVI decreases as latitude increases. Interestingly,
within the Arctic Circle, the spatial distribution of the tundra EVI differs significantly
between the western and eastern hemispheres. The tundra EVI in the western hemisphere
is mostly below 0.1, but it can reach above 0.3 in some regions of Alaska. In the eastern
hemisphere, the tundra EVI is mostly above 0.2 and can exceed 0.3 in the coastal regions
near 60◦E. Only sporadic regions have a tundra EVI below 0.1.

3.1.3. Spatial Variation of EVI in FGST

The EVI trends of the global FGST from 2000 to 2021 were analyzed by linear regression
analysis at a pixel level. The results are shown in Figures 4 and 5. The interannual variation
of EVI in global FGST is concentrated within the range of −2 × 10−4/a to 4 × 10−4/a
(Figure 4). The EVI shows an increasing trend in 69.22% of the global FGST ecosystems.
The regions with a significant increasing trend (t < tα/2) in EVI accounted for 21.31%. On
the other hand, about 30.78% of the regions exhibited a decreasing trend, with 4.86% of
the regions showing a significant decreasing trend (t < tα/2). There are significantly more
regions with an increasing trend than a decreasing trend (Figure 5).
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Figure 4. The linear trend of EVI in global (a) forest, (b) grassland, (c) shrubland, and (d) tundra
(FGST) ecosystems from 2000 to 2021.

From the perspective of different ecosystems, 64.73% of the global forest EVI showed
an increasing trend, of which 20.37% showed a significant increase. The regions with
significant increase trends appeared in Europe and eastern Asia. The increase rate ranged
from 9 × 10−4/a to 50 × 10−4/a, and the average increase rate was 21 × 10−4/a. A total
of 35.27% of the global forest EVI showed a decreasing trend, and only 7.22% showed a
significant decrease. The regions with significant decreasing trends are mainly concen-
trated in northern North America and northern Asia. The average rate of decrease was
−23 × 10−4/a, and the rate of decrease ranged from −61 × 10−4/a to −8 × 10−4/a.

The EVI of 71.44% of the global grassland showed a growth trend, and 23.61% showed
significant growth (t < tα/2). Significant-growth regions were concentrated in northeast-
ern and central Asia and central Africa. The growth rates ranged from 3 × 10−4/a to
46 × 10−4/a, with an average growth rate of 18 × 10−4/a. In contrast, the EVI of 28.56%
of the global grasslands showed a reduced trend, and only 3.08% showed a significant
reduction (t < tα/2), scattered in central and western Australia and southern Madagascar in
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Africa. The reduction rates ranged from −49 × 10−4/a to −4 × 10−4/a, with an average
reduction rate of −18 × 10−4/a.
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Figure 5. The significance of EVI linear trend in global (a) forest, (b) grassland, (c) shrubland, and
(d) tundra (FGST) ecosystems from 2000 to 2021.

A total of 67.75% of the global shrubland EVI showed an increasing trend, of which
18.92% showed a significant increase (t < tα/2). The regions with significant increase trends
appeared in western North America, eastern and southern South America, and eastern
Africa. The increase rates ranged from 4 × 10−4/a to 47 × 10−4/a, and the average
increase rate was 17 × 10−4/a. By comparison, 35.25% of the global shrub EVI showed a
declining trend, of which only 5.11% showed a significant decline (t < tα/2). The regions
with significant decline trends are mainly concentrated in southern Africa. The average
rate of decline was −16 × 10−4/a, and the rate of decline ranged from −46 × 10−4/a to
−4 × 10−4/a.

The global tundra has the highest increasing proportion among different vegetation
types. The EVI of 78.57% showed a rising trend, but only 20.75% showed a significant
rise (t < tα/2). Significantly rising regions were concentrated in northern North America,
northern Asia, and northern Europe. The rates of increase ranged from 5 × 10−4/a to
41 × 10−4/a, with an average rise rate of 19 × 10−4/a. On the other hand, the EVI of
21.43% of the global tundra showed a fall trend, and only 1.24% showed a significant
fall (t < tα/2), scattered in northern North America. The reduction rates ranged from
−42 × 10−4/a to −8 × 10−4/a, with an average reduction rate of −21 × 10−4/a.

3.2. Relationship between EVI and Climate Factors in FGST
3.2.1. Spatiotemporal Variations of Temperature and Precipitation in FGST

The interannual trends of AMT and AP in the global FGST ecosystems are shown in
Figure 6. The AMT shows an increasing trend with varying degrees of fluctuation in global
FGST ecosystems from 2000 to 2021 (Figure 6a). Over the past 20 years, the AMT of the
global forests was 10.73 ◦C, with the highest AMT of 11.6 ◦C in 2020. The AMTs of the
global grasslands and shrublands were 11.17 ◦C and 17.52 ◦C, respectively. Their highest
AMTs appeared in 2018, at 12.14 ◦C and 18.5 ◦C, respectively. The AMT of the global tundra
was −8.02 ◦C and the highest AMT was −7.03 ◦C in 2005. Among different ecosystems,
shrublands experienced the fastest temperature increase with a rate of 0.09 ◦C/a, followed
by grasslands with a rate of 0.08 ◦C/a. Forests and tundra had increase rates of 0.04 ◦C/a
and 0.02 ◦C/a, respectively.
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Figure 6. The interannual characteristics of (a) annual mean temperature and (b) annual precipitation
in the global forest, grassland, shrubland, and tundra (FGST) from 2000 to 2021.

From 2000 to 2021, the global FGST AP was 1217.76 mm, 598.28 mm, 598.31 mm,
and 405.73 mm, respectively (Figure 6b). Over the most recent 20 years, the AP in global
forests, grasslands, and shrublands has shown a decreasing trend with varying degrees of
fluctuation, but the trends are insignificant. The global shrublands have experienced the
fastest decrease, with a rate of 2.42 mm/a. The global grasslands and forests follow with
rates of decrease of 1.08 mm/a and 0.99 mm/a, respectively. It is worth noting that the
global tundra is the only region in the FGST where the AP has shown an increasing trend.
However, the rising trend is insignificant, with a rate of 1.31 mm/a.

3.2.2. Effects of Climatic Factor Variations on EVI in FGST

The spatial distributions of the partial correlation coefficients of the global FGST
EVImean-m with AP and AMT are shown in Figures 7 and 8, respectively.

The correlation between forest EVI, AP, and AMT is relatively low in different ecosys-
tems. Only 14.03% and 11.44% of the regions passed the significance test (Figures 7a and 8a).
The global forest EVI positively correlated with AP, accounting for 47.46%. Among them,
6.38% of the regions are significantly positively correlated (p < 0.05), mainly distributed in
central South America and Australia. The proportion of regions with a negative correlation
between the global forest EVI and AP is 52.54%. A total of 5.06% of the regions reached
significance (p < 0.05), mainly in northern South America, central Africa, and northern and
southeastern Asia. Regarding the correlation with AMT, 65.25% of the global forest EVI
show a positive correlation, with 11.51% reaching a significant level (p < 0.05). The regions
with a significant positive correlation are mainly located in eastern and northern Asia and
Europe. A total of 34.75% of the global forest EVI has a negative correlation, of which
2.52% of the regions are significantly positively correlated (p < 0.05). The regions with a
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significant negative correlation are primarily in the northwestern part of South America,
central Africa, and northeastern Asia.
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Figure 7. The spatial distribution of partial correlation coefficients between EVI and annual precipita-
tion in global (a) forest, (b) grassland, (c) shrubland, and (d) tundra (FGST) ecosystems from 2000 to
2021. The region filled in red at the bottom left corner of (a–c) and the right side of (d) is significant at
p < 0.05.
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Figure 8. The spatial distribution of partial correlation coefficients between EVI and multi-year mean
temperature in global (a) forest, (b) grassland, (c) shrubland, and (d) tundra (FGST) ecosystems from
2000 to 2021. The region filled in red at the bottom left corner of (a–c) and the right side of (d) is
significant at p < 0.05.

Unlike forest, as shown in Figure 7b, the global grassland EVI exhibits a higher
correlation with AP but a lower correlation with AMT (Figure 8b), with 40.97% and 14.64%
of the regions passing the significance test, respectively. Among the global grassland
EVI, 82.5% of the regions correlate positively with AP, with 40% significantly positively
correlated (p < 0.05). The regions with a significant positive correlation are primarily
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distributed in Australia, central Asia, and southern Africa. A total of 17.5% of the regions
exhibit a negative correlation with AP, and only 0.97% reach a significant level (p < 0.05).
Regarding the correlation with AMT, 63.74% of the regions show a positive correlation,
with 12.07% significantly positively correlated (p < 0.05). The regions with a significant
positive correlation are mainly in central and eastern Asia and southern South America.
Lastly, 36.26% of the regions exhibit a negative correlation, with 2.57% reaching a significant
level (p < 0.05).

Similar to grassland, the global shrubland EVI is also highly correlated with AP
(Figure 7c) but less correlated with AMT (Figure 8c), with significance in 49.41% and
17.03% of the regions, respectively. The global shrubland EVI positively correlated
with AP, accounting for 88.92%. Among them, 48.71% of the regions are significantly
positively correlated (p < 0.05), mainly distributed in western North America, eastern and
southern South America, and southern Africa. The proportion of regions with a negative
correlation between the global shrubland EVI and AP is 11.08%, with 0.7% of the regions
reaching significance (p < 0.05). The global shrubland EVI positively correlated with AMT
accounted for 66.77%, of which 14.29% reached a significant level (p < 0.05). The regions
with significant positive correlation with AMT are mainly located in western North
America and southern South America. A total of 33.23% of the global shrubland EVI
exhibits a negative correlation with AMT, with 2.74% significantly positively correlated
(p < 0.05).

The global tundra EVI is less correlated with AP and AMT, and only 7.34% and 7.42% of
the regions passed the significance test, respectively (Figures 7d and 8d). Among the global
tundra EVI, 46.87% of the regions correlate positively with AP, with only 2.25% significantly
positively correlated (p < 0.05). The regions with a significant positive correlation are
primarily distributed in northwestern North America. The percentage of the global tundra
EVI negatively correlated with AP is 53.13%, with 4.79% reaching significance (p < 0.05).
The regions with a significant negative correlation are mainly found in northeastern North
America. Regarding the correlation with AMT, 62.52% of the regions show a positive
correlation, with only 5.97% significantly positively correlated (p < 0.05). The regions
with a significant positive correlation are mainly found in northwestern North America
and northern Asia. A total of 37.48% of the regions exhibit a negative correlation, with
only 1.45% reaching a significant level (p < 0.05). The regions with a significant negative
correlation are mainly found in northern North America.

3.3. Association between EVI and Extreme Climate Indices in FGST

The impact of ECI on EVI in global FGST ecosystems was determined by calculating
the GRG of EVI using the extreme precipitation index (EPI) and EVI with the extreme
temperature index (ETI), respectively.

The GRG of the global forest EVI and ETI ranges from 0.81 to 0.93 (Figure 9a). The
three ETIs that have the greatest impact on the global forest EVI are TXn (GRG = 0.93), SU
(GRG = 0.927), and TNn (GRG = 0.927). The GRGs of the global forest EVI and EPI are
between 0.82 to 0.93. The three EPIs with the most significant influence on the global forest
EVI are R10mm (GRG = 0.924), PRCPTOT (GRG = 0.923), and Rx1 (GRG = 0.913).

As shown in Figure 9b, extreme precipitation has a stronger effect on global grassland
EVI than extreme temperature. The GRGs of global grassland EVI and ETI are between
0.8 and 0.86. The three ETIs that have the greatest impact on the global grassland EVI are
ID (GRG = 0.853), FD (GRG = 0.843), and TNn (GRG = 0.836). The GRG of the global
grassland EVI and EPI ranges from 0.8 to 0.9. The three EPIs with the most significant
influence on the global grassland EVI are PRCPTOT (GRG = 0.894), R10mm (GRG = 0.882),
and CWD (GRG = 0.879).

Similar to the grassland, extreme precipitation has a more influential impact on global
shrub EVI than extreme temperature. From Figure 9c, the GRG of the global shrubland
EVI and ETI ranges from 0.84–0.89. The three ETIs that have the greatest impact on global
shrubland EVI are TR (GRG = 0.889), ID (GRG = 0.889), and SU (GRG = 0.879). The GRG
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of the global shrubland EVI and EPI are between 0.84 and 0.93. The three EPIs with the
most significant influence on the global forest EVI are PRCPTOT (GRG = 0.929), R10mm
(GRG = 0.923), and CWD (GRG = 0.909).
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Figure 9. The gray relation grade of the extreme climate indices and the global (a) forest, (b) grassland,
(c) shrubland, and (d) tundra (FGST) ecosystems EVI from 2000 to 2021.

The GRGs of the global tundra EVI and ETI ranges from 0.6 to 0.73 (Figure 9d). The
three ETIs that have the greatest impact on global tundra EVI are TXx (GRG = 0.73), TNx
(GRG = 0.722), and TXn (GRG = 0.672). The GRGs of the global tundra EVI and EPI are
between 0.62 and 0.72. The three EPIs with the most significant influence on the global
tundra EVI are PRCPTOT (GRG = 0.713), Rx1 (GRG = 0.7), and CWD (GRG = 0.695).
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The relation grade between global FGST EVI and ECI varies across different veg-
etation types, with the order of GRGforest > GRGshrubland > GRGgrassland > GRGtundra.
Forest and tundra EVI exhibit the strongest and weakest sensitivity to extreme cli-
mate, respectively. Overall, extreme precipitation events have a stronger impact on
global FGST EVI (GRG = 0.828) than extreme temperature events (GRG = 0.813). How-
ever, when considering different vegetation types, forests show greater sensitivity to
temperature extremes, while grasslands, shrublands, and tundra are more sensitive to pre-
cipitation extremes. Furthermore, the effects of extreme precipitation and temperature on
different vegetation types also differ slightly. The relation grade between global FGST
EVI and EPIs follows the order of GRGshrubland > GRGforest > GRGgrassland > GRGtundra.
The relation grade between global vegetation EVI and ETIs follows the order of
GRGforest > GRGshrubland > GRGgrassland > GRGtundra. Regardless of precipitation or tem-
perature, climate extremes generally affect woody plants more than herbaceous plants [39].

4. Discussion
4.1. Global FGST’s Spatiotemporal Variation of EVI and Its Response to Precipitation and Temperature

Over the past 20 years, the EVI of global FGST has shown an overall increasing trend
(Figure 2). Regarding climate impact factors, there has been a consistent warming trend
in different vegetation types worldwide from 2000 to 2021, with a mean warming rate of
0.06 ◦C/a (Figure 6a). In contrast to temperature changes, global accumulated precipitation
has decreased slightly for all vegetation types except for the tundra (+1.31 mm per year),
with a mean decrease rate of 1.5 mm/a (Figure 6b). The climate change in global FGST
ecosystems over the past 20 years seems to be progressing towards a “warmer” and “drier”
trend (except for the tundra) [40], but these climate change patterns have not hindered the
continuous greening trend of global FGST.

A total of 69.22% of the global FGST EVI shows an increasing trend. The regions with a
significant increase account for 21.31% (Figure 5). This greening trend becomes particularly
evident for different ecosystems after 2009 (Figure 2). The proportion of EVI increase among
different vegetation types follows the order: tundra > grassland > shrubland > forest. The
proportion of significant EVI increase follows the order: grassland > tundra > forest > shrubland.
The regions with significant EVI increases are mainly located in high-latitude regions
and the mid-low-latitude regions of the eastern hemisphere, predominantly in regions
with increased precipitation (Figure A1a). Therefore, the local increase in precipitation
may be a major contributing factor to the observed increase in vegetation EVI in these
regions. The ecological changes of the Tibetan Plateau, known as the “Third Pole” or “Asian
Water Tower,” have significant global implications. Our results indicate that the Qinghai-
Tibet Plateau has also been identified as one of the regions where EVI has significantly
increased over the past 20 years. Some studies suggest that the accelerated melting of
glaciers, snow, and permafrost caused by global warming has contributed to the vegetation
flourishing in this region [41–43]. In addition, it is noteworthy that the global forest
EVI experienced a substantial rebound in 2020 and 2021 after decreasing in 2018 and
2019, which was not observed in other ecosystems (Figure 2a). This could be attributed to
reduced wood demand and restricted logging activities resulting from the global COVID-19
pandemic [44,45]. Furthermore, the sudden fluctuations of grassland, shrubland, and
tundra in 2012, 2012, and 2014 (Figure 2b–d) can be mainly attributed to variations in
precipitation or temperature in that year (Figure 6). The regions where the EVI decreased
significantly in global FGST ecosystems account for 4.86% (Figure 5). They are primarily
located in the mid-latitude regions of the Western Hemisphere and certain regions of the
Southern Hemisphere (e.g., Australia). These regions are predominantly found in regions
experiencing reduced precipitation (Figure A1a). In addition to the influence of changing
water and thermal conditions, human activities and wildfires are also reported to be the
reasons for the decline of vegetation EVI in these areas [22,27,46].

Different vegetation types exhibit varying degrees of sensitivity to temperature and
precipitation due to differences in their growth environments and physiological character-
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istics [20]. Through partial correlation analysis, we further investigated the sensitivity of
different vegetation types worldwide to the changes in precipitation and temperature in the
past 20 years (Figures 7 and 8). In terms of the proportion of regions significantly affected
by accumulated precipitation and temperature on the EVI of different vegetation types,
they all showed shrubland > grassland > forest > tundra. This indicates that shrublands
and grasslands are more sensitive to global climate change than forests and tundra. From
the perspective of different climatic factors, accumulated precipitation changes have caused
significant EVI variations (p < 0.05) in 40.97% and 49.41% of grasslands and shrublands, re-
spectively, which is much higher than the significant impact of temperature changes in both
(significant variation proportions of 14.64% and 17.03%, respectively). This suggests that
grasslands and shrublands are more sensitive to accumulated precipitation changes than
temperature. The annual mean accumulated precipitation of grasslands and shrublands
significantly affected by precipitation changes is 481.15 mm and 490.48 mm, respectively,
lower than their annual mean accumulated precipitation of 598.28 mm and 598.31 mm.
This reflects that grasslands and shrublands distributed in relatively arid regions are more
susceptible to global precipitation changes. In contrast to the higher sensitivity of grass-
lands and shrublands to precipitation changes, the proportion of significant EVI variations
caused by precipitation changes versus temperature changes is not significantly different
for forests and tundra. This indicates that forests and tundra have similar sensitivities to
precipitation or temperature changes and are weaker than shrublands and grasslands.

4.2. Responses of Different Types of Vegetation EVI to Extreme Events

Overall, the sensitivity of global vegetation EVI to extreme event intensity (EEI)
(GRG = 0.832) is higher than extreme event duration (EED) (GRG = 0.812). However, there
are differences among different vegetation types. Forest and tundra EVI are more sensitive
to EEI, while grassland and shrubland EVI are more sensitive to EED. Compared with
forest and tundra, the climate of grasslands and shrublands is drier, with a pronounced
rain-heat simultaneous effect [47–49]. Under long-term water stress, the impact of EED on
grasslands and shrublands EVI is more worthy of attention than EEI.

In terms of different ECIs, the indicator that has the greatest impact on EVI is PRCP-
TOT (GRG = 0.864), followed by R10mm (GRG = 0.853) and CWD (GRG = 0.846). Studies
have shown that precipitation events greater than 10 mm in dry environments are re-
garded as effective precipitation and ecologically more important for plant growth [50–52].
Compared with single heavy precipitation events, continuous precipitation events often
have longer-lasting potential ecological effects [53,54]. In addition, our study indicated
that continuous precipitation also has a greater effect on vegetation EVI than continuous
drought. The indicator that has the least effect on EVI is FD (GRG = 0.780), followed by CDD
(GRG = 0.784) and ID (GRG = 0.792). This suggests that the duration of frost and freezing
has a relatively small effect on the EVI of FGST.

For different vegetation types, grassland and shrubland exhibit similar response patterns
to extreme climate events, probably due to similar water and heat conditions (Figure 9b,c).
Nonetheless, the impact of extreme climate events on shrublands (GRGshrubland = 0.880) is
generally greater than on grasslands (GRGgrassland = 0.841), which may be attributed to
the deeper root distribution of shrublands compared to herbaceous plants. The depth of
plant roots appears to correlate with their susceptibility to extreme climate events [55]. Our
findings indicate that plants with deeper root systems exhibit heightened sensitivity to
ECIs [56]. This relationship also explains why forests and tundra ecosystems exhibit the
highest and lowest GRGs with ECIs.

Among the extreme temperature duration indicators, SU and TR are significantly
higher than FD and ID. This indicates that the duration of extreme high temperatures
has a greater impact on forests than extreme low temperatures. Regarding extreme
precipitation events, PRCPTOT, R10mm, and Rx1 significantly affect forests, with all
GRG values above 0.9. Tundra shows the lowest correlation with ECIs. Unlike other
vegetation types, TXx has the greatest impact on the tundra. Tundra is mainly distributed
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in high-latitude regions where temperature is the primary limiting factor for vegetation
growth. Therefore, changes in extremely high temperatures are particularly noteworthy
for vegetation in tundra regions.

4.3. Limitations of the Study and Further Directions

In this study, the low spatial resolution (0.25◦) of the GLDAS data may eliminate
some climatic change details. In the future, improved access to meteorological datasets,
open-source assimilation methods, and downscaling methods may enhance the certainty
of further research. The data continuity and accuracy of vegetation indices (VI) are
crucial in global vegetation dynamics analysis and ecosystem monitoring [57]. These
indices, calculated from satellite remote sensing data, reflect vegetation’s growth status
and responses to ecosystems. Since VI is calculated based on the spectral reflectance of
different bands, the acquisition method relies on satellite sensors, which makes VI across
various vegetation types and environments, offering consistent vegetation monitoring
on a global scale [58]. MODIS C6 VI data provide multiple algorithm improvements
and calibration adjustments to rectify issues identified in previous data versions. It
is widely used in global vegetation dynamics research and is deemed to possess a
reasonable level of reliability. Moreover, to understand the climate-driving mechanisms
of vegetation change in changing environments, it is essential to consider both VI and
vegetation structure indicators (e.g., LAI and net primary productivity), thus enhancing
the certainty in climate-driving mechanism analysis.

5. Conclusions

This study analyzed the spatiotemporal variation characteristics of different vegetation
types’ EVI worldwide and their responses to climate factors over the past 20 years. We
found that global FGST still improved overall despite the “warmer and drier” climate
change characteristics during this period. Compared to forests and tundra, shrubs and
grasslands exhibited greater sensitivity to global climate change. Grasslands and shrubs
distributed in relatively arid regions were more susceptible to global precipitation changes.

We also focused on analyzing the response of FGST to extreme precipitation and
temperature events. We found that extreme precipitation events had a stronger impact
on global vegetation EVI than extreme temperature events. Forests showed a stronger
sensitivity to extreme temperatures, while grasslands, shrublands, and tundra were
more sensitive to extreme precipitation. FGST EVI to extreme event intensity was more
sensitive than duration.

Our research contributes to an enhanced understanding of the feedback relation-
ship between global climate change and vegetation of different types. The study results
provide scientific support for assessing the impacts of global climate change and for the
development, utilization, and protection of natural resources.
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Appendix A

Table A1. The definition of land cover.

Type Code Definition

Forest 20

It refers to the lands covered with trees, the top density of which occupies over 30%. Deciduous broadleaf
forest, evergreen broadleaf forest, deciduous coniferous forest, evergreen coniferous forest, mixed forest,
and sparse woodland, the top density of which covers 10–30%, are included in this category. It is mainly

planted with crops and rarely with fruit trees or other trees that are not included in this category.

Grassland 30
It refers to the lands covered by natural grass with a cover density of over 10%. The prairies, meadow

steppes, alpine grasslands, desert steppes, and lawns, etc., are included in this category. Cultivated
pastures are not included in this category.

Shrubland 40

It refers to the lands covered with shrubs with a cover density of over 30%. Mountain shrubs, deciduous
and evergreen shrubs, and desert jungle in desert areas with a cover density of over 10% are included in

this category. Tea gardens, coffee gardens, and other economic croplands, etc., are not included
in this category.

Tundra 70
It refers to the lands covered by lichen, moss, hardy perennial herbs, and shrubs in cold and high-altitude

mountain areas. Shrub tundra, grass tundra, wet tundra, alpine tundra, and barren tundra, etc., are
included in this category.

Table A2. The classification criteria for change trends.

Classification Slope t

Significant increase >0 t > tα/2
Significant decrease <0 t > tα/2

No significant increase >0 t < tα/2
No significant decrease <0 t < tα/2

Table A3. The classification and definitions of the extreme climate indices used in this study.

Category Extreme Climate Index Name Definition Unit

Extreme temperature
duration indices

Number of frost days, FD Annual count of days when daily minimum temperature < 0 ◦C d
Number of summer days, SU Annual count of days when daily maximum temperature > 25 ◦C d

Number of icing days, ID Annual count of days when daily maximum temperature < 0 ◦C d
Number of tropical nights, TR Annual count of days when daily minimum temperature > 20 ◦C d

Extreme temperature
intensity indices

Annual maximum value of daily maximum
temperature, TXx The maximum daily maximum temperature for each year ◦C

Annual maximum value of daily minimum
temperature, TNx The maximum daily minimum temperature for each year ◦C

Annual minimum value of daily maximum
temperature, TXn The minimum daily maximum temperature for each year ◦C

Annual minimum value of daily minimum
temperature, TNn The minimum daily minimum temperature for each year ◦C

Extreme precipitation
duration indices

Number of moderate rain days, R10mm Annual count of days when the daily precipitation amount ≥ 10 mm d
Number of heavy rain days, R25mm Annual count of days when the daily precipitation amount ≥ 25 mm d

Number of torrential rain days, R50mm Annual count of days when the daily precipitation amount ≥ 50 mm d

Maximum length of dry spell, CDD The maximum number of consecutive days with the daily
precipitation amount < 1 mm d

Maximum length of wet spell, CWD The maximum number of consecutive days with the daily
precipitation amount ≥ 1 mm d

Extreme precipitation
intensity indices

Annual maximum value of daily maximum
precipitation, Rx1 The maximum daily maximum precipitation for each year mm

Annual total precipitation in wet days, PRCPTOT The sum of precipitation in a year when the daily precipitation
amount ≥ 1 mm mm
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