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Abstract: Hyperspectral satellite imagery has developed rapidly over the last decade because of
its high spectral resolution and strong material recognition capability. Nonetheless, the spatial
resolution of available hyperspectral imagery is inferior, severely affecting the accuracy of ground
object identification. In the paper, we propose an adaptively optimized pulse-coupled neural network
(PCNN) model to sharpen the spatial resolution of the hyperspectral imagery to the scale of the
multispectral imagery. Firstly, a SAM-CC strategy is designed to assign hyperspectral bands to the
multispectral bands. Subsequently, an improved PCNN (IPCNN) is proposed, which considers the
differences of the neighboring neurons. Furthermore, the Chameleon Swarm Optimization (CSA)
optimization is adopted to generate the optimum fusion parameters for IPCNN. Hence, the injected
spatial details are acquired in the irregular regions generated by the IPCNN. Extensive experiments
are carried out to validate the superiority of the proposed model, which confirms that our method
can realize hyperspectral imagery with high spatial resolution, yielding the best spatial details
and spectral information among the state-of-the-art approaches. Several ablation studies further
corroborate the efficiency of our method.

Keywords: hyperspectral sharpening; pulse-coupled neural network; multispectral image; remote
sensing image fusion; high-resolution image

1. Introduction

Hyperspectral (HS) images are acquired by sampling the spectrum range into a large
number of spectral channels, rendering them as enhanced multispectral (MS) images with
multiple bands, a narrow spectral range, and abundant spectral information. Since the
abundance of spectral bands enables HS imagery to identify ground cover types accurately,
HS imagery is broadly applied in environmental monitoring [1], agricultural product
assessment [2], geology [3], and mineralogical mapping [4]. However, because of the signal-
to-noise ratio (SNR) constraints of satellite sensors, the spatial resolution and the spectral
resolution of HS imagery would have to be inevitably compromised in a unique acquisition.
Hence, HS images are characterized by high spectral resolution but low spatial resolution,
which limits their applications in higher precision remote sensing (RS) interpretation. RS
image sharpening is a cost-effective way to generate imagery with simultaneously rich
spectral information and high spatial resolution by injecting spatial details into either
HS or MS imagery, which could enhance the spatial resolution of the RS images. RS
image sharpening has been extensively studied over the last four decades. Nonetheless,
most of these methods aim to fuse the MS imagery and the panchromatic (PAN) imagery,
commonly known as pansharpening. As more HS satellites have been launched more
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recently (such as Earth Observing-1, ZY-1-02D, AVIRIS, and GF-5), HS sharpening has
become increasingly prominent.

To solve the HS sharpening problem, many traditional pansharpening methods can
still be applied. Pansharpening methods fall into two broad categories, namely the compo-
nent substitution (CS) method and the multiresolution analysis (MRA) method [5]. The
CS method involves projecting the original MS image onto the transform domain and
substituting the spatial component with the PAN image [6–13]. Since the relatively large
differences in spectral ranges between the PAN component and the replaced MS spatial
component, the fusion result suffers from significant spectral distortion in the CS method.
On the contrary, the MRA method preserves spectral information by injecting spatial details
from the PAN imagery into the upsampled MS image, which is achieved by multiscale
spatial filtering [14–20]. The MRA method is able to conserve the spectral information well,
whereas it cannot get impressive spatial details.

HS sharpening aims to produce HS imagery with high spatial resolution by fusing
low-resolution HS imagery and high-resolution MS imagery. In order to tackle the HS
sharpening issue, traditional CS and MRA pansharpening methods are typically utilized
by simply replacing both the PAN imagery and the MS imagery with the MS imagery
and the HS imagery simultaneously [21]. Gomez et al. are the pioneers to apply the
pansharpening approach to HS sharpening [22] and used the 2D-wavelet transform to
render the MS and HS images fused in the same wavelength range. Chen et al. [23]
present a generic HS sharpening framework based on the pansharpening method, which
is the primary inspiration for later transmigration methods from pansharpening to HS
sharpening. More recently, some methods for HS sharpening have also been proposed.
Picone et al. addressed the band-assignment problem of the HS sharpening [24]. Lu et al.
propose a spectral modulation hyper-sharpening framework [25], which mitigates the
problem of large spectral distortion after fusion. Yokoya et al. [26] propose a coupled
nonnegative matrix factorization method (CNMF), which generates the end members and
abundance matrices by alternately unmixing HS and MS images with the NMF algorithm.
However, the three-dimensional structure of the HS image is hardly reserved by the matrix
factorization. Thus, tensor factorization is utilized in place of the matrix factorization [21].
Dian et al. present a nonlocal sparse tensor factorization method (NLSTF_SMBF) for the
semi-blind fusion of HS and MS images [27], which primarily constructs full-band patches
(FBPs), and similar FBPs can share the same dictionary.

In recent years, deep learning (DL) methods have been extensively applied in the
field of HS sharpening [28,29]. Zhang et al. [30] proposed an unsupervised deep learning
network architecture for the simultaneous optimization of the HS super-resolution and the
degradation estimation. Qu et al. [31] proposed an unsupervised, unaligned Mutual HS
super-resolution Dirichlet-Net, which effectively improves the robustness in the face of
alignment errors.

Although promising fusion results are realized by various HS sharpening methods,
it is expected to further improve the HS fusion accuracy by neural network algorithms.
Nonetheless, due to the independent spectral features of the unique RS image, it is difficult
to establish a universal training database for the RS fusion applications. Besides, it is
time-consuming to train the network. A pulse-coupled neural network (PCNN) is a kind of
biologically inspired neural network without training, which exhibits the characteristics
of the pulse-synchronous phenomenon. The property of pulse-synchronous allows the
synchronously stimulated pixels to generate the segmentation results, which turns out
to be in accordance with the human visual mechanism [32]. In order to improve the
accuracy of image fusion, it is useful to adopt different fusion strategies for different
segmentation regions that are consistent with human perception. Traditional PCNN fusion
models include simplified PCNN (SPCNN) [33], dual-channel PCNN (DCPCNN) [34], and
shuffled frog-leaping PCNN [35]. Particularly, Panigrahy et al. propose adaptive DCPCNN
for multi-aggregation and medical image fusion [36,37]. However, traditional PCNN fusion
approaches are applicable only to either the medical image fusion or the multi-focus image
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fusion, which cannot be applied to the RS image fusion. Recently, Li et al. presented a
modified PCNN model for RS image fusion [32], but it only works on MS imagery.

In this paper, a novel adaptively optimized PCNN model for HS sharpening is pro-
posed. Concretely, we summarize the main contributions of the paper as follows: (1) a
SAM-CC band assignment method is proposed to group the HS bands with the MS band;
(2) an improved PCNN (IPCNN) model is proposed to obtain irregular injection region
of spatial details. (3) A Chameleon Swarm Optimization (CSA)-based IPCNN parameter
optimization method is designed to achieve the optimal sharpening imagery. The compara-
tive experiments were carried out on three datasets captured by the ZY-1-02D and GF-2
satellites, and the results substantiate the effectiveness of the proposed method.

The rest of the article is organized as follows. The description of the PCNN and
CSA principles is given in Section 2. Section 3 presents the details of our proposed fusion
approach. Experimental results and discussions are provided in Section 4. Section 5
contains the conclusion of the paper.

2. Related Work
2.1. Standard PCNN Principle

PCNN belongs to the third generation of artificial neural networks, which is a kind of
neural network model proposed by Johnson [38] on the basis of the observation of pulse
delivery experiments in the cerebral cortex of cats and monkeys. The individual neuron in
the PCNN model is partitioned into the receptive field, the modulation field, and the pulse
delivery field according to its functions. Mathematical formulae of the receptive field are
given in Equations (1) and (2). The mathematical description of the modulation field can be
found in Equation (3), and the mathematical formulae of the pulse delivery field can be
defined in Equations (4) and (5).

Fij[n] = e−αF Fij[n− 1] + VF ∑
kl

MijklYij[n− 1] + Iij (1)

Lij[n] = e−αL Lij[n− 1] + VL ∑
kl

WijklYkl [n− 1] (2)

Uij[n] = Fij[n]
(
1 + βLij[n]

)
(3)

Yij[n] =
{

1 Uij[n] > Eij[n]
0 otherwise

(4)

Eij[n + 1] = e−αE Eij[n] + VEYij[n] (5)

where the subscripts ij and kl refer to the positions of the current neuron and the neigh-
boring neurons, respectively. n denotes the nth iteration. I is the input image, whereas Iij
corresponds to the external input of the neuron ij. F and L indicate the feeding input and
the linking input, respectively, while the difference between them is that the linking input
L can only receive the local pulse stimulation from the neighboring neuron via the synaptic
matrix W. On the contrary, F receives not only the local stimulation but also the external
stimulation from I. β denotes the linking strength, which ranges from 0 to 1. A larger value
of β indicates that the linking relationships are greater, i.e., the current neuron is more sus-
ceptible to neighborhood neurons. M and W represent the connection coefficient matrixes,
which are typically calculated by the Euclidean distance between the current neuron and
the neighborhood. U refers to the internal activity, and E represents the dynamic threshold.
U and E jointly determine whether or not the current neuron is stimulated in the current
iteration, i.e., the boolean variable Yij becomes equal to one whenever Uij is greater than
Eij. αF, αL, and αE are time decay constants, which are utilized to adjust the decay rate of
F, L and E. VF, VL and VE indicate the normalization constants. The matrix Y[n] denotes
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the binary output of PCNN in each iteration n, whereas Yij is 0 (when the neuron ij is
unstimulated) and 1 (when stimulated), respectively.

In addition, as illustrated in Figure 1, each PCNN neuron corresponds to a pixel in
the image when applying PCNN to image processing applications. Therefore, the current
neuron ij will release a pulse as long as Uij is greater than Eij. If the current pixel is
stimulated in the current iteration, E will automatically spike the value VE; otherwise,
E will decrease gradually as the iteration number n increases. After the nth iteration of
PCNN, the neurons with either similar grayscale values or the adjacent positions will be
synchronously stimulated, while the output Y will eventually form a binary ignition map.
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2.2. Chameleon Swarm Optimization Algorithm

The CSA algorithm is a meta-heuristic method proposed by Malik [39]. The model
imitates the socially intelligent synergistic behavior of chameleons when foraging and
capturing food near woods, swamps, and deserts. It is a bio-optimization algorithm for
finding the global optimum of nonlinear, nonconvex, and other complex problems, which
may prevent entrapment in the local optimum.

The principle of CSA is shown in Figure 2. The algorithm mathematizes the behavioral
stages of a chameleon in looking for food, which include initializing the starting position,
tracking the prey from a distance, locating the prey by eye rotation, and catching the prey
with a high-velocity sticky tongue.
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3. Proposed Method

In order to tackle the problem of spectral distortion and fuzzy spatial details in HS
sharpening, we propose a novel adaptively optimized PCNN fusion algorithm. The
flowchart of the proposed HS sharpening algorithm is shown in Figure 3, which con-
tains the following modules: (1) the SAM-CC band assignment part; (2) the improved
PCNN (IPCNN) model part; (3) the automatic parameter optimization of IPCNN by CSA
part; (4) the extracting MS detail part; (5) the adaptive injected gains part; (6) the fusion
output part.
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3.1. SAM-CC Band Assignment Block

In contrast to the multi-to-single band assignment in the pansharpening problem,
HS sharpening is a multiband-to-multiband fusion. Thus, as shown in Figure 4, correctly
assigning each HS band to the MS band is an essential procedure before the actual fusion
operation, i.e., the choice of which band in the MS imagery can be used to sharpen the
corresponding HS bands plays a crucial role. Classical band selection methods include the
minimum spectral distance (MSD) assignment algorithm, the maximum cross-correlation
(CC) assignment algorithm, and the minimum spectral distortion (SAM) assignment al-
gorithm [24]. Since the optimal band selection is challenging for any single criterion, we
propose a joint band selection algorithm using both the SAM and CC indices (SAM-CC) in
order to group the HS bands more accurately.

Let H = {H}h = 1,. . ., Nh, stands for the HS images and M = {M}m = 1,. . ., Nm, represents
the MS images, where h and m are the band numbers of HS and MS, respectively. Nh and
Nm refer to the total number of bands of HS and MS. The proposed SAM-CC criterion is
represented as Equation (6).

SAM-CC(Hh, Mr
m) = argmin

m
(E− CC(Hh, Mr

m))× SAM(Hh, Mr
m) (6)

CC(Hh, Mr
m) =

〈Hh, Mr
m〉√

〈Hh, Hh〉〈Mr
m, Mr

m〉
(7)
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SAM(Hh, Mr
m) =

(
1

Nh

) Nh

∑
h=1

arccos(
〈Hh, Mr

m〉
‖ Hh ‖ . ‖Mr

m ‖
) (8)

where E is a unit matrix with size NM × NH. The symbol <·> indicates the inner product
operation. The symbol ‖·‖ stands for the l2 norm. r refers to the spatial resolution ratio of
HS to MS. Mr

j represents the low-pass filtered down-sampled image of Mj.
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3.2. Improved PCNN Model

To make the PCNN model more suitable for HS sharpening, we propose an IPCNN
model in the paper. In the standard PCNN model, the feeding input F stands for the
accumulative influence of the external stimuli. Nonetheless, the human eyes are more
sensitive to the edges and orientations rather than individual pixels within an image.
Therefore, a new feeding input SF is designed in the IPCNN model, which considers the
local neighborhood differences in both the horizontal and vertical directions. The SF is
calculated in Equations (9)–(11).

SFij =
√

RF2
ij + CF2

ij (9)

RFij =

√√√√ 1
M1 ×M2

M1

∑
i=1

M2

∑
j=2

[F(i, j)− F(i, j− 1)]2 (10)

CFij =

√√√√ 1
M1 ×M2

M1

∑
i=2

M2

∑
j=1

[F(i, j)− F(i− 1, j)]2 (11)

where RFij denotes the row difference of the two neighboring feeding inputs F via the local
rectangular window M1 ×M2, and CFij indicates the column difference. After performing
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a number of experiments, we take the window size to be 5× 5. Furthermore, Iij
′ is designed

to strengthen the impact of the local neighborhood, which is given by Equation (12).

I′ij =
(

1
2

)Hij +

√√√√ 1
M1 ×M2

M1

∑
i=1

M2

∑
j=1

H2
ij

 (12)

where Hij refers to the pixel value of the upsampled HS in row i and column j.
After modeling the new SF and I′, the proposed IPCNN neuron model is illustrated in

Figure 5. The IPCNN model has the following advantages compared to the standard PCNN:
(1) the IPCNN model utilizes the spatial difference of the neighborhoods to stimulate the
feeding input Fij of the neuron, which can describe the local detail features; (2) the external
stimuli Iij considers the influence of the surrounding pixels towards the central pixels.
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3.3. Automatic Parameter Optimization of IPCNN by CSA

Similar to the standard PCNN, the setting of appropriate parameters (i.e., αF, αL, αE,
β) of the IPCNN model is most critical. As shown in Figure 6, different combinations of
IPCNN parameters will lead to different segmentation results for the same input image. If
there are too many segmentation pieces, the segmentation regions will be too small and
will further affect the accuracy and complexity of the statistical computation of subsequent
injection weights. Conversely, if the number of image segmentation pieces is too few, it is
impossible to distinguish each region or to take advantage of the characteristics of each
region. So, different parameters can lead to different segmentation results, and different
segmentations will have corresponding impacts on the final fusion results. Most researchers
choose to simplify the PCNN model or to use the manually set uniform parameters for the
different images. However, fixed parameters for different input images do not lead to the
optimal fusion results for all images. Thus, we propose a CSA-based optimization approach
for setting IPCNN parameters αF, αL, αE, β, and W, which can adaptively generate their
own optimal parameters for various input images.

The IPCNN parameters need to be jointly optimized together, so the CSA is employed
to automatically optimize all five IPCNN parameters. For convenience, the connection
weight W is denoted as W = [w, 1, w; 1, 0, 1; w, 1, w], where w is optimized rather than the
entire matrix W. The flowchart of the automatic IPCNN parameter optimization algorithm
based on CSA is shown in Figure 7. Firstly, the chameleon position is initialized with the
classical parameter values. Secondly, the fitness function is set as the weighted summation
of spectral fidelity SAM [5] and spatial detail representation ERGAS [40]. The fitness
function for the proposed optimization method is given as follows.

f =
SAMr

ERGASr + SAMr
ERGAS +

ERGASr

ERGASr + SAMr
SAM (13)
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ERGAS(FH, F) = 100
h
l

√√√√ 1
Nh

Nh

∑
h=1

(
RMSEh

µh

)2
(14)

SAM(FH, F) = arccos

( 〈
f hj, f j

〉
‖ f hj ‖2‖ f j ‖2

)
(15)

where FH denotes the reference imagery, and F refers to the fusion imagery. SAMr and
ERGASr stand for the ranges of SAM and ERGAS. h and l indicate the spatial resolutions
of the MS and HS imagery, respectively. uh indicates the mean value of the hth band
of the reference imagery. <·> means the inner product. ‖·‖2 refers to the second-order
norm operation.
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Figure 6. IPCNN segmentation results under pseudo-color maps with different parameters
of IPCNN. (a) Original image of GF-2 satellite sensor. (b) Classical parameters combination,
[αF, αL, αE, β, w] = [0.1, 1, 0.62, 0.1, 0.707]. (c) Change the parameters αE and w, [αF, αL, αE, β, w] = [0.1,
1, 1, 0.1, 0.9]. (d) Change all parameters, [αF, αL, αE, β, w] = [0.5, 2.5, 2, 0.3, 0.9].
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Since there are too many bands in the HS image, directly optimizing the parameters for
all bands will be time-consuming. Now that the adjacent HS bands acquired by the SAM-
CC band assignment method are usually strongly correlated, it would be more efficient to
obtain optimized parameters by only using the representative bands of each group. Wang
et al. proposed a HS band selection method with optimal domain reconstruction [41], which
can adaptively achieve the optimal neighborhood reconstruction (ONR) to find the subsets
of bands that can best represent the HS image. Thus, the ONR band selection method is
used before IPCNN parameter optimization. In addition, the method can also reduce the
impacts of noisy bands by taking advantage of the characteristics of neighborhood bands.

To be more efficient, the optimal IPCNN parameters are generated with the represen-
tative bands of HS images. Other HS bands could utilize these parameters as long as both
bands are very similar to each other. Representative bands from each group are chosen by
the ONR method. If there are more than five HS bands in each group, five of these are then
selected using ONR to compose the optimal subset of bands. Otherwise, all of the bands
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from the original HS within the group are retained. Equation (16) is defined to express
the procedure.

Hϕi =
{

Hj
}

j∈ϕi

ONR band selection−−−−−−−−−−−→Hφi =

{ {
Hjj
}

jj∈φi
j > 5, jj = 5{

Hj
}

j∈ϕi
j ≤ 5

(16)

3.4. Extracting MS Details

The multiscale analysis has demonstrated excellent capability in RS image fusion. The
“atrous” wavelet transform is an undecimated multiscale analysis method, which is widely
used to address image fusion issues due to its fast decomposition and reconstruction as
well as the richer extracted details. For each histogram-matched MS band Mhm (matched
by HS image), the “atrous” wavelet decomposition is performed to extract the spatial
details from the multispectral imagery. After wavelet decomposition, the low-frequency
component stands for the approximate image, and the high-frequency component indicates
the noise and the local features. After setting the high-frequency components to zero, the
low-frequency MS imagery ML is then realized via wavelet reconstruction. Finally, the
spatial detail information Md is obtained through Equation (17).

Md = Mhm −ML (17)

3.5. Adaptive Injected Gains

The HS imagery is divided into different irregular segmentation regions by the pro-
posed CSA-based IPCNN segmentation algorithm. The injected gains are, therefore, calcu-
lated in each irregular region. The overall steps of the adaptive gain approach are described
as follows:

(1) Initialize IPCNN. Let VF = 0.5, VL = 0.2, VE = 20, Y [0] = L [0] = U [0] = 0, E [0] = VE.
(2) Optimize IPCNN parameters αF, αL, αE, β, and W using the CSA-based IPCNN

optimization algorithm.
(3) Obtain the irregular segmentation region of the IPCNN model in the current iteration

n. And calculate the injected gain Gk[n] according to Equation (20).

Rij[n] =

{
cov(Hu

k (i,j),ML(i,j))
cov(ML(i,j),ML(i,j))

i f Yij[n] 6= 0
0 otherwise (18)

gk
ij
= corr

(
Hu

k
(i, j), ML(i, j)

) std(Hh)

std(Mm)
(19)

Gk
ij
[n] =

 gk
ij

std
(

Hu
k
(i,j)

)
std(ML(i,j))

i f Rij[n] > 0 and Yij[n] 6= 0
1 otherwise

(20)

where (i, j) stands for the pixel coordinates of the imagery. Hk
u denotes the upsampled

image of HS, and ML indicates the low-resolution version of the MS imagery. Y[n] refers to
the activated neurons in the current iteration. R is the correlation ratio between the HS and
MS imagery. corr(A, B) represents the correlation coefficient between matrix A and matrix
B. cov(A, B) denotes the covariance between matrix A and matrix B. std(A) refers to the
standard deviation of A.

3.6. Fusion Output

The final fusion result can be calculated by Equation (21).

FHk = Hu
k + GkMd (21)

where FHk denotes the high-resolution HS fusion image.
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The fusion pseudo-code of the proposed HS sharpening algorithm (Algorithm 1) is
described as follows.

Algorithm 1 AT-AIPCNN (“atrous” transform-adaptive IPCNN) method
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where FHk denotes the high-resolution HS fusion image. 
The fusion pseudo-code of the proposed HS sharpening algorithm (Algorithm 1) is 

described as follows. 

Algorithm 1 AT-AIPCNN (“atrous” transform-adaptive IPCNN) method 

Input: H, M, r % HS imagery, MS imagery, and spatial resolution ratio between HS and MS 

Output: FH   % HS sharpening result 

for i = 1 to NH do 
for j = 1 to NM do 

(Hφj, Mj) ←SAM-CC (Hi, Mj)  % Band assignment 
(Hϕj, Mj) ←ONR (Hφj, Mj)     % Band selection 

for j = 1 to NM do 
for t = 1 to Tmax do 

(yj = αF, αL, αE, β, w) ←CSA (Hϕj, Mj)  % IPCNN parameters optimization 
Reaching iteration stop conditions 

(yb = αF’, αL’, αE’, β’, w’)             % Optimal parameters combination 
for j = 1 to NM do 

(Hu) ←upsampling (H)                    % HS image upsampling 

(Mhm, Hhm) ←histogram matching (Hφj, Mj)  % Histogram matching 

(ML, Md) ←“atrous” (Mj)                  % Extracting MS Details 

Hhmu’ ←IPCNN (Hhmu)                    % IPCNN Segmentation 
Gk ←correlation (ML, Hhmu, Hhmu’)          % Injection coefficient calculation 
FH ←MRA (ML, Hhmu, Hhmu’)              % Fusion output 
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4.1. Datasets 

Three real datasets captured from the ZY1-02D and GF-2 satellites are utilized to test 
the validity of the proposed method. The HS sensor AHSI of the ZY1-02D satellite, which 
works in the spectral range from the visible to the short-wave infrared (with the wave-
length from 395 nm to 2500 nm), provides 166 HS bands with a spatial resolution of 30 m. 
The GF-2 satellite captures four multispectral bands with a spatial resolution of 3.4 m, 
spanning the spectral range from the visible to the near-infrared (450–890 nm). For HS 
sharpening application, HS images from the ZY1-02D sensor would need to be sharpened 

4. Experimental Results
4.1. Datasets

Three real datasets captured from the ZY1-02D and GF-2 satellites are utilized to test
the validity of the proposed method. The HS sensor AHSI of the ZY1-02D satellite, which
works in the spectral range from the visible to the short-wave infrared (with the wavelength
from 395 nm to 2500 nm), provides 166 HS bands with a spatial resolution of 30 m. The
GF-2 satellite captures four multispectral bands with a spatial resolution of 3.4 m, spanning
the spectral range from the visible to the near-infrared (450–890 nm). For HS sharpening
application, HS images from the ZY1-02D sensor would need to be sharpened to the spatial
resolution of MS imagery of the GF-2 sensor. Thus, dataset1 consists of imagery taken over
the Liujiaxia reservoir in China from the ZY1-02D and GF-2 sensors, which mainly include
the lake and the village. Dataset2 stands for the suburban area of Linxia City in China,
mainly containing mountainous terrain. The dataset3 is the farmland area of Yongchang
City in China, which primarily includes farmland, mountains, and buildings. The original
images of the three datasets are shown in Figure 8.

4.2. Experimental Setup

In the experiments, most program code is executed with matlab2020a on the Intel
CPU Core i7-13700K and NVIDIA GPU GeForce GTX 3090. The number of chameleon
populations is set to 20 in the CSA-based IPCNN adaptive optimization, and the maximum
number of iterations is set to 30.

Nine classical and competitive methods of different sharpening categories are com-
pared with the proposed approach, i.e., the Gram-Schmidt adaptive (GSA) algorithm [12],
the smoothing filtered-based intensity modulation (SFIM) algorithm [42], the generalized
Laplacian pyramid (GLP) algorithm [43], the CNMF algorithm [26], the nonlocal sparse
tensor factorization (NLSTF) algorithm [27], the NLSTF_SMBF algorithm [27], the HYSURE
algorithm [44], the fast fusion based on Sylvester equation (FUSE) algorithm [45], and the
UDALN algorithm [46]. Among which, GSA, SFIM, and GLP are owned by the classical
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pansharpening methods, GSA belongs to the CS methods, SFIM and GLP are the MRA
method, CNMF belongs to the matrix decomposition methods, NLSTF and NLSTF_SMBF
are owned by tensor decomposition categories, while the HYSURE and FUSE belong to
Bayesian-based methods. In addition, GSA, SFIM, and GLP do not require any parameter
setting. The main parameters for the NLSTF and NLSTF_SMBF methods are set according
to Table 1, and the parameters of other comparative approaches are set to be the same as in
the literature [47]. The UDALN is implemented in PyTorch, and the parameter settings are
the same as in the literature [46].

Remote Sens. 2023, 15, 4205 12 of 23 
 

 

to the spatial resolution of MS imagery of the GF-2 sensor. Thus, dataset1 consists of im-
agery taken over the Liujiaxia reservoir in China from the ZY1-02D and GF-2 sensors, 
which mainly include the lake and the village. Dataset2 stands for the suburban area of 
Linxia City in China, mainly containing mountainous terrain. The dataset3 is the farmland 
area of Yongchang City in China, which primarily includes farmland, mountains, and 
buildings. The original images of the three datasets are shown in Figure 8. 

 
Figure 8. The original images of three datasets. (a) HS image of Liujiaxia dataset. (b) HS image of 
Linxia dataset. (c) HS image of Yongchang dataset. (d) MS image of Liujiaxia dataset. (e) MS image 
of Linxia dataset. (f) MS image of Yongchang dataset. 

4.2. Experimental Setup 
In the experiments, most program code is executed with matlab2020a on the Intel 

CPU Core i7-13700K and NVIDIA GPU GeForce GTX 3090. The number of chameleon 
populations is set to 20 in the CSA-based IPCNN adaptive optimization, and the maxi-
mum number of iterations is set to 30. 

Nine classical and competitive methods of different sharpening categories are com-
pared with the proposed approach, i.e., the Gram-Schmidt adaptive (GSA) algorithm [12], 
the smoothing filtered-based intensity modulation (SFIM) algorithm [42], the generalized 
Laplacian pyramid (GLP) algorithm [43], the CNMF algorithm [26], the nonlocal sparse 
tensor factorization (NLSTF) algorithm [27], the NLSTF_SMBF algorithm [27], the HYS-
URE algorithm [44], the fast fusion based on Sylvester equation (FUSE) algorithm [45], 
and the UDALN algorithm [46]. Among which, GSA, SFIM, and GLP are owned by the 
classical pansharpening methods, GSA belongs to the CS methods, SFIM and GLP are the 
MRA method, CNMF belongs to the matrix decomposition methods, NLSTF and 
NLSTF_SMBF are owned by tensor decomposition categories, while the HYSURE and 
FUSE belong to Bayesian-based methods. In addition, GSA, SFIM, and GLP do not require 
any parameter setting. The main parameters for the NLSTF and NLSTF_SMBF methods 
are set according to Table 1, and the parameters of other comparative approaches are set 
to be the same as in the literature [47]. The UDALN is implemented in PyTorch, and the 
parameter settings are the same as in the literature [46]. 

  

Figure 8. The original images of three datasets. (a) HS image of Liujiaxia dataset. (b) HS image of
Linxia dataset. (c) HS image of Yongchang dataset. (d) MS image of Liujiaxia dataset. (e) MS image
of Linxia dataset. (f) MS image of Yongchang dataset.

Table 1. Main parameter settings of NLSTF/NLSTF_SMBF methods.

Method Main Parameters

NLSTF/NLSTF_SMBF

The atomic numbers for three different dictionaries:
lW = 10, lH = 10, lS = 14.

Parameters of sparse regularization:
λ = 10−6, λ1 = 10−5, λ2 = 10−5, λ3 = 10−6.

Cluster scaling parameter: K = 151.
The spectral response matrix R was estimated by HYSURE [44].

The performance of the proposed HS sharpening approach is evaluated by eight
complementary quantitative indices to verify the spectral and spatial qualities of the fusion
imagery, such as the peak signal-to-noise ratio (PSNR) [47], the root mean square error
(RMSE) [48], the error relative global adimensionnelle de synthèse (ERGAS) [40], the spec-
tral angle mapper (SAM) [5], the structural similarity index measurement (SSIM) [49,50],
the universal image quality index (UIQI) [48], the inter-correlation (CC) [51], and the degree
of distortion (DD) [52]. The ideal values for RMSE, ERGAS, SAM, and DD are 0, whereas 1
for SSIM, UIQI, and CC. Moreover, the ideal value for PSNR is positive infinity.
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PSNR measures the spatial similarity between the fusion imagery and the reference
imagery. In general, the larger the PSNR, the more spatially similar the fusion imagery is to
the reference imagery. The PSNR is defined as:

PSNR(FH, F) =
1

Nh

Nh

∑
h=1

log10

 max(FHh)
2

1
L

L
∑

j=1

(
FHhj − Fhj

)2

 (22)

where FH denotes the reference imagery, and F refers to the fusion imagery. h stands for
the band number, while Nh indicates the total number of all bands. log10(·) represents the
logarithm function with base 10. FHh denotes the hth band of the reference imagery. max(·)
denotes the maximum value. L denotes the total number of pixels per band. FHhj denotes
the jth pixel of the hth band of the reference imagery, and Fhj stands for the jth pixel of the
hth band of the fusion image.

RMSE refers to the measure of deviation between two images. The RMSE is defined as:

RMSE(FH, F) =

√
‖ FH, F ‖2

F
T

(23)

where T stands for the total pixel number of the reference imagery.
ERGAS is a comprehensive index that reflects both spectral distortions and spatial

detail differences. The ERGAS can be computed through Equation (14). SAM calculates
the similarity of the spectral vectors. The smaller one indicates that the spectrum is better
maintained. The SAM index of two images FH and F is computed as Equation (15). UIQI
measures the similarity in terms of the brightness and contrast. For the window, a × b, Q is
defined as:

Q(a, b) =
4µaµb

µ2
a + µ2

b

σ2
a,b

σ2
a + σ2

b
(24)

where µx and σ2
x denote the expectation and variance of x, respectively, and σ2

x,y represents
the covariance of x and y.

Then, the UIQI can be computed through the following formula:

UIQI(FH, F) =
1

Nh

Nh

∑
h=1

Q(FHh, Fh) (25)

SSIM compares the structural similarities between two images, which indicate the
luminance distortion, the contrast distortion, and the structural distortion. Its formula is
described in Equations (26) and (27).

SSIM(FH, F) =
1

Nh

Nh

∑
h=1

SSIMS(FHh, Fh) (26)

SSIMS(a, b) =
(2µaµb + C1)(σaσb + C2)(

µ2
a + µ2

b + C1
)(

σ2
a + σ2

b + C2
) (27)

where C1 and C2 are infinitesimal small constants to ensure stability.
DD is an indicator to verify the quality of the fusion spectra. The smaller the value,

the better the spectral retention. If the DD is equal to 0, there is no spectral distortion. Its
calculation formula is shown in Equation (28).

DD(FH, F) =
1
T
‖ vec(FH)− vec(F) ‖1 (28)
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where T denotes the total pixel number of the reference imagery. vec(x) represents matrix x
as a vector, and ‖·‖1 is the one-order norm operation.

CC represents the spatial correlation between two images, which measures the geo-
metric distortion of the fusion imagery. It is calculated as follows:

CC(FH, F) =
1

Nh

Nh

∑
h=1

CCS(FHh, Fh) (29)

CCS(a, b) =

H
∑

i=1

W
∑

j=1

(
aij − µa

)(
bij − µb

)
√

H
∑

i=1

W
∑

j=1

(
aij − µa

)2(bij − µb
)2

(30)

where Xh refers to the hth band of X, and µx indicates the mean value of x.

4.3. Experimental Results

The first experiment is conducted on the Liujiaxia dataset. The fusion results are
shown in Figure 9, in which the local area is enlarged for convenient observation. As
can be seen from Figure 9, the color of the GSA, SFIM, GLP, CNMF, HYSURE, UDALN,
and FUSE methods appear to be dark. Our proposed method, NLSTF and NLSTF_SMBF
methods, perform best in spectral preservation; nevertheless, the details of both the NLSTF
and NLSTF_SMBF methods are blurred into chunks. Figure 10 presents the SAM error
maps of the fusion images in all 166 bands with the Liujiaxia dataset. It is noted that the
spectral distortion for all methods primarily occurs at the reservoir-mountain boundary,
of which NLSTF and NLSTF_SMBF exhibit the largest aberration. Besides, UDALN has
larger distortions in the reservoir area, and the proposed method, SFIM, and GLP perform
better in the SAM error maps. Furthermore, quantitative assessments with the Liujiaxia
dataset are shown in Table 2. It is clear from Table 2 that the proposed method obtains the
best performance across all quantitative metrics, which demonstrates the superiority of the
proposed method with respect to spectral preservation and spatial details.
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Table 2. Quantitative evaluation results of the Liujiaxia dataset.

Method PSNR
(dB) RMSE ERGAS SAM

(◦) UIQI SSIM DD CC

Proposed 37.6677 5.0560 1.2971 1.5961 0.7252 0.9296 2.3748 0.9863
GSA 27.6248 17.2337 5.1195 2.1357 0.5535 0.8875 11.6032 0.9767
SFIM 25.8724 21.2343 6.8882 1.7852 0.5902 0.8613 14.6026 0.9768
GLP 25.6146 21.8812 7.2056 1.7573 0.5920 0.8588 15.0508 0.9777

CNMF 26.7564 18.9197 5.8796 2.1720 0.4619 0.8707 12.8621 0.9653
NLSTF 26.7253 18.3908 4.4832 5.3202 0.3553 0.7393 11.5977 0.8935

NLSTF_SMBF 25.4524 19.5991 7.4406 9.6997 0.2621 0.6833 12.1336 0.8094
HYSURE 27.9512 16.5909 4.8475 2.2759 0.4725 0.8862 11.2004 0.9685

FUSE 23.1458 29.1700 11.5544 3.7671 0.4466 0.7746 20.1469 0.9606
UDALN 30.1948 13.0902 3.1310 6.7527 0.4611 0.8917 8.4485 0.9555

The best result is in bold, and the second best is underlined.

The fusion results with the Linxia dataset are shown in Figure 11. As can be seen, the
large color difference and block blur are presented in the NLSTF and NLSTF_SMBF fusion
methods. Moreover, the SFIM fusion image appears dark. GSA algorithm, as a kind of CS
method, has greater spectral distortion, while MRA methods, such as SFIM and GLP, have
less spatial detail. Furthermore, the proposed method, GSA, and UDALN, have fine spatial
detail information. In addition, the spectra of the proposed method are the closest to the
ground-truth image in subjective visualization. Figure 12 shows the SAM error maps of all
the fusion results with the Linxia dataset. As can be seen from Figure 12, spectral distortion
is more likely to occur in the ridge area and in the land-lake boundary. Although the SFIM
method has less spectral distortion in most regions, it exhibits larger errors in some local
areas (top left corner and bottom left of Figure 12d). NLSTF and NLSTF_SMBF appear
to have more spectral distortion, whereas the proposed method performs well. Table 3
gives the quantitative evaluation results of the Linxia dataset, which demonstrates that our
method achieves the best indicator results.
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Table 3. Quantitative evaluation results of the Linxia dataset.

Method PSNR
(dB) RMSE ERGAS SAM

(◦) UIQI SSIM DD CC

Proposed 36.2331 5.7254 0.9960 1.9634 0.8498 0.9067 3.4608 0.9645
GSA 27.7164 16.0083 3.0327 2.6527 0.8158 0.8716 12.4741 0.9393
SFIM 17.7201 52.0659 22.7315 2.5678 0.3656 0.5387 42.0473 0.9452
GLP 29.1091 13.5721 2.4955 2.3762 0.8256 0.8826 10.5857 0.9526

CNMF 29.4453 12.4878 2.3389 2.8221 0.7854 0.8723 8.9418 0.8916
NLSTF 26.7873 16.4622 3.5301 4.5579 0.6711 0.7826 12.6480 0.8645

NLSTF_SMBF 22.4454 27.2926 9.9383 13.5531 0.4817 0.6763 20.5441 0.7075
HYSURE 29.1139 13.4809 2.4710 2.5469 0.8084 0.8665 10.3741 0.9299

FUSE 27.7103 16.0556 3.0428 2.8151 0.7959 0.8657 12.5806 0.9403
UDALN 28.3250 13.5625 2.5555 2.7875 0.7535 0.8709 10.3336 0.8834

The best result is in bold, and the second best is underlined.
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Figure 13 presents the fusion results of the Yongchang dataset. From Figure 13, we can
see that the color error occurred in the fusion result of the CNMF, NLSTF, and NLSTF_SMBF
methods. In addition, The SAM error maps of the Yongchang dataset are shown in Figure 14.
We note from Figure 14 that the proposed method has the least amount of spectral distortion
at the edges, which is also verified by Table 4.
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Table 4. Quantitative evaluation results of the Yongchang farmland area data set.

Method PSNR
(dB) RMSE ERGAS SAM

(◦) UIQI SSIM DD CC

Proposed 31.8816 11.0828 1.8716 4.4585 0.4979 0.6417 7.1603 0.7057
GSA 30.6948 12.9507 2.4569 5.1439 0.4744 0.6385 8.6661 0.6708
SFIM 30.4540 13.0830 2.5290 5.4665 0.4785 0.6243 8.5827 0.6538
GLP 31.4697 11.7546 2.2168 5.3264 0.4885 0.6284 7.2407 0.6606

CNMF 26.2153 21.5673 4.4503 6.3250 0.2844 0.5582 15.7905 0.4523
NLSTF 19.0226 51.3424 23.8635 12.8057 0.1418 0.3850 41.4662 0.3664

NLSTF_SMBF 19.5615 48.5621 21.1652 10.6630 0.1434 0.4451 38.9230 0.3652
HYSURE 26.1247 22.0403 4.6897 5.4368 0.4061 0.5953 16.4566 0.5652

FUSE 23.8007 29.0302 7.0905 7.2528 0.3347 0.5344 22.4866 0.5202
UDALN 27.9588 17.2212 2.9768 6.1002 0.3413 0.6091 12.1402 0.4833

The best result is in bold, and the second best is underlined.

4.4. Ablation Experiments

Three kinds of ablation experiments are carried out to test our three primary fusion
modules, i.e., SAM-CC band assignment module, ONR band selection module, and CSA
adaptive PCNN parameter module. In addition, different automatic parameter optimiza-
tion strategies are also investigated.

The fusion results obtained on three different datasets with different band assignment
strategies (SAM-CC, SAM, and CC) are presented in Table 5. For the Liujiaxia dataset,
our proposed SAM-CC assignment indicator performs best. Furthermore, the SAM-CC
achieves better fusion results in most cases with the Linxia dataset and the Yongchang
dataset, which illustrates the effectiveness of the SAM-CC band assignment.

Table 5. SAM-CC ablation.

Method PSNR
(dB) RMSE ERGAS SAM

(◦) UIQI SSIM DD CC

SAM-CC (dataset1) 37.6677 5.0560 1.2971 1.5961 0.7252 0.9296 2.3748 0.9863
SAM (dataset1) 37.1726 5.2919 1.4142 1.7293 0.7139 0.9215 2.5195 0.9847
CC (dataset1) 37.2604 5.3198 1.3380 1.6597 0.7113 0.9237 2.5311 0.9852

SAM-CC (dataset2) 36.2331 5.7254 0.9960 1.9634 0.8498 0.9067 3.4608 0.9645
SAM (dataset2) 36.3003 5.6917 0.9988 1.9721 0.8493 0.9059 3.4370 0.9645
CC (dataset2) 35.0948 6.4739 1.1504 2.0009 0.8383 0.9017 4.2271 0.9634

SAM-CC (dataset3) 31.8816 11.0828 1.8716 4.4585 0.4979 0.6417 7.1603 0.7057
SAM (dataset3) 28.4326 16.8280 2.2748 4.1073 0.5638 0.7168 12.6765 0.7755
CC (dataset3) 31.2056 12.2060 1.9122 4.8604 0.5026 0.6967 8.1791 0.7334

The best result is in bold, and the second best is underlined.

To validate the efficiency of the ONR band selection module, we compared the fusion
results of using ONR and without ONR. In order to verify the effectiveness of ONR band
selection, we fused the data sets with and without ONR band selection. Comparisons of
the fusion accuracy and the running time are shown in Table 6. As can be seen from Table 6,
the running time has been reduced by more than 84% with the ONR band selection module,
while the fusion accuracy remains almost unchanged. Overall, this indicates significant
time cost savings for the ONR band selection module.
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Table 6. ONR band selection for ablation.

Method PSNR
(dB) RMSE ERGAS SAM

(◦) UIQI SSIM DD CC Time
(s)

Using ONR (dataset1) 37.6677 5.0560 1.2971 1.5961 0.7252 0.9296 2.3748 0.9863 221.1
Without ONR (dataset1) 37.3746 5.2096 1.3166 1.6199 0.7143 0.9272 2.5202 0.9859 1937.6

Using ONR (dataset2) 36.2331 5.7254 0.9960 1.9634 0.8498 0.9067 3.4608 0.9645 132.1
Without ONR (dataset2) 36.3467 5.6366 0.9918 1.9085 0.8533 0.9082 3.3977 0.9646 1794.2

Using ONR (dataset3) 31.8816 11.0828 1.8716 4.4585 0.4979 0.6417 7.1603 0.7057 179.2
Without ONR (dataset3) 30.9860 12.2864 1.8764 4.1296 0.5532 0.7081 8.6389 0.7665 1219.2

The best result is in bold, and the second best is underlined.

In order to examine the rationality of the CSA-based parameter optimization strategy
in IPCNN, Table 7 shows the comparison of the CSA fusion metrics with other three
parameter optimization strategies, i.e., the sparrow search strategy (SSA) [53], the improved
grey wolf optimizer (IGWO) strategy [54] and the enhanced whale optimization strategy
(EWOA) [55]. As shown in Table 7, the CSA-based fusion algorithm achieves a better fusion
performance as well as less time-consuming.

Table 7. Automatic parameter optimization ablation.

Method PSNR
(dB) RMSE ERGAS SAM

(◦) UIQI SSIM DD CC Time
(s)

CSA (dataset1) 37.6677 5.0560 1.2971 1.5961 0.7252 0.9296 2.3748 0.9863 221.1
SSA (dataset1) 37.0112 5.4224 1.4200 1.6315 0.6999 0.9289 2.8151 0.9860 267.9

IGWO (dataset1) 37.1760 5.3224 1.3947 1.6253 0.7051 0.9291 2.7133 0.9861 394.6
EWOA (dataset1) 37.3093 5.2504 1.3730 1.6361 0.7099 0.9291 2.6281 0.9861 162.6

CSA (dataset2) 36.2331 5.7254 0.9960 1.9634 0.8498 0.9067 3.4608 0.9645 132.1
SSA (dataset2) 36.2738 5.7156 1.0086 1.9955 0.8466 0.9056 3.4595 0.9643 214.3

IGWO (dataset2) 36.2348 5.7139 1.0024 1.9743 0.8478 0.9059 3.4537 0.9640 246.4
EWOA (dataset2) 36.2304 5.7458 1.0128 2.0058 0.8473 0.9056 3.4952 0.9644 122.1

CSA (dataset3) 31.8816 11.0828 1.8716 4.4585 0.4979 0.6417 7.1603 0.7057 179.2
SSA (dataset3) 30.1932 13.5601 1.9849 4.1381 0.5554 0.7070 9.7518 0.7679 199.2

IGWO (dataset3) 30.7599 12.6262 1.9081 4.1242 0.5539 0.7080 8.9401 0.7672 280.4
EWOA (dataset3) 30.3997 13.2174 1.9643 4.1652 0.5525 0.7043 9.4456 0.7671 137.6

The best result is in bold, and the second best is underlined.

Table 8 exhibits the quantitative analysis of the fusion results with and without adap-
tive CSA optimization to verify the impact of the CSA algorithm. Besides, the traditional
IPCNN parameters are set as classical values, i.e., αF = 0.1, αL = 1, αE =0.62, β = 0.1, w = 0.5.
In all three datasets, the adaptive IPCNN approach is significantly superior to the tradi-
tional parameters in most cases, which indicates that the adaptive parameter optimization
effectively improves the quality of the fusion images.

Table 8. CSA adaptive IPCNN parameter ablation.

Method PSNR
(dB) RMSE ERGAS SAM

(◦) UIQI SSIM DD CC

Adaptive (dataset1) 37.6677 5.0560 1.2971 1.5961 0.7252 0.9296 2.3748 0.9863
Traditional (dataset1) 29.4710 13.8064 3.8469 1.6911 0.6480 0.9020 9.1179 0.9818

Adaptive (dataset2) 36.2331 5.7254 0.9960 1.9634 0.8498 0.9067 3.4608 0.9645
Traditional (dataset2) 34.1057 7.2630 1.2945 1.9978 0.8346 0.9043 5.0036 0.9629

Adaptive (dataset3) 31.8816 11.0828 1.8716 4.4585 0.4979 0.6417 7.1603 0.7057
Traditional (dataset3) 29.7485 14.3252 2.0709 4.2138 0.5481 0.6916 10.3473 0.7591

The best result is in bold, and the second best is underlined.
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5. Conclusions

In the paper, a novel algorithm for HS sharpening is proposed. Firstly, the band
groups are acquired by performing joint SAM-CC band matching of HS and MS assignment
method, the band grouping results are obtained, and then ONR is applied to the HS images
of each group to improve the efficiency for subsequent adaption. Besides, according to the
characteristics of remote sensing image fusion application, an IPCNN model is proposed,
which can obtain irregular injection regions of spatial details. In addition, a CSA-based
IPCNN parameter optimization method is designed to achieve the optimal sharpening
imagery. In summary, the proposed method is simple and easy to implement, which
presents good fusion results on a variety of datasets, including reservoir, mountain, town,
and river landscapes. Furthermore, several ablation experiments are also conducted to
corroborate the efficiency of the proposed method.
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