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Abstract: Earth observation (EO) techniques have significantly evolved over time, covering a wide
range of applications in different domains. The scope of this study is to review the research conducted
on EO in the Eastern Mediterranean, Middle East, and North Africa (EMMENA) region and to
identify the main knowledge gaps. We searched through the Web of Science database for papers
published between 2018 and 2022 for EO studies in the EMMENA. We categorized the papers in
the following thematic areas: atmosphere, water, agriculture, land, disaster risk reduction (DRR),
cultural heritage, energy, marine safety and security (MSS), and big Earth data (BED); 6647 papers
were found with the highest number of publications in the thematic areas of BED (27%) and land
(22%). Most of the EMMENA countries are surrounded by sea, yet there was a very small number of
studies on MSS (0.9% of total number of papers). This study detected a gap in fundamental research
in the BED thematic area. Other future needs identified by this study are the limited availability of
very high-resolution and near-real-time remote sensing data, the lack of harmonized methodologies
and the need for further development of models, algorithms, early warning systems, and services.

Keywords: Eastern Mediterranean; Middle East, and North Africa (EMMENA) region; atmosphere;
water; agriculture; land; disaster risk reduction; cultural heritage; energy; marine safety and security;
big Earth data

1. Introduction

Earth observation (EO) via remote sensing technologies provides information about
our planet’s physical, chemical, and biological systems [1]. This type of information is
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crucial in regions which are exposed in various risks (e.g., climate change, droughts, floods,
earthquakes, and landslides) and where ground data are scarce [2–5], such as the Eastern
Mediterranean, Middle East, and North Africa (EMMENA) region [6].

We define EMMENA as the geographical region which includes the following coun-
tries: Algeria, Bahrain, Cyprus, Egypt, Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya,
Malta, Morocco, Oman, Palestine, Qatar, Saudi Arabia, Syria, Tunisia, Turkey, United Arab
Emirates, and Yemen (Figure 1). The EMMENA region hosts approximately 558 million
people, covers an area of 12,046,012 km2, and is one of the most diverse regions in the
world in economic terms, with per capita annual gross domestic products (GDP) ranging
from USD 533 in Yemen to USD 66838 in Qatar [7].

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 37 
 

 

1. Introduction 
Earth observation (EO) via remote sensing technologies provides information about 

our planet’s physical, chemical, and biological systems [1]. This type of information is 
crucial in regions which are exposed in various risks (e.g., climate change, droughts, 
floods, earthquakes, and landslides) and where ground data are scarce [2–5], such as the 
Eastern Mediterranean, Middle East, and North Africa (EMMENA) region [6]. 

We define EMMENA as the geographical region which includes the following coun-
tries: Algeria, Bahrain, Cyprus, Egypt, Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, 
Malta, Morocco, Oman, Palestine, Qatar, Saudi Arabia, Syria, Tunisia, Turkey, United 
Arab Emirates, and Yemen (Figure 1). The EMMENA region hosts approximately 558 mil-
lion people, covers an area of 12,046,012 km2, and is one of the most diverse regions in the 
world in economic terms, with per capita annual gross domestic products (GDP) ranging 
from USD 533 in Yemen to USD 66838 in Qatar [7].  

 
Figure 1. Countries of the EMMENA region. 

The region has a rich history and cultural heritage but has also been exposed to var-
ious risks over the decades [8]. The EMMENA region has been suffering from geopolitical 
tensions, political instability, and conflicts [8]. Furthermore, population growth and ex-
panding urbanization in the EMMENA region have increased the pressure on ecosystems 
and on available resources [9–12]. In addition, this region has been characterized as a cli-
mate change hot spot, leading to increasing temperatures, extended droughts, and a de-
cline in rainfall [13,14]. The agricultural sector, of which 70 percent is rainfed, is highly 
exposed to changing climatic conditions [14]. This is of critical importance as the agricul-
ture sector contributes significantly to the national economies of many EMMENA coun-
tries. Additionally, climate change will have negative impacts on many other aspects in-
cluding air quality, human health, land ecosystems, marine ecosystems, freshwater re-
sources, and energy demand [15,16]. Finally, many countries of the EMMENA region are 

Figure 1. Countries of the EMMENA region.

The region has a rich history and cultural heritage but has also been exposed to various
risks over the decades [8]. The EMMENA region has been suffering from geopolitical ten-
sions, political instability, and conflicts [8]. Furthermore, population growth and expanding
urbanization in the EMMENA region have increased the pressure on ecosystems and on
available resources [9–12]. In addition, this region has been characterized as a climate
change hot spot, leading to increasing temperatures, extended droughts, and a decline in
rainfall [13,14]. The agricultural sector, of which 70 percent is rainfed, is highly exposed to
changing climatic conditions [14]. This is of critical importance as the agriculture sector
contributes significantly to the national economies of many EMMENA countries. Addi-
tionally, climate change will have negative impacts on many other aspects including air
quality, human health, land ecosystems, marine ecosystems, freshwater resources, and
energy demand [15,16]. Finally, many countries of the EMMENA region are situated on
complex topography and on tectonically active areas, thus are prone to hazards related to
landslides and earthquakes [17].

EO plays a crucial role in understanding processes on our planet, enabling us to
advance our monitoring capabilities over various domains of interest [18]. The information
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generated from EO enables researchers and decisionmakers to formulate and apply effective
policies for environmental protection and sustainable management of natural resources.
The amount of freely accessible EO data has been increasing over the years, mainly due to
technological advancements and the implementation of open data policies. For example,
the yearly volume of open and freely available satellite data increased from 0.25 PB in
2013 (MODIS and Landsat missions) to 4.25 PB in 2019 (MODIS, Landsat, and Sentinel
missions) [19]. These data provide the opportunity to expand our knowledge in many
thematic areas including atmosphere, water, agriculture, land, disaster risk (reduction),
cultural heritage, energy, and marine safety and security. However, due to the expanding
amount of data, there is a need for novel solutions to properly store, process, disseminate,
and analyze these big Earth data sets [18].

The ongoing development of big Earth data techniques and the increasing availability
of satellite EO data provide opportunities to better monitor the aforementioned thematic
areas [20,21]. As the EMMENA region is a fairly new segment for EO activities, there are
many opportunities to expand in EO research [6]. However, it is crucial to document first
the current EO applications per thematic area and to identify the existing knowledge gaps.
Currently, review papers on EO are focusing on specific thematic areas [22–29]. To the best
of our knowledge, there are no review papers available on the full range of EO applications.
Furthermore, review studies on EO in the EMMENA region are limited. The aim of this
scoping review is to fill this gap by focusing on the wide range of EO applications in the
EMMENA region. The specific objectives of this study are to (1) provide an overview of
EO studies in the EMMENA region per thematic area and per country; and (2) identify the
EO applications and explore the existing limitations and knowledge gaps of the research
with the highest impact per thematic area.

2. Materials and Methods

Similar to Imane et al. [30], the search strategy consisted of three steps (Figure 2):
Identification: The key word searches were conducted in the Web of Science™ database

to find articles about EO in the EMMENA region for the past five years. As search terms,
we selected the “Topic” option which searched journals’ title, abstract, and keywords for
the following keywords: “Remote sensing OR Satellite OR Earth observations OR GIS OR
geographical information systems”. With the ‘’AND Topic” option, we constrained the
research to the EMMENA region by inserting the following keywords: “Algeria OR Bahrain
OR Cyprus OR Egypt OR Iran OR Iraq OR Israel OR Jordan OR Kuwait OR Lebanon OR
Libya OR Malta OR Morocco OR Oman OR Palestine OR Qatar OR Saudi Arabia OR Syria
OR Tunisia OR Turkey OR United Arab Emirates OR Yemen”. Additionally, with the “AND
Year published” option we further constrained the search to the past five years by inserting
the following: “2018–2022”.

Screening: Duplicates and articles not written in the English language and not having a
digital object identifier (DOI) were excluded from the analysis. The relevance of the papers
was further examined by consulting the keywords, titles, and abstracts. Furthermore, in
case of uncertainty the full texts were evaluated. Articles of which their study area covered
more than one country were named as “regional”. Author names and affiliations, the
journal title, keywords, and abstracts, the number of citations, and the DOI were exported
and analyzed in Excel® (Microsoft, Redmond, Washington, DC, USA) and in ArcGIS Pro
(ESRI, Redlands, CA, USA).

Eligibility: The papers were categorized into the following thematic areas based
on the relevant EO applications (Table 1): Atmosphere (ATM), water (WAT), agriculture
(AGR), land (LAN), disaster risk reduction (DRR), cultural heritage (CH), energy (EN),
marine safety and security (MSS), and big Earth data (BED). The latter thematic area,
which includes data mining and information extraction, machine learning and artificial
intelligence, visual exploration and semantic enrichment, and geoinformation, can also be
considered as a horizontal thematic area as its applications are often supplementary to the
rest of the thematic areas. Articles which were not classified into any of the above thematic
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areas were named as “other” and articles which were classified into more than one thematic
area were named as “interdisciplinary”. Thus, some articles were categorized into more
than one thematic area. Assuming that citations are a relevant measure of the impact of
an article, the top 20 highly cited articles (up to 13 March 2023) from each thematic area
were included in the review. The categorization was carried out by two people, the person
responsible for the overall review and an independent reviewer for each country.
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Table 1. Indicative EO Applications per thematic area.

Thematic Area Indicative EO Applications

Atmosphere

Air quality/air pollution
Aerosol
Clouds

Precipitation
Atmospheric dynamics/wind

Atmospheric events
Dust storms/dust intrusion

Climate change
Atmospheric/climate models

Water

Hydrological monitoring
Water quality/water pollution
Water resource management

(Water) microbial risk assessment
Water leak detection

Managed aquifer recharge
Hydrological–hydrogeological modeling

Water policies
Water diplomacy

Agriculture

Precision agriculture
Irrigation scheduling
Agricultural policies

Soil health
Pest/disease control

Food security/food safety
Early warning systems

Damage assessment and mitigation strategies for extreme
weather events

Land

Land cover/land use changes
Forest dynamics

Urban sprawl monitoring
Real estate
Heat island

Spatial planning
Urban and regional planning

Land management information systems
DEM generation

Photogrammetric applications

Disaster risk reduction

Forest fire monitoring
Burnt area mapping

Systematic monitoring of geohazards
Soil erosion detection

Soil degradation/desertification
Flood monitoring
Epidemics/health
Impact assessment

Disaster management
Early warning systems

Decision support systems

Cultural heritage

Risk assessment of cultural heritage regarding natural and
anthropogenic hazards

Protection of cultural heritage
Cultural heritage digitization (3D models)

Archaeo landscape assessment and modeling
Study of unexcavated areas

UAV photogrammetric applications
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Table 1. Cont.

Thematic Area Indicative EO Applications

Energy

Energy potential
Optimal site selection of power plants

Energy infrastructure planning
Environmental impact assessment

Marine safety and security

Bathymetry
Land–water line

Wave groups/wave breaking
Surface currents

Marine spatial planning
Sea state

Sea winds
Ship detection

Oil spills
Posidonia monitoring

Big Earth data

Data mining and information extraction
Machine learning and artificial intelligence

Visual exploration and semantic enrichment
Geoinformation

The analysis included the citation topics at the micro level, which were downloaded
from Web of Science™. The citation topics at the micro level included 2437 topics which
were algorithmically derived with the use of an algorithm developed by CWTS, Leiden [31].
Also, the analysis included the top 10 affiliations and the top 25 authors with the highest
number of publications and their affiliations. Finally, data for the population, area, and
gross domestic product (GDP) of each country within the EMMENA region were taken
from the World Bank [7] and the International Monetary Fund [32] (Table 2).

Table 2. Population (Po), area (A), per capita gross domestic product (GDP.P.C), and number of
author and co-author affiliations (A.A) per country, as percentage of the total number of affiliations
and author affiliations per capita (A.A.P.C) for EMMENA countries (measured in ppm). Data were
taken from the World Bank [7] and the International Monetary Fund [32].

Countries Po A (km2) GDP.P.C ($) A.A % of Total A.A.P.C
(in ppm)

Algeria 44,616,624 2,381,741 3691 251 2.1 56
Bahrain 1,792,761 760 26,563 14 0.1 78
Cyprus 1,207,359 9251 31,552 93 0.8 770
Egypt 104,258,327 1,002,450 3699 779 6.6 75
Iran 85,028,759 1,648,195 4091 2186 18.4 257
Iraq 42,698,349 438,317 4775 207 1.7 48

Israel 9,389,000 20,770 52,170 168 1.4 179
Jordan 10,824,649 89,342 4103 129 1.1 119
Kuwait 4,270,571 17,818 24,300 65 0.5 152

Lebanon 6,825,445 10,452 4136 57 0.5 84
Libya 6,871,292 1,759,540 6357 19 0.2 28
Malta 502,650 316 33,487 23 0.2 458

Morocco 38,995,602 446,550 3795 372 3.1 95
Oman 5,106,626 309,500 19,509 181 1.5 354

Palestine 5,337,000 6020 2848 31 0.3 58
Qatar 2,832,067 11,586 66,838 48 0.4 169
Saudi

Arabia 35,340,683 2,149,690 23,185 544 4.6 154

Syria 17,505,228 185,180 533 22 0.2 13
Tunisia 11,818,619 163,610 3807 219 1.8 185
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Table 2. Cont.

Countries Po A (km2) GDP.P.C ($) A.A % of Total A.A.P.C
(in ppm)

Turkey 83,614,362 783,356 9661 1010 8.5 121
United
Arab

Emirates
9,599,353 83,600 44,315 126 1.1 131

Yemen 29,161,922 527,968 702 20 0.2 7
Other

countries - - - 5320 44.8 -

Total 557,597,248 12,046,012 11,884 100.0

3. Results
3.1. Overview of EO Studies in the EMMENA Region

The total number of publications on EO applications in the EMMENA region from 2018
to 2022 was 7076. Following the exclusion of articles not written in the English language
and not having a digital object identifier (DOI), the total number of publications dropped
to 6647 (Figure 3); 1291 of these studies had a regional geographic focus, extending beyond
country borders. The geographic focus of most publications was on Iran (1883 publications),
while EO studies in Bahrain were the least common (10 publications). Similarly, for the
author affiliation country (Table 2), Iran has the highest (2186) and Bahrain has the lowest
(14) number of affiliations. However, 44.8% of the authors’ affiliations are not within the
EMMENA region. Considering the population of each country, Cyprus has the highest
author affiliation number per capita (770 per 1 million people). Countries that are suffering
from political and military conflicts, such as Libya and Yemen, have the lowest author
affiliation number per capita (7 and 13, respectively). This is also mirrored in the low per
capita GDP of these countries (Table 2).
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The list with the 6647 publications including author name, article title, author keywords
and addresses, citations, and DOI is presented in the Supplementary Materials (Table S1).

The 10 institutions with the highest number of affiliations (authors and co-authors) as
identified in the EO publications in the EMMENA region are the following: University of
Tehran (416 records), Islamic Azad University (346 records), Tarbiat Modares University
(196 records), National Authority for Remote Sensing Sciences—NARSS (173 records),
Shiraz University (167 records), Centre National de la Recherche Scientifique—CNRS
(166 records), University of Tabriz (157 records), King Abdulaziz University (149 records),
Istanbul Technical University (137 records), and Khajeh Nasir Toosi University of Technol-
ogy (122 records). Six out of ten of these institutions are in Iran.

The 25 authors with the highest number of publications focusing in the EMMENA
region are shown in Figure 4. Twelve of these authors have affiliation in countries not
included in the EMMENA region (Australia, Austria, Canada, Finland, Germany, Malaysia,
Norway, South Korea, Spain, Sweden, Taiwan, and the USA). Ten authors have affiliations
in Iran (Shiraz University, University of Kurdistan, Tarbiat Modares University, Agricultural
Research, Education and Extension Organization, University of Tabriz, Isfahan University of
Technology, and Shahid Rajaee Teacher Training University). The remaining three authors
are affiliated with Morocco (Mohammed VI Polytechnic University), Cyprus (Cyprus
University of Technology), and Saudi Arabia (King Abdul Aziz University).
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The funding agency with the highest number of funded articles (145) is the Scientific
and Technological Research Institution of Turkey (Figure 5), followed by the National Natu-
ral Science Foundation of China (108 articles) and the European Commission (104 articles).
The list with the top ten funding agencies contains five more organizations which are
outside the EMMENA region, namely the German Research Foundation (Germany), UK Re-
search and Innovation (UK), the National Science Foundation (USA), National Aeronautics
and Space Administration (USA), and the Natural Environment Research Council (UK).

Big Earth data is the thematic area with the highest contribution (27.1%) of EO research
carried out in the EMMENA region, followed by land (21.6%), disaster risk reduction
(15.5%), water (15.1%), atmosphere (8.6%), agriculture (5.8%), and energy (4.1%) (Figure 6).
Surprisingly, while most of the EMMENA region countries are surrounded by sea, marine
safety and security has the lowest contribution of EO research carried out in the EMMENA
region (0.9%). Also, the EMMENA region is characterized by a long history and cultural
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richness [8], but EO applications on cultural heritage have a low contribution to the total
number of studies (1.4%).

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 38 
 

 

 
Figure 5. Top 10 funding agencies based on the number of publications for papers on EO in the 
EMMENA region. 

Big Earth data is the thematic area with the highest contribution (27.1%) of EO 
research carried out in the EMMENA region, followed by land (21.6%), disaster risk 
reduction (15.5%), water (15.1%), atmosphere (8.6%), agriculture (5.8%), and energy (4.1%) 
(Figure 6). Surprisingly, while most of the EMMENA region countries are surrounded by 
sea, marine safety and security has the lowest contribution of EO research carried out in 
the EMMENA region (0.9%). Also, the EMMENA region is characterized by a long history 
and cultural richness [8], but EO applications on cultural heritage have a low contribution 
to the total number of studies (1.4%).  

A total of 495 citation topics were identified in Web of Science, of which the first 10 
account for 46% of the total number of publications. These topics include the normalized 
difference vegetation index (NDVI) (9%), groundwater (6%), evapotranspiration (6%), 
landslides (6%), fuzzy sets (4%), ecosystem services (4%), aerosols (3%), geostatistics (3%), 
soil erosion (3%), and tectonics (2%).  

Most publications on EO applications in the EMMENA region used Landsat and 
Sentinel data, as identified by the keyword search on the publications’ title, keywords, 
and abstract (Table 3). Sentinel-2 data (60.8%) and Sentinel-1 data (35.4%) are the most 
widely used among the Sentinel missions. Similarly, Landsat 8 (83.2%) and Landsat 7 
(10.0%) are the most widely used data sources among the Landsat missions. 

The detailed analysis of the EO research according to the top 20 highly cited articles 
per thematic area will be described in the following subsection. 

Figure 5. Top 10 funding agencies based on the number of publications for papers on EO in the
EMMENA region.

A total of 495 citation topics were identified in Web of Science, of which the first 10 account
for 46% of the total number of publications. These topics include the normalized difference
vegetation index (NDVI) (9%), groundwater (6%), evapotranspiration (6%), landslides (6%),
fuzzy sets (4%), ecosystem services (4%), aerosols (3%), geostatistics (3%), soil erosion (3%),
and tectonics (2%).

Most publications on EO applications in the EMMENA region used Landsat and
Sentinel data, as identified by the keyword search on the publications’ title, keywords, and
abstract (Table 3). Sentinel-2 data (60.8%) and Sentinel-1 data (35.4%) are the most widely
used among the Sentinel missions. Similarly, Landsat 8 (83.2%) and Landsat 7 (10.0%) are
the most widely used data sources among the Landsat missions.

The detailed analysis of the EO research according to the top 20 highly cited articles
per thematic area will be described in the following subsection.

Table 3. Percentages of satellite missions per appearance in the title, keywords, and abstract of
EMMENA publications.

Satellite Mission Title Keywords Abstract

Landsat 24.6 28.2 29.8
Sentinel 30.2 25.9 22.6
MODIS 12.6 17.5 14.1
ASTER 9.1 7.9 6.5
GRACE 3.3 3.9 3.4
TRMM 2.4 2.6 4.1
SPOT 1.7 1.2 1.3

WorldView 1.5 1.4 1.4
PlanetScope 1.5 0.7 0.6

Other 12.9 10.7 16.2
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3.2. Main Outcomes of the Top 20 Highly Cited Articles from Each Thematic Area
3.2.1. Atmosphere

The focus of the 20 most highly cited articles in the thematic area of atmosphere are
on precipitation estimates (4 articles), on dust storms (6 articles), and on the impact of
coronavirus on air quality through EO (4 articles).

Spatiotemporal precipitation estimates of high accuracy are essential in climate stud-
ies and in water resource planning and management, especially in regions where in situ
precipitation data are not available [33,34]. Amjad et al. [35] evaluated the performance of
satellite-based (Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation
Analysis (TMPA), the Integrated Multi-satellitE Retrievals for Global Precipitation Measure-
ment (IMERG)) and model-based (European Centre for Medium-Range Weather Forecasts
(ECMWF-ERA interim, ERA5)) precipitation products over varying climate and complex
topography. For their evaluation, they used 256 ground-based gauge stations between 2014
and 2018 over Turkey. They reported that satellite-based products consistently performed



Remote Sens. 2023, 15, 4202 11 of 35

better than model-based products in detecting and estimating daily precipitation intensities.
Mahmoud et al. [36] assessed the accuracy of the IMERG products by using ground-based
rain gauge observations throughout Saudi Arabia for the period from October 2015 to
April 2016, based on six statistical indices. The authors highlighted the potential of IMERG
products in complementing ground precipitation measurements. However, the accuracy
of this product is limited in regions with high heterogeneity in the rainfall distribution
and with high variability in the terrestrial topography. Similarly, Hosseini-Moghari and
Tang [33] found poor accuracy of IMERG products in regions with higher precipitation in
Iran. The systematic error varied from less than 12% in dry regions to more than 60% in
wet regions. In their study on the assessment of satellite-based precipitation measurement
products over Egypt, Nashwan et al. [37] evaluated the performance of three satellite-
based high-resolution gridded rainfall datasets, namely the gauge-corrected Global Satellite
Mapping of Precipitation (GSMaP), IMERG, and the Climate Hazards Group InfraRed
Precipitation with Stations (CHIRPS), in the hot desert climate of Egypt with different sta-
tistical indices. Overall, CHIRPS was more accurate than the other products in estimating
rainfall amounts but IMERG was better at detecting the occurrence of rainfall than CHIRPS.
In order to overcome the contradictory results obtained using different statistical metrics,
Salman et al. [34] proposed the use of compromise programming for the selection of the
appropriate gridded precipitation datasets.

Dust storms are considered a common environmental phenomenon in the EMMENA
region with significant impact on human health, the environment, and many associated
socioeconomic factors [38–41]. The study of Namdari et al. [42] examined the impacts
of climate fluctuations on dust storm activity over the Middle East. They used aerosol
optical depth, temperature, and precipitation data between 2000 and 2015, obtained from
MODIS Collection, Tropical Rainfall Measuring Mission (TRMM), Global Historical Climate
Network (GHCN) of the NCDC/NOAA, ECMWF, and from the Iran Meteorological Organi-
zation (IMO). Their results indicate that long-term reduction in rainfall has promoted lower
soil moisture and vegetative cover, leading to more intense dust emissions. Furthermore,
short-term variations in temperature in hot periods exacerbate the influence on the dust
storm genesis. Yassin et al. [38] used a backward trajectory method on the HYSPLIT model
to study the sources of dust storms over Kuwait during a 12-year period (2000–2012). The
authors compared MODIS satellite observations at various latitudes (1000, 3000, 5000 m)
with the HYSPLIT model and reported similar results. The sources of dust storms were
identified from both the Sahara Desert and the Arabian Desert. Similarly, Beegum et al. [39]
investigated dust storms over the Arabian Peninsula using the regionally adapted chem-
istry transport model CHIMERE coupled with the Weather Research and Forecast (WRF)
model. They found good agreement (R ~0.73 and RMSE ~0.1) in the spatiotemporal pattern
between simulations and observations (MSG/SEVRI RGB dust, MODIS Deep Blue Aerosol
Optical Depth: DB-AOD, Ozone Monitoring Instrument Observed UV Aerosol Absorption
Index: OMI-AI and AERONET AOD). Boroughani et al. [40] used three statistical-based
machine learning algorithms (weights of evidence, frequency ratio, and random forest)
to produce a dust source susceptibility map (DSSM) in Khorasan Razavi Province (Iran).
Land use, lithology, slope, soil, geomorphology, normalized difference vegetation index
(NDVI), and distance from river data were included in the models. The random forest
model with an area under the curve (AUC) value equal to 88% showed higher performance
than frequency ratio (80%) and weights of evidence (81%) when validated with MODIS
data (23 images during the 2005–2016 period). Similarly, Gholami et al. [41] applied eight
algorithms including random forest (RF), support vector machine (SVM), Bayesian additive
regression trees (BART), radial basis function (RBF), extreme gradient boosting (XGBoost),
regression tree analysis (RTA), Cubist model and boosted regression trees (BRTs), and
an ensemble modeling (EM) approach for generating spatial dust distribution maps in
Khuzestan Province (Iran) and Iraq. The EM approach showed the highest performance
(AUC = 99.8%) for generating the dust storm provenance map.
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Spaceborne NO2 column observations from two high-resolution instruments, Tropo-
spheric Monitoring Instrument (TROPOMI, Sentinel-5 Precursor) and Ozone Monitoring
Instrument (OMI), were used to assess the impact of the COVID-19 outbreak on NO2 pollu-
tion in five different regions (China, South Korea, western Europe, the USA, and Iran) [43].
The results showed a 20–40% decrease in NO2 columns over China, Europe, South Korea,
and the United States between January and April 2020, due to the lockdown measures
implemented by the governments. A likely explanation for the absence of a decrease in
NO2 in Iran is that complete lockdowns were not enforced in Iran. The authors emphasized
that further studies are needed to evaluate the effects of the temporary lockdowns on
global air quality and climate and the gradual return the values of to prelockdown periods.
On the contrary, the study of Broomandi et al. [44] showed that the COVID-19 lockdown
positively affected Iran’s air quality, as evident by the reduction in the levels of CO, NO2,
SO2, and PM10. Similar trends of NO2 reduction during the lockdown were observed for
other EMMENA countries, such as Egypt and Iraq [45,46].

The remaining studies in the atmosphere thematic area focus on the improvement
of CO2 anthropogenic emission measurements [47], climate change [48,49], aerosol pollu-
tion [50], drought estimation [51], and preseismic ionospheric anomalies [52].

Reuter et al. [47] developed a co-location method with the simultaneous use of CO2
(OCO-2) and NO2 (Sentinel-5) data for the identification and quantification of anthro-
pogenic emission plume signals. The authors highlighted that existing satellites present
high flux uncertainties which are expected to be reduced by the planned European Coper-
nicus anthropogenic CO2 monitoring mission (CO2M), due to higher spatial resolution and
better imaging capabilities.

Long-term trends between vegetation and climate showed apparent climate change
effects in Iran [48]. Using 33-year records of NDVI (calculated with data from the
Advanced Very High Resolution Radiometer (AVHRR) satellite) and climate variables,
Lamchin et al. [48] found that the vegetation greenness trend consistently decreased
(range = −0.47 to −0.08) in eastern Iran. Similarly, projected land use changes for Saudi
Arabia between 2014 and 2100 showed reductions in vegetation due to climate change and
anthropogenic activities [49].

Hossein Mardi et al. [50] examined the long-term temporal and spatial characteristics
associated with aerosol pollution in Lake Urmia by using daily aerosol optical depth (AOD)
data from MODIS satellites, between 2001 and 2015. They found that aerosols in the area
are emitted more effectively from bordering lands (desiccated areas, dried watercourses,
and river deltas), rather than the Lake Urmia salt crust.

The study of Alizadeh and Nikoo [51] evaluated the performance of three advanced
fusion-based methodologies including the ordered weighted averaged (OWA) approach
based on the ORNESS weighting method (ORNESS-OWA) and ORLIKE weighting method
(ORLIKE-OWA) for drought estimation with the use of different remotely sensed pre-
cipitation data products (CHOMPS, GPCP, CMAP, PERSIANN-CDR, TRMM, GLDAS-2,
and MERRA-2). Their results showed that the ORNESS-OWA method had the highest
performance (MARE = 2.51% and R2 = 95%) in comparison with all other fusion-based
models, demonstrating an effective proficiency in drought estimation.

Tariq et al. [52] showed the feasibility of detecting earthquake (EQ)-related anoma-
lies in the ionosphere with the use of the Temporal Electron Content (TEC) from Global
Ionospheric Map TEC (GIMTEC) and ground-based dual-frequency GPS receivers. They
used data for three major (M > 7.0) earthquakes in Nepal and the Iran–Iraq border from
2015–2017. Their statistical procedures showed positive ionospheric anomalies within
10 days before all the major earthquakes.

3.2.2. Water

The main focus of the 20 most highly cited articles in the thematic area of water (Table 4)
is on groundwater potential mapping (10 articles) and on groundwater quality (7 articles
Most of the EMMENA countries suffer from water scarcity because of the semi-arid and
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arid climate which, combined with the population growth and the growing demand for
water, creates an urgent need to further explore the potential groundwater resources as
an alternative [53–62]. Existing groundwater resources in EMMENA countries (e.g., Iran,
Egypt) have significantly declined, both in terms of quality and quantity [60,63–68]. Due to
anthropogenic activities and mismanagement, groundwater bodies in the EMMENA region
face many threats such as brackish water [63–65], poor water quality index [66], fluoride
and nitrate contamination [67,68], and high levels of total dissolved solids (TDS) [60].
According to Arabameri et al. [54], due to the constant technical advancements in the field
of groundwater potential mapping, there is no current agreement or reference on which
approach is more suitable to predict high groundwater potential. However, all studies
have in common the use of GIS and geostatistical methods, including different models
and algorithms. The studies used various sources of data (e.g., ALOS PALSAR, ASTER,
Landsat, ground-based) related to water quantity, land use/land cover, soil and geology,
digital elevation, and morphological (e.g., slope, aspect) and hydrological data (e.g., river
network). The choice of the input data depends on the site-specific characteristics of each
region. All these studies highlighted that the results will be useful for better water and
land management practices and policies.

The remaining studies in the water thematic area focus on dam site selection [69],
quantification of irrigation water [70], and on evapotranspiration estimates [71].

Jozaghi et al. [69] conducted a comparative analysis of the analytic hierarchy process
(AHP) and the technique for order of preference by similarity to ideal solution (TOPSIS) for
the optimum dam site selection in Sistan and Baluchestan Province (Iran), with the use of
GIS. Their comparison was made based on geographic (geology, land use, sediment, erosion,
slope, groundwater, and discharge) and water quality (soluble sodium percentage, total
dissolved solids, potential of hydrogen, and electrical conductivity) criteria. The authors
reported that the TOPSIS method is better suited to the problem of dam site selection for
this study area.

Jalilvand et al. [70] used the SM2RAIN algorithm for the estimation of irrigation
water use at the southern Urmia Lake catchment (Iran) based on satellite soil moisture
observations obtained from Advanced Microwave Scanning Radiometer 2 (AMSR2). They
found that the simulated quantities of the irrigation water were consistent with the observed
data with an average R = 0.86 and RMSE = 12.89 mm/month. Zamani Losgedaragh and
Rahimzadegan [71] applied three different models (Surface Energy Balance Algorithm
for Land (SEBAL), Mapping Evapotranspiration with Internalized Calibration (METRIC),
Surface Energy Balance System (SEBS)) to estimate the amount of evapotranspiration over
the region of the Amirkabir dam reservoir (Iran). Sixteen Landsat 5 and Landsat 8 satellite
images from 2011 to 2017 were used in these models to compute evapotranspiration
and the results were validated with ground truth pan evaporation data. The authors
found good performance of the SEBS (R2: 0.62, RMSE: 0.93) and METRIC (R2: 0.57,
RMSE: 2.02 mm) models. On the contrary, the SEBAL model showed poor performance
(R2: 0.36, RMSE: 5.1 mm).

Table 4. Research focus (GP: groundwater potential mapping, GQ: groundwater quality, QIW:
quantification of irrigation water, ET: evapotranspiration estimates, DP: dam site selection) of the 20
most-cited papers in the water thematic area, the geographical focus (country), the methods used
(AHP: analytical hierarchical process, Fuzzy-AHP: fuzzy analytical hierarchical process, ML: machine
learning, AI: artificial intelligence), and the satellite data used.

N Ref. Focus Country Methods Satellites

1 [53] GP S. Arabia Fuzzy-AHP Landsat 8, ALOS PALSAR
2 [61] GP Morocco AHP Landsat 8
3 [59] GP Iran ML ASTER GDEM
4 [62] GP Iran ML Landsat ETM+
5 [58] GP Iran ML Landsat 8
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Table 4. Cont.

N Ref. Focus Country Methods Satellites

6 [55] GP Iran ML Landsat ETM+
7 [56] GP Iran AI Landsat 7, ASTER
8 [57] GP Iran ML Landsat 8
9 [54] GP Iran ML Landsat ETM+, Sentinel-2, ASTER, ALOS

10 [72] GP Iran AI/ML Landsat
11 [66] GQ Egypt N/A
12 [63] GQ Iran N/A
13 [64] GQ Iran N/A
14 [67] GQ Iran N/A
15 [68] GQ Iran ML N/A
16 [65] GQ Iran N/A
17 [60] GQ Iran N/A
18 [70] QIW Iran ASCAT, SMOS, AMSR2 JAXA
19 [71] ET Iran Landsat 5/8
20 [69] DP Iran AHP N/A

3.2.3. Agriculture

The EO applications in the thematic area of agriculture cover a wide range of topics
such as evapotranspiration (ET) estimation [73–76], land suitability for agriculture [77–83],
irrigation mapping [84], agricultural land loss [85], crop monitoring [86,87], crop production
and yield prediction [88,89], crop mapping [90], stem water potential monitoring [91], and
crop water footprint estimation [92].

Accurate assessment of water use in agriculture is of critical importance due to the
changing climate and increasing water scarcity. Thus, modeling crop water use is a powerful
decision tool for agricultural policy decisionmakers to improve water use efficiency [92].
In their study on crop water footprint estimation, Elbeltagi et al. [92] modeled the green
and blue water footprints of maize by using an artificial neural network (ANN) in major
maize-producing sites in Egypt, between 2006 and 2016. Meteorological data were collected
from the Climatic Research Unit Time Series and the Japanese 55-year Reanalysis (JRA-55)
in NetCDF formats. Their model achieved high accuracy with deviations between the
actual and predicted water footprints ranging from −2.6 to 6.6% and from −2.4 to 3.2% for
the blue and green water footprints, respectively.

Representative and accurate evapotranspiration maps are needed to achieve the plan-
ning and management of sustainable water use in water-scarce regions, such as the EM-
MENA region [76]. Jamshidi et al. [74] compared four different evapotranspiration meth-
ods, including ET estimates from reanalysis data (NCEP, ERA-Interim, ERA5), MODIS
ET datasets, Landsat-based ET models (METRIC, SEBS), and in situ measurements, from
2009 to 2014, in southern Iran. The authors reported 4.6% overestimation and 11.4% un-
derestimation of ET with the METRIC and SEBS models, respectively. Huang et al. [73]
reported that actual evapotranspiration in daily time steps predicted based on the SEBAL
method is underestimated for barley, cucumber, chickpea, and alfalfa and overestimated for
wheat, potato, onion, lentil, bean, and maize and is close to the calculated values of SWB for
tomato, colza, and sugar beet. Furthermore, Rahimzadegana and Janani [75] showed good
efficiency of the SEBAL model for estimating the actual ET of pistachio. Mahmoud and
Gan [76] computed the actual evapotranspiration (AET) over the central region of Saudi
Arabia from 1950–2013, based on meteorological data and on crop coefficients (Kc) which
were modeled as a function of a 16-day time-series MODIS normalized difference vege-
tation index (NDVI). They reported that annual AET estimated by the soil water balance
model was between 9 and 11% higher than the modeled AET. The studies emphasized the
need for high-quality in situ data in future studies to improve the model’s performance.

Land suitability studies were conducted both with GIS and multi-criteria decision-
making analysis for wheat (Turkey), Citrus (Turkey, Morocco), legumes (Morocco), maize
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(Iran), soybean (Iran), rapeseed (Iran), barley (Iran), olives (Morocco), and jojoba (UAE)
crops. The studies reported that their findings can help in improving the management of
crop production and that future studies should expand on different crops and soil types.

In their study on soil moisture and irrigation mapping in Tunisia, Bousbih et al. [84]
presented a new technique based on the synergistic interpretation of multi-temporal optical
and Synthetic Aperture Radar (SAR) data (Sentinel-2 and Sentinel-1). Their approach is
based on the inversion of the water cloud model, using radar data and NDVI data derived
from optical images. Their results showed an RMSE of 4.3% and a bias of 1.9% between the
satellite and observed data.

Crop production and yield prediction using remotely sensed data are generally scarce
in the EMMENA region due to the inter-annual variation in meteorological factors com-
bined with anthropogenic factors (such as war conflicts) [88]. In the study on barley yield
prediction in Iran, Sharifi [89] combined vegetation indices (NDVI and EVI) derived from
Sentinel-2 data, barley yield data, and four algorithms, including a backpropagation neural
network, decision tree, K-nearest neighbor, and Gaussian process regression. The latter
algorithm had the highest performance (r2 = 0.84) and estimated yield with a root mean
square error of 737 kg ha−1 and mean absolute error of 650 kg ha−1. Qader et al. [88] devel-
oped an empirical regression-based model to forecast winter wheat and barley production
in Iraq, based on MODIS satellite data and in situ crop data. They found that the highest
accuracy (R2 = 0.70) is achieved when the vegetation index (VI) is at the maximum. Crop
growth dynamic observations from satellites are often limited by the coarse spatial and
temporal resolutions. To address this issue, Nguyen et al. [87] proposed the use of data from
different ongoing satellite missions of Sentinel-2 (ESA) and Landsat 7/8 (NASA) through
harmonization techniques. They found that improved topographic correction models are
needed to achieve higher performance of the harmonized products in mountainous areas.
Sadeh et al. [86] developed a new method to fuse a time series of images sourced from
two different satellite constellations (Sentinel-2, Planetscope) which combines the advan-
tages of each satellite (high temporal, spatial, and spectral resolution). This new technique
was applied to create spectrally consistent daily images of wheat LAI at a 3 m resolution
which were then compared with in situ wheat LAI measurements from Australia and Israel.
Their approach successfully estimated LAI (R2 = 0.94) throughout the growing season for
LAI < 3.

Ashourloo et al. [90] examined the potential of automatic mapping of canola
(Brassica napus L.) using time series of Sentinel-2 images. They found that multiplication
of the near-infrared (NIR) band by the sum of red and green bands is an efficient index to
identify canola during the flowering stage. The kappa and overall accuracy (OA) were more
than 0.75 and 88%, respectively. Furthermore, Helman et al. [91] examined the relationship
between stem water potential and four vegetation indices (GNDVI, NDVI, EVI, and SAVI)
in Mediterranean vineyards (Israel) through the use of high spatial resolution Planetscope
images. The authors highlighted that SAVI displayed a slightly better correlation with
stem water potential than the other three indices, likely due to its capacity for reducing
soil effects.

Urban expansion has critical consequences for agricultural production in the EM-
MENA region. Radwan et al. [85] analyzed 24 LULC maps from the European Space
Agency Climate Change Initiative (ESA-CCI) land cover viewer (http://maps.elie.ucl.ac.
be/CCI/viewer/, accessed on 13 March 2023) and found that 74,600 hectares of fertile
agricultural land in the Nile Delta (Old Lands) was lost due to urban expansion from
1992 to 2015 at an average rate of 3108 ha year−1. Also, 206,100 hectares of bare land
was converted to agricultural land at an average rate of 8588 ha year−1. According to
the authors, more sustainable land use strategies are needed to minimize the threats to
agricultural sustainability and food security.

http://maps.elie.ucl.ac.be/CCI/viewer/
http://maps.elie.ucl.ac.be/CCI/viewer/
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3.2.4. Land

Land degradation due to soil erosion is one of the major problems which the EMMENA
region is facing as highlighted by most of the studies in the land thematic area [93–99].
Jazouli et al. [99] integrated the revised universal soil loss equation (RUSLE) in a GIS
environment to quantify soil loss and to map erosion risk of the Oum Er Rbia River basin,
located in the Middle Atlas (Morocco), for 2013, 2013, and 2017. For their analysis, they
used satellite images of Sentinel-2A, Landsat Oli-8, and ETM and applied cellular automata
Markov to forecast the land use/land cover map and to detect the associated changes.
Their results showed an estimated annual soil loss of 58 t ha−1 yr−1 in 2003, while the
predicted annual soil loss for 2030 increased to 142 t ha−1 yr−1. Different techniques can be
found in the literature for creation of soil erosion susceptibility maps. Ameri et al. [98] used
four different multi-criteria decision-making models (SAW, VIKOR, TOPSIS, and CF) and
concluded that the VIKOR method has higher predictive accuracy than TOPSIS, SAW, and
CF models for the Ghaemshahr Basin in Iran. They used the Advanced Space Thermal Emis-
sion Radiometer (ASTER) digital elevation model (DEM) with spatial resolution of 30 m
for the extraction and analysis of 23 morphometric parameters. Arabameri et al. [94] evalu-
ated the performance of three data-driven models (frequency ratio, weights of evidence,
index of entropy) and the AHP knowledge-based technique for gully erosion susceptibility
mapping in the Toroud watershed (Iran). Morphological and land use parameters were
derived from ALOS PALSAR and Landsat 8 satellite images. All four models showed
excellent accuracy in prediction of areas prone to gully erosion. Zabihi et al. [97] tested
the same models in the Valasht watershed (Iran) and found that the frequency ratio model
had better performance (80.4%) than the weight of evidence (79.5%) and index of entropy
(79%) for erosion mapping. In another study, Arabameri et al. [95] studied the performance
of three algorithms (random forest, boosted regression tree, and multi-variate adaptive
regression spline) for gully erosion susceptibility mapping in the Shahroud watershed, Iran.
Landsat 8 and ASTER GDEM data were used in their analysis. According to the authors,
the random forest model had the highest prediction accuracy. Similar high performance for
the random forest algorithm was reported by Garosi et al. [96]. Finally, Arabameri et al. [93]
proposed a new model which combines the geographically weighted regression technique
with the certainty factor and random forest models to produce gully erosion zonation
mapping. The proper selection of the data in these studies depends on their availability and
site-specific characteristics.

Information about the location, extent, and type of land use/land cover (LULC) is
essential for improving land management practices [100]. Mansour et al. [101] applied
advanced GIS techniques, spatial modeling, and utilization of satellite images (Landsat 5/8)
to simulate LULC changes and to predict the urban expansion in the mountainous cities of
Oman, for the years 2028 and 2038. Their predictions showed a 50% increase in the built-up
area in 2038; on the contrary, vegetation will decrease by 36.5%. Ghorbanian et al. [100]
developed an object-based land cover classification methodology using the Google Earth
Engine in order to improve the land cover map of Iran. They used Sentinel-1 and Sentinel-2
imagery data for the fusion of SAR and multi-spectral data to increase the land cover
classification accuracy. The land cover map for Iran (2017) had an overall accuracy of 95.6%.
Mohajane et al. [102] studied the vegetation change in Azrou Forest (Morocco) between
1987 and 2017. They combined Landsat images (MSS, ETM+, TM, OLI) and used the NDVI
and ground-based survey to improve the discrimination between LULC categories. Land
cover maps for each year were produced with the maximum likelihood (ML) classification
method. The authors reported high classification accuracies and showed that the total
forest cover over the 30-year period remained stable. Rasul et al. [103] developed the dry
built-up index (DBI) and dry bare-soil index (DBSI) to map built-up and bare areas in
dry climates with the use of Landsat 8 images. The results from the city of Erbil (Iraq)
showed an overall classification accuracy of 93% (κ = 0.86) and 92% (κ = 0.84) for DBI and
DBSI, respectively.
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Rapid and extensive urbanization over the past few decades has led to changes in the
microclimate of urban environments [104]. Urban regions experience warmer temperatures
by absorbing a greater amount of solar radiation than their natural rural surroundings,
a phenomenon well known as urban heat island (UHI). Shirani et al. [104] used satellite
images of Landsat 7 ETM+ (1999 and 2006) and Landsat 8 (2013 and 2016) to retrieve
the Earth surface temperature of Isfahan (Iran). Their results showed an increase in the
minimum temperature of 2016 compared to 1999 and that the heat island ratio followed a
rising trend, moving from 0.16 (1999) to 0.3 (2016). Similarly, the study of Weng et al. [105]
showed that surface urban heat island intensity in the city of Babol (Iran) increased signifi-
cantly (24%) during the period from 1985 to 2017. Cetin et al. [106] found a temperature
difference between urban high building density areas and other terrestrial areas, ranging
from 0.4 to 2.5 ◦C.

Knowledge about the distribution of soil properties over the landscape is required for
a variety of land management applications and resources, modeling, and monitoring prac-
tices [107,108]. Amazirh et al. [109] developed a method for retrieving surface soil moisture
at a high spatiotemporal resolution, by combining Sentinel-1 (S1) microwave and Landsat
7/8 thermal data. The authors reported a root mean square difference between satellite and
in situ soil moisture of 0.03 m3m−3. Zeraatpisheh et al. [107] used the normalized difference
vegetation index (NDVI), ratio vegetation index (RVI), perpendicular vegetation index
(PVI), clay index (CI), Landsat image band 4 (B4), and soil adjusted vegetation index (SAVI),
derived from the Landsat enhanced thematic mapper, in order to predict and compare
the spatial distribution of soil organic carbon (SOC), calcium carbonate equivalent (CCE),
and clay content by using different machine learning techniques (Cubist, random forest,
regression tree, and a multiple linear regression) in Iran. Their results showed that the
highest and the lowest prediction accuracies were obtained for clay and SOC using random
forest and random tree models, respectively. Fathololoumi et al. [110] showed that the use
of dynamic (multi-temporal) satellite data fusion, rather than static, can greatly improve
soil modeling and mapping.

Accurate measurements of aboveground forest biomass are crucial for estimating forest
carbon stocks and for regional, sustainable land use planning. Vafaei et al. [111] applied ma-
chine learning techniques in order to improve the forest aboveground biomass estimation.
They generated three datasets including the Sentinel-2A dataset, the ALOS-2 PALSAR-2
dataset, and the combination of the Sentinel-2A dataset and the ALOS-2 PALSAR-2 dataset
(Sentinel-ALOS). They found that aboveground biomass models derived from the combina-
tion of the Sentinel-2A and the ALOS-2 PALSAR-2 data had the highest accuracy, followed
by models using the Sentinel-2A dataset and the ALOS-2 PALSAR-2 dataset.

3.2.5. Disaster Risk Reduction

Disaster risk reduction is the thematic area with the highest average number of cita-
tions per thematic area for the top 20 cited papers (Figure 7). The focus of these papers is
on landslides [112–122] and on floods [118,123–125].

Landslides are often catastrophic natural hazards leading to loss of life, damage to
properties, and economic disruption [113]. All the studies on landslides have in common
the coupling of machine learning (or artificial neural network) algorithms with spatial data
types. The data used in these studies can be categorized into five main categories: topo-
graphical (e.g., aspect, slope, elevation), hydrological (e.g., rainfall, river density), lithologi-
cal (e.g., lithology, faults), land cover (e.g., NDVI), and anthropogenic (e.g., road density).
Topographical and land cover data are often derived from satellite images. However, the
source of these data was not provided in most studies. According to Merghadi et al. [113],
tree-based ensemble algorithms achieve excellent results compared to other machine learn-
ing algorithms for landslide susceptibility mapping. Specifically, the random forest al-
gorithm offers robust performance for accurate landslide susceptibility mapping with
only a small number of adjustments required before training the model. The studies of
Pourghasemi and Rahmadi [117], Youssef and Pourghasemi [122], Arabameri et al. [121],
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and Achour and Pourghasemi [119] reported similar robust performance for the random
forest algorithm for landslide susceptibility assessment. Tien Bui et al. [126] applied the
metaheuristic algorithm Harris hawks optimization (HHO) in order to improve the per-
formance of the artificial neural network (ANN) for landslide susceptibility assessment in
western Iran. The authors found that the HHO algorithm improved the performance of the
ANN in both recognizing and predicting the landslide patterns. Shirzadi et al. [127] showed
that the use of a hybrid approach of alternative tree decision and ensemble algorithms
(rotation forest and multi-boost) will improve the predictions of landslide susceptibility
due to decreasing noise and over-fitting problems. According to Reichenbach et al. [112],
for the preparation of landslide susceptibility assessment there are nine steps that need
to be considered, which include obtaining relevant landslide and thematic information,
selecting the appropriate mapping unit and model, evaluating model fitting and predictive
performance, estimating model uncertainty, ranking model quality, and designing the land-
slide protocol. Future studies should consider these steps and focus on the development of
landslide early warning systems at different geographical scales.
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Floods are considered as a major natural disaster because of their devastating effects
that lead to human casualties and socioeconomic losses [128]. Khosravi et al. [125] tested
four decision tree-based machine learning models (logistic model trees (LMTs), reduced
error pruning trees (REPTs), naïve Bayes trees (NBTs), and alternating decision trees (ADTs))
for flash flood susceptibility mapping at the Haraz watershed in the northern part of Iran.
The physical factors needed for the models, such as ground slope, altitude, and curvature,
were derived from the Aster digital elevation model (DEM) of 30m resolution and the land
use and NDVI maps were extracted from Landsat 8 Operational Land Image (OLI). Their
results showed that all models have good performances in flood susceptibility assessment,
with the ADT model having the highest predictive capability. Tien Bui et al. [126] com-
bined the adaptive neuro-fuzzy inference system (ANFIS) with two GIS-based ensemble
artificial intelligence approaches, the imperialistic competitive algorithm (ICA) and the
firefly algorithm (FA), for flood spatial modeling and mapping applications in the Haraz
watershed (Iran). The ten factors included in their analysis were slope angle, elevation,
stream power index (SPI), curvature, topographic wetness index (TWI), lithology, rainfall,
land use, stream density, and the distance to river. The results showed high prediction
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accuracy of the two ensemble models with values of MSE and RMSE for ANFIS-ICA
and ANFIS-FA equal to 0.41 and 0.35 and 0.169 and 0.129, respectively. According to
Ahmadlou et al. [123], flood occurrence is mainly affected by plan curvature, followed by
altitude, geology, distance to river, slope, soil, land use, rainfall, and aspect. A range of
models and machine learning techniques have been applied in order to improve the flood
susceptibility mapping [118,125,126,128–131]. However, future studies should focus on
the development of flood forecasting and warning systems which is essential in order to
minimize the flood hazards [124].

3.2.6. Cultural Heritage

EO within the culture heritage thematic area includes detection, monitoring, mapping,
and management of archaeological sites [132–140], looting detection [141,142], and other
threats to cultural heritage sites [143–149].

The studies on detection, monitoring, and management employed various satellite
data (Corona, Landsat, Spot, Quickbird, Sentinel-2A, COSMO-SkyMed) and reported that
there is a need for further development of machine and deep learning techniques in or-
der to automate feature extraction and pattern detection in very high-resolution (VHR)
images [132,134]. Soroush et al. [134] tested the application of deep convolutional neural
networks (CNNs) for automated remote sensing detection of qanat systems in the Erbil
Plain (Iraq), with the use of Corona imagery. They demonstrated that even with small
datasets, deep learning can be successfully applied to automate the detection of qanat
shafts. According to Bachagha et al. [137], the combined use of LiDAR, aerial photographs,
historical records, and satellite images will further enhance the investigation of ancient sites.
By screening long Sentinel-2 time series for Aleppo and Apamea, Tapete and Cigna [132]
showed that changes in textural properties and surface reflectance can be associated with
events relevant for conservation. Tapete and Cigna [133] also suggested the use of COSMO-
SkyMed data for condition assessment of archaeological heritage and landscape disturbance
due to their capabilities for very high spatial resolution images and for site revisit of up to
one day. Stott et al. [139] applied airborne laser scanning (ALS) remote sensing and pho-
togrammetric techniques, including enhancing local topographic contrast for archaeological
interpretation, residual relief modeling, sky view factor, and local dominance, and they
were able to accurately map known archaeological features and to detect a wide variety of
previously unrecorded potential features. A major issue for the preservation of archaeolog-
ical areas appears to be urban and agriculture sprawling [132,135,139,143–145]. With the
use of multi-temporal and multi-sensor satellite data (Corona, Landsat, Spot, Quickbird,
and Sentinel-2A), Elfadaly et al. [135] showed that urban fabric continuously expanded
from 1984 to 2017, posing a severe threat at the Theban temples at west Luxor (Egypt).

Lasaponara and Masini [142] introduced an automatic method for an archaeological
looting feature extraction approach (ALFEA) which is based on looting enhancement
using spatial autocorrelation, unsupervised classification, and segmentation. For their
analysis, they used images available from Google Earth. Their results from the evaluation
procedure showed satisfactory performance from two analyzed test cases with a rate of
success higher than 90%. According to the review study by Tapete and Cigna [141], a
variety of satellite data were used for the detection of archaeological looting, such as HR
multi-spectral imagery from Sentinel-2, VHR X-band SAR data from COSMO-SkyMed,
VHR panchromatic and multi-spectral WorldView-2 imagery, and VHR optical data from
GeoEye-1, IKONOS-2, QuickBird-2, and WorldView-3; 89% of the studies on looting
detection exploited optical images and the majority of these studies used VHR images (less
than 1 m resolution). According to the authors, the use of open high-resolution (HR) data
(e.g., Sentinel-2 and Landsat) is still at the early stage. Currently, there is lack of common
practices in the domain of looting detection from space, thus there is a need to move toward
sharing and harmonization of methodologies.
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Apart from looting and urbanization described above, remote sensing techniques have
also been applied in other domains which may threaten cultural heritage sites such as
erosion [146,148], earthquakes [149], flooding [147], and salt weathering [144].

3.2.7. Energy

The majority of the top 20 highly cited articles in the energy thematic area focus
on the spatial assessment of the energy potential and on the location selection for en-
ergy plants [150–166]. Thirteen of these studies focus on solar energy (photovoltaics,
concentrating solar power), two studies focus on wind energy, and two studies focus on
bioethanol/biogas. The three remaining studies focus on techno-economical assessment of
energy resources [167,168] and on the design optimization of off-grid hybrid renewable
energy systems [169]. The geographical focus of the studies was on Iran (nine studies),
Morocco (four studies), Egypt (two studies), Turkey (two studies), Algeria (one study), and
Saudi Arabia (one study).

In their study on the spatial assessment of solar energy potential at a global scale,
Pravalie et al. [157] analyzed the solar radiation distribution and intensity based on global
horizontal irradiation (GHI) and direct normal irradiation (DNI) data. They found that
most of the countries located in the EMMENA region (Saharan countries and countries
located in the Arabian Peninsula) present superb (maximum) solar potential, thus there
are opportunities for developing solar energy at a national or international (regional)
level. However, there are additional factors that can affect solar power generation in this
region, such as dust particles and dust storms, high air temperatures, insufficient financial
resources, and political instability or war conflicts.

Eleven studies in the spatial assessment of the energy potential and on the location
selection for energy plants combined GIS and multi-criteria decision models (Table 5).
The assessment of the energy potential and the location of energy plants includes a range
of criteria such as climatic (e.g., solar radiation, sunshine, land surface temperature),
morphological (e.g., slope and aspect), locational (e.g., distance from cities, roads, and
electricity grid), land cover, and hydrological (e.g., distance from dams and groundwater)
criteria [150–153,158,159]. The criteria for the assessment of the offshore wind energy
potential include, among others, wind characteristics, water depth, soil substrate, and
distance from the shoreline, military areas, parks, submerged cables, shipping routes,
and fishing areas [155,156]. Finally, the criteria for bioethanol facility location selection
include social (e.g., policies, work force, societal impact, quality of life), environmental
(e.g., ecologically sensitive areas), and economic (e.g., investment, maintenance, and opera-
tion costs) criteria [154].

Table 5. Energy resource and research focus (OL: Optimized Location/Site, P: Energy potential,
TE: Techno-Economical, OD: Optimal Design) of the top 20 highly cited papers in the Energy thematic
area (Ref.), the geographical focus (Country), the methods used (MCDM: Multi-Criteria Decision
Model, BF: Boolean-Fuzzy Logic, SO: Swarm Optimization, HE: Heuristic, MC: Monte Carlo), and
the satellite data used.

N Ref. Energy Resource Focus Methods
Used GIS Satellite Data Country

1 [166] Solar/hydrogen OL HE Yes n/a Iran
2 [165] Biogas P Yes n/a Iran
3 [164] Solar OL BF Yes ASTER DEM Iran
4 [168] Solar/hydrogen TE Yes CAMS-Rad Morocco
5 [167] Solar/wind/hydrogen TE Yes n/a Iran
6 [169] Diesel/solar/wind/battery OD SO Yes n/a Algeria
7 [163] Solar OL MCDM Yes SRTM Morocco
8 [162] Solar OL MCDM, MC Yes n/a Iran
9 [161] Solar P MCDM Yes n/a Iran
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Table 5. Cont.

N Ref. Energy Resource Focus Methods
Used GIS Satellite Data Country

10 [160] Solar P Yes n/a Saudi Arabia
11 [159] Solar P MCDM Yes n/a Iran
12 [158] Solar OL MCDM Yes SRTM Morocco
13 [153] Solar OL MCDM Yes ASTER, MODIS Iran
14 [150] Solar OL MCDM Yes n/a Turkey
15 [155] Wind OL MCDM Yes n/a Egypt
16 [151] Solar OL MCDM Yes n/a Morocco
17 [156] Wind OL MCDM No n/a Egypt
18 [154] Bioethanol OL MCDM Yes n/a Iran
19 [157] Solar OL Yes n/a Global
20 [152] Solar OL MCDM Yes n/a Turkey

3.2.8. Marine Safety and Security

Marine safety and security is the thematic area with the lowest average number of
citations per thematic area for the top 20 highly cited papers (Figure 7). Studies include oil
spill detection and assessment [170–177], marine habitat mapping [178], toxicity assessment
of heavy metals [179], environmental pollution of coastal zones [180], detection of floating
plastic litter [181–183], marine mucilage monitoring [184], ecology of sea turtles [185–187],
habitat suitability model for Posidonia oceanica [188], characterization of natural hydrocar-
bon seepage [189], and relative sea-level rise and potential submersion risk [190].

Oil pollution is among the major maritime environmental disasters and has become a
worldwide concern due to the increasing rate of offshore oil production and transport [177].
Abou Samra et al. mapped and examined the oceanographic parameters that may affect
oil pollution dispersion along the offshore zone of the Nile Delta with the use of GIS
techniques. They analyzed data of wave patterns, bathymetry, sea surface temperature
(SST), chlorophyll content, phytoplankton concentration, and organic carbon concentration.
They found that oil spills along the offshore region are primarily influenced by bathymetry
and SST. Chaturverdi et al. [173] and El-Magd et al. [175] used SAR data from Sentinel-1
satellites to detect and map oil spills in the Al Khafji area (Saudi Arabia) and in the coastal
waters of Egypt. Their results demonstrated the capability of utilizing Sentinel-1 for oil spill
detection and mapping. Arslan [172] analyzed Sentinel-1 data to detect an oil spill caused
by a ship on 18 December 2016 off the coast of Ildır Bay (Izmir, Turkey). Furthermore,
Landsat 8 data were used for validation purposes by estimating brightness temperatures to
observe oil spill changes in temperature on the sea surface. Park et al. [171] combined very
high-resolution satellite images (Planetscope) with an artificial neural network technique
to detect an oil spill accident that occurred on 10 August 2017 near the Ras Al Zour area
(Kuwait). The accuracy and kappa coefficient of the oil classification map obtained from
the optical image were 82.01% and 72.42%, respectively. Future studies should focus on
satellite data of higher temporal resolution to verify the results with in situ or satellite SAR
data and to develop better algorithms for rejecting low-probability pixels and dust. Finally,
there is a need to develop a near-real-time warning and alarm system for oil spill cases as a
service, which can help to identify the ship or platform that is liable for the pollution [175].

Mateos-Molina et al. [178] analyzed a variety of different data sources, including
Sentinel-2 and DubaiSat-2 imagery, and mapped the spatial distribution of coastal marine
habitats in the north-western United Arab Emirates (UAE). Their multiple data analysis
approach overcame the limitation of turbid waters and habitat seasonality with an overall
accuracy of 77%.

Ivanov et al. [189] studied the hydrocarbon seep characteristics and their relation
to the local hydrocarbon field or potential hydrocarbon reservoirs in the South Caspian
sea (Iran). They analyzed SAR images (Sentinel-1) together with bathymetry and geo-
logical and geophysical data with GIS. Their results showed that the oil slicks have a
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natural origin, related to the bottom seepage phenomenon and associated with an existing
hydrocarbon system.

Fatehian et al. [180] designed and implemented an integrated volunteered geographic
information (VGI)-based system based on coastal pollution management concepts and
public participation in order to monitor coastal pollution in the port city of Nowshahr
(Mazandaran Province, Iran). Tourists, residents, and other present individuals were
asked to report observable pollutants at their location; 86% of the reports referred to the
accumulation of garbage, while 10% and 4% of the remaining reports were related to
wastewater pollution and oil contaminants, respectively. According to the authors, future
work should focus on the integration of spatial decision support systems (SDSSs) in the
existing tool to improve coastal pollution management.

El-Alfy et al. [179] used Landsat OLI images, synchronized with the sampling time
of water and sediment samples, to assess the toxicity of heavy metals and organochlorine
pesticides in freshwater and marine environments in the Rosetta area (Egypt). They
found that drainage canals, cultivations, and urbanized zones were the major sources of
contamination in the studied area. They recommended biological treatment processes such
as using naturally grown plants like Phragmites australis in the contaminated sites.

The increasing level of marine plastic pollution poses severe threats to marine
ecosystems, thus cost-effective solutions for identifying plastic litter are essential.
Themistocleous et al. [181] examined the potential of detection of floating plastic litter by
introducing the plastic index (PI) and reversed normalized difference vegetation index
(RNDVI), based on the Sentinel-2 B08 (842 nm) and B04 (665 nm) bands. They found
that Sentinel-2 satellite images were effective in identifying plastic clusters in the sea,
through the high reflectance of solar radiation at NIR wavelengths. They highlighted that
future research should focus on the use of Sentinel-1 SAR images for the identification of
plastic litter in the sea. Sannigrahi et al. [182] combined Sentinel-2 imagery with machine
learning algorithms (support vector machine and random forest) for the development
of an automated marine floating plastic detection system. The authors found that the
random forest algorithm performed better than the support vector machine, as it detected
floating plastic from real-world data collected from Calabria and Beirut with 91% accuracy.
Zhou et al. [183] combined WorldView-3 satellite data with a knowledge-based classifier
and concluded that this approach is efficient and reliable for monitoring and identifying
plastic materials. Global warming and human activities have caused abrupt changes in
marine ecosystems. Yagci et al. [184] investigated the potential of using the coarse spatial
resolution MODIS products for mucilage detection and monitoring in the Sea of Marmara
(Turkey). The validation carried out with the reference mucilage datasets derived from
Sentinel-2A imagery and with in situ spectroradiometer measurements showed that the
produced MODIS-based maps accurately depicted the mucilage-covered areas. Bakirman
and Gumusay [188] combined GIS, MCDM, and remote sensing techniques (SPOT 7 optical
imagery) for the identification of suitable habitats for Posidonia oceanica in Gulluk Bay,
Turkey. The authors used the following criteria: depth, sheltered area, slope, sediment
yield, and topographic position index. Their model identified suitable habitats for seagrass
with an overall accuracy of 76%. Human activities have resulted in negative effects on
sea turtle populations in the Mediterranean, thus sufficient conservation and monitoring
efforts are essential [187]. Towards this direction, satellite telemetry and conventional GPS
data loggers have been proven to be valuable tools for mapping the spatial ecology of
sea turtles [185,186]. Antonioli et al. [190] studied the relative sea-level rise and potential
submersion risk for 2100 on 16 coastal plains of the Mediterranean Sea (France, Spain,
Tunisia, Cyprus) by analyzing LiDAR data and different climate projection scenarios. They
estimated a potential loss of land for the above areas between about 148 km2 for the IPCC-
RCP8.5 scenario and 192 km2 for the Rahmstorf scenario, impacting a coastline length of
about 400 km. However, the low resolution (25 m × 25 m) of the digital terrain model map
of Cyprus prevented any further detailed coastal hazard assessment.
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3.2.9. Big Earth Data

The big Earth data thematic area includes technologies and development of methods
and algorithms which are applied in the other thematic areas (Table 6). Thus, it is considered
as a horizontal thematic area. Thirteen out of the twenty most highly cited articles which
include big Earth data applications were categorized into the disaster risk reduction thematic
area (Section 3.2.5), and the remaining seven are in water (three articles, Section 3.2.2) land
(three articles, Section 3.2.4), and energy (one article, Section 3.2.7) thematic areas. The
geographical focus of these articles is on Iran (14 articles), Algeria (2 articles), regional
(2 articles), Morocco (1 article), and Oman (1 article). The average number of citations (up
to 13 March 2023) of the top 20 articles containing big Earth data was 197. As shown in
the previous subsections, the majority of the research carried out on big Earth data in the
EMMENA region is applied.

Table 6. Reference (Ref.), number of citations up to 13 March 2023 (Citations), geographical fo-
cus (Country), thematic area and research focus (LS: Landslides, FL: Floods, GQ: Groundwater
Quality, SP: Soil Properties, FB: Forest Biomass, OL: Optimized Location/Site for Energy Plant,
LU/LC: Land Use/Land Cover) of the top 20 highly cited papers which include big Earth data
methods and techniques.

N Ref. Citations Thematic Area * Focus Country

1 [112] 667 DRR LS Regional
2 [125] 349 DRR FL Iran
3 [115] 251 DRR LS Iran
4 [117] 244 DRR LS Iran
5 [113] 237 DRR LS Algeria
6 [114] 218 DRR LS Regional
7 [124] 199 DRR FL Iran
8 [116] 174 DRR LS Iran
9 [118] 165 DRR FL Iran

10 [68] 159 Water GQ Iran
11 [65] 159 Water GQ Iran
12 [123] 153 DRR FL Iran
13 [107] 131 Land SP Iran
14 [111] 128 Land FB Iran
15 [55] 125 Water GP Iran
16 [129] 118 DRR FL Iran
17 [130] 117 DRR FL Iran
18 [151] 114 Energy OL Morocco
19 [119] 114 DRR LS Algeria
20 [101] 113 Land LU/LC Oman

* DRR: Disaster Risk Reduction.

3.2.10. Other

This study also identified EO studies in the EMMENA region which are not included
in any of the above thematic areas. These studies include animal species detection, iden-
tification and monitoring [191–194], mineralogy–petrology [195–197], sociodemographic
characteristics [198–201], spatial analysis of cancer [202,203], healthcare [204,205], location
selection of shopping malls [206], optimal siting of electric vehicle charging stations [207],
evaluation of bike-share stations [208], paleoecology [209], and examining the walking
accessibility, willingness, and travel conditions of residents [210].

4. Discussion
4.1. EO Studies in the EMMENA Region

Over the past years, there has been an increasing trend in EO research in the EMMENA
region (Figure 8). However, the number of EO studies in the EMMENA region represents
only 3% of the EO studies carried out worldwide. Also, as we have shown in Table 2,
the amount of EO research is highly uneven between countries within the EMMENA
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region. Iran is the most active EMMENA country in terms of EO publications, as shown
both from the number of publications and the author affiliations. However, from our
analysis we found that almost half of the studies were conducted by researchers not
affiliated with the EMMENA region. We assume that, to some extent, the barrier for the
expansion of EO research can be attributed to the lack of collaborations and knowledge
transfer within EMMENA countries. Towards this direction, the recent establishment of a
Centre of Excellence acting as a digital innovation hub for EO in the EMMENA region is a
significant advancement in expanding EO research and in seeking future collaborations
and knowledge transfer schemes among the EMMENA countries [211].
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The plethora of satellite data currently available are usually scattered among differ-
ent platforms (Table 3), resulting in more time and work needed for data collection and
preprocessing [18]. The development of a user-friendly central data hub (or data cubes)
can resolve this issue. An example of such a central data hub is the GEO-CRADLE EU
project which facilitates access to and sharing of geospatial data and information collected
from satellites and ground-based networks in the North Africa, Middle East, and Balkans
(NAMEBA) region.

4.2. EO Studies per Thematic Area: Limitations, Research Gaps, and Future Directions

A general limitation on EO research which was identified in all thematic areas is
the lack of in situ (ground truth) data. This issue has many implications such as on the
validation of the EO outputs and on the further development of algorithms and models. The
increasing number of countries and organizations adopting open data policies will partially
resolve this issue, but inevitably there is a need for research infrastructure investments,
especially in data-scarce regions.

Our review revealed a wide range of EO applications in the thematic area of atmo-
sphere. Similar to the findings of Imane et al. [30], we found that many studies in the
EMMENA focused on dust (PM10/PM2.5), as this is a common problem among these coun-
tries. Also, most of the EMMENA countries are situated in water-scarce semi-arid and arid
climate zones. Thus, as expected, EO research on precipitation estimates has a high research
impact. In addition to this, the rise and peak of the coronavirus pandemic occurred within
the period selected for this review, thus many studies related to the virus outbreak received
high research interest. Future studies on the thematic area of atmosphere should focus on
the development of EO methods for improved monitoring of air quality [30].
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Most studies in the water thematic area focus on groundwater research, as shown both
by the article review and the results of the citation topics. However, there is a range of topics
where EO applications can contribute such as monitoring the water level of lakes, dams, and
rivers with satellite radar altimeters and identifying the presence of different substances in
water based on their unique spectral signatures, which can be measured by satellites with
thermal and optical sensors and provide further information on water quality parameters
(e.g., chlorophyll-a, total suspended sediments, colored dissolved organic matter) [212]. In
addition to this, the management of transboundary rivers at a watershed level will be an
emerging issue as water resources continue to diminish in the EMMENA region. Thus, EO
applications may become a necessity in the emerging topic of hydrodiplomacy.

EO research in the agriculture thematic area covered a wide range of applications.
According to the World Bank, due to population growth agricultural production will need
to expand by approximately 70% by 2050 to cover the food need. Thus, it is important
to develop sustainable farming practices, such as precision (smart) irrigation through EO.
Such studies are having a great impact on agriculture, especially in water-scarce regions
such as EMMENA. However, our review did not reveal high-impact studies on this topic.
Also, there were no studies on the emerging subject of the photosynthetic activity of plants
based on solar-induced fluorescence (SIF) which can be obtained by the Sentinel-5 satellite
mission [213]. Furthermore, research on pest and disease detection, especially in the early
stages, was limited. There is a great potential to advance EO research in this direction.

The thematic area of disaster risk reduction can be considered the most impactful in
terms of research interest, as it has on average a higher number of citations than the other
thematic areas. This was expected, as this thematic area deals with human casualties and
economic losses. However, our review identified research carried out only on landslides
and floods. Unexpectedly, forest fires were not included among the top 20 articles. The
choice of the proper parameters needed and the variety of algorithms available (machine
learning, artificial intelligence, hybrid) along with the rapid development in the field of big
Earth data have created confusion on which approach is more suitable for landslide and
flood mapping. Future studies should focus on the development of protocols which will
guide researchers and stakeholders towards the selection of the most suitable algorithm
or method based on the specific characteristics of their research. Services related to early
warning and decision support systems will upgrade EO applications, especially in thematic
areas dealing with hazards and human health [113,117,180]. The improvement of existing
services or the continuous development of new systems will help stakeholders and the
relevant authorities to take the appropriate actions aiming at reducing the number of
human casualties and severe economic losses. Similar systems will be extremely useful
in the thematic areas of atmosphere and agriculture, with applications regarding extreme
weather warnings and irrigation support.

Research in specific thematic areas is surprisingly limited. The Mediterranean Sea
is one of the busiest seas in the world, accounting for 20% of seaborne trade and over
200 million passengers [214]. Studies on ship detection and more particularly of those
related to illegal activities were absent. In addition to this, the Mediterranean Sea is
exposed to many risks such as rising CO2 emissions, pollution, marine litter, and collisions.
However, this is not reflected by the number of studies carried out in the marine safety
and security thematic area. We speculate that the reason for the low number of studies in
this thematic area may be twofold: restrictions on data sharing which are often applied
in the sea region due to security reasons and the insufficient resolution and revisiting
time of existing non-commercial satellites which limit their ability to detect objects and
the movement of these objects in time. Similarly, EO applications in the cultural heritage
thematic area are very rare (1.4% of all EO applications) with the insufficient resolution
of existing non-commercial satellites being identified as the main limitation. Finally, we
expect that the EO research in the energy thematic area will attract more attention in the
following years due to the gradual transition from fossil fuel to renewable energy.
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5. Conclusions

The EMMENA region is facing many challenges related to climate change, environ-
mental degradation, energy, water scarcity, and hazards. The ongoing development of EO
parallel with advancement in the domain of big Earth data has provided the opportunity
to better assess and address the various challenges. This work provides an overview of
the existing EO applications in the EMMENA region, where 6647 articles were efficiently
categorized into the following thematic areas: Atmosphere, water, agriculture, land, disas-
ter risk reduction, cultural heritage, energy, marine safety and security, and other. The big
Earth data thematic area was identified as horizontal. A total of 180 articles were further
reviewed from the selection of the top 20 highly cited articles per thematic area.

The results from the top 20 articles revealed a high research interest in the thematic
area of disaster risk reduction with almost two times higher number of citations than
the second thematic area (water). The focus of these articles is limited to floods and
landslides. The main knowledge gap was the lack of protocols and the development of
early warning systems based on EO. The results also revealed limited research in specific
EO applications for the water thematic area, which include water body monitoring through
radar altimeters and water quality parameter estimation through thermal and optical
satellite data. Also, EO research related to cultural heritage (1.4% of the total number
of studies) and marine safety and security (0.9% of the total number of studies) was
surprisingly rare. The main research interest in the thematic area of atmosphere was related
to precipitation estimates, dust, and the impact of coronavirus on air quality. The thematic
area of agriculture covered a wide range of EO applications (evapotranspiration estimation,
land suitability for agriculture, irrigation mapping, agricultural land loss, crop monitoring,
crop production, yield prediction, crop mapping, stem water potential monitoring, and
crop water footprint estimation).

The study has also identified the top authors, research organizations, and funding
agencies for the EMMENA region. Sentinel-2 data (60.8%) and Sentinel-1 data (35.4%) are the
most widely used among the Sentinel missions. Similarly, Landsat 8 (83.2%) and Landsat 7
(10.0%) are the most widely used data sources among the Landsat missions. The ongoing
development of big Earth data techniques and the increasing availability of satellite EO data
will enhance the research capabilities in the aforementioned thematic areas.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15174202/s1, Table S1: List of publications including author name,
article title, author keywords and affiliations, times cited, and DOI.

Author Contributions: Conceptualization, methodology, validation, formal analysis: M.E., S.M., K.T.
and K.N.; investigation, software, resources, data curation: M.E., E.E., K.F. (Kyriaki Fotiou), K.F.
(Konstantinos Fragkos), G.L., C.T., C.F.P., C.P., M.M. and S.N.; writing—original draft preparation,
M.E.; writing—review and editing, A.A., G.K., G.S., C.K. and D.H.; visualization, M.E. and S.M.;
supervision, D.H.; project administration, D.H.; funding acquisition, D.H. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by ‘EXCELSIOR’ project (European Union’s Horizon 2020
research and innovation programme), grant number “857510”.

Data Availability Statement: The data are contained within the article and were extracted from the
Web of Science™ database (https://www.webofscience.com/wos/woscc/basic-search, accessed on
13 March 2023).

Acknowledgments: The authors acknowledge the “EXCELSIOR”: ERATOSTHENES: Eχcellence
Research Centre for Earth Surveillance and Space-Based Monitoring of the Environment H2020
Widespread Teaming project (www.excelsior2020.eu, accessed on 13 March 2023). The “EXCELSIOR”
project has received funding from the European Union’s Horizon 2020 Research and Innovation
Programme under Grant Agreement No 857510, from the Government of the Republic of Cyprus
through the Directorate General for the European Programmes, Coordination and Development and
the Cyprus University of Technology.

https://www.mdpi.com/article/10.3390/rs15174202/s1
https://www.mdpi.com/article/10.3390/rs15174202/s1
https://www.webofscience.com/wos/woscc/basic-search
www.excelsior2020.eu


Remote Sens. 2023, 15, 4202 27 of 35

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kansakar, P.; Hossain, F. A Review of Applications of Satellite Earth Observation Data for Global Societal Benefit and Stewardship

of Planet Earth. Space Policy 2016, 36, 46–54. [CrossRef]
2. Morsy, M.; Dietrich, P.; Scholten, T.; Michaelides, S.; Borg, E.; Sherief, Y. Chapter 7—The Potential of Using Satellite-Related

Precipitation Data Sources in Arid Regions. In Precipitation Science; Michaelides, S., Ed.; Elsevier: Amsterdam, The Netherlands,
2022; pp. 201–237, ISBN 978-0-12-822973-6.

3. Morsy, M.; Michaelides, S.; Scholten, T.; Dietrich, P. Monitoring and Integrating the Changes in Vegetated Areas with the Rate of
Groundwater Use in Arid Regions. Remote Sens. 2022, 14, 5767. [CrossRef]

4. Al Sayah, M.J.; Abdallah, C.; Khouri, M.; Nedjai, R.; Darwich, T. A Framework for Climate Change Assessment in Mediterranean
Data-Sparse Watersheds Using Remote Sensing and ARIMA Modeling. Theor. Appl. Clim. 2021, 143, 639–658. [CrossRef]

5. Milewski, A.; Elkadiri, R.; Durham, M. Assessment and Comparison of TMPA Satellite Precipitation Products in Varying Climatic
and Topographic Regimes in Morocco. Remote Sens. 2015, 7, 5697–5717. [CrossRef]

6. Themistocleous, K.; Hadjimitsis, D.G.; Michaelides, S.; Neocleous, K.; Schreier, G.; Ansmann, A.; Kontoes, H.; Komodromos, G.
Excelsior: Earth Observation Opportunities for Excellence in the Emmena Region. In Proceedings of the Eighth International
Conference on Remote Sensing and Geoinformation of the Environment (RSCy2020), Paphos, Cyprus, 26 August 2020; SPIE:
Bellingham, WA, USA, 2020; Volume 11524, pp. 209–215.

7. World Bank Open Data. Available online: https://data.worldbank.org (accessed on 16 May 2023).
8. Seyfi, S.; Hallz, C.M. Cultural Heritage Tourism in the MENA: Introduction and Background. In Cultural and Heritage Tourism in

the Middle East and North Africa; Routledge: Milton, UK, 2020; ISBN 978-0-429-27906-5.
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