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Abstract: Site index and stand age are important variables in forestry. Site index describes the
growing potential at a given location, expressed as the height that trees can attain at a given age
under favorable growing conditions. It is traditionally used to classify forests in terms of future
timber yield potential. Stand age is used for the planning of management activities such as thinning
and harvest. SI has previously been predicted using remote sensing, but usually relying on either
very short time series or repeated ALS acquisitions. In this study, site index and forest stand age
were predicted from time series of interferometric TanDEM-X data spanning seven growth seasons
in a hemi-boreal forest in Remningstorp, a test site located in southern Sweden. The goal of the
study was to see how satellite-based radar time series could be used to estimate site index and stand
age. Compared to previous studies, we used a longer time series and applied a penetration depth
correction to the phase heights, thereby avoiding the need for calibration using ancillary field or ALS
data. The time series consisted of 30 TanDEM-X strip map scenes acquired between 2011 and 2018.
Established height development curves were fitted to the time series of TanDEM-X-based top heights.
This enabled simultaneous estimation of both age and site index on 91 field plots with a 10 m radius.
The RMSE of predicted SI and age were 6.9 m and 38 years for untreated plots when both SI and age
were predicted. When predicting SI and the age was known, the RMSE of the predicted SI was 4.0 m.
No significant prediction bias was observed for untreated plots, while underestimation of SI and
overestimation of age increased with the intensity of treatment.

Keywords: site index; time series; InSAR; height development curves; growth measurement; forestry;
TanDEM-X

1. Introduction

In forests, wood productivity is of interest in commercial forestry to determine eco-
nomic value and to support the planning of silvicultural treatments. Mapping of forest
productivity and age can also be useful in monitoring and modeling forest biomass (carbon
stock) and changes in this over time. Forest productivity can be expressed in terms of site
index (SI), a variable expressing the expected height of dominant trees at a reference age,
given the local conditions. In addition to being a useful tool in economic assessments,
forecasting, and planning in the commercial management of forests, large-scale mapping of
SI can be used to quantify the effects of environmental changes, such as mean temperature
changes or droughts, on the productivity of forests [1]. Such mappings can be used to make
predictions about the geographically distinct consequences of climate change.

SI can be determined based on climatic and field conditions such as precipitation,
temperature, and classification of soil strata, which is useful when no trees are present on
the site. Another way to estimate SI uses age and dominant- or top-height measurements
and is generally favored over the previous method due to its practicality, low cost, and
higher accuracy. It requires the location to have an established even-aged forest and relies
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on a strong correlation between volume growth and height growth [2]. The definitions of
top height vary, where some are based on the mean height of dominant trees, and others
on the maximum tree height, or the mean height of a certain percentage of the highest trees
in an area. In Sweden, the SI estimated from top height describes the site productivity for
the dominant species in terms of the achievable height in meters of the largest diameter
trees at a specific reference age (ASI). The top height is defined as the mean height of the
100 trees with the largest diameter at breast height per hectare. This definition of top height
is sometimes called H100, and is meant to represent the upper height of tree crowns in the
forest. Top height has successfully been estimated using different remote sensors. Examples
include estimating top height with the maximum airborne laser scanning (ALS) canopy
model height in a 10 m × 10 m window, or the maximum height in 500 m2 plots of an aerial
stereo-image-based canopy height model (CHM) [3,4].

While SI is not the most commonly estimated forest variable, it has been success-
fully predicted, often together with the related variable stand age, using a few different
approaches, sensors, and sensor combinations. Commonly stand or tree heights are es-
timated by some remote sensing techniques and compared to known height–age curves
to determine SI and age [5–11]. Véga and Onge [5] used CHMs based on historical aerial
photographs and ALS from four time points spanning a period of 58 years to predict SI
and age. Their models were estimated by minimizing mean absolute residuals to age-
height curves, where the heights were extracted from CHMs calibrated with individual
tree growth reconstruction. This method required counting tree rings on the cross-sections
of felled trees to derive correction equations between tree heights from manual CMH
interpretation and the field reconstructed heights. The procedure resulted in 2.4 m RMSE
for SI and seven years RMSE for age predictions on 400 m2 plots. Kandare et al. [6] used an
individual tree crown (ITC) approach for predicting SI in boreal forests using airborne laser
scanning (ALS) and hyperspectral data. They estimated the age, height, and diameter at
breast height of the dominant trees from ALS and hyperspectral metrics. These were then
used in age-height curves to predict SI. When predicting both SI and age, the method by
Kandare et al. achieved RMSEs of 4.3 m and 34 years, respectively. When the age from
field data was used in the prediction, the RMSE of SI predictions dropped to 1.18 m [6].
Solberg et al. used age-independent equations of top height growth and single tree ALS
data to predict SI by matching single dominant trees in repeated ALS measurements six
years apart [7]. They estimated SI values very close to field-based values for individual
sample trees (bias 0.27 m, RMSE about 2.8 m, as interpreted from a figure). Penner et al. [8]
used two successive ALS collections, acquired 13 years apart, to estimate SI with an RMSE
of 2.5 m and a bias of 0.3 m on 400 m2 field plots.

Many of the reported results are good but require access to long time series, as in
the case of [5], rely on relatively costly ALS data, usually from several years, or on local
calibration of remote sensing data or predicted attributes. Synthetic Aperture Radar (SAR)
provides a cost-efficient alternative to ALS and aerial photography that is independent of
sunlight and relatively unhindered by clouds and precipitation, thereby providing reliable
year-round coverage of large parts of the world from different spaceborne systems. These
operate in different parts of the microwave spectrum, called bands, corresponding to
different wavelengths. Shorter wavelengths, such as the X and C bands, have significant
contributions from the top part of the canopy and are, therefore, well suited for canopy
height estimation using single-pass SAR interferometry (InSAR). Sentinel-1, a C band
SAR system that provides open access data over large parts of the world, does, however,
not have single-pass capability. TanDEM-X (TerraSAR-X add-on for Digital Elevation
Measurement) is a two-satellite constellation that captures single-pass interferometric
InSAR images at X-band (wavelength 3.1 cm). It provides data over a large part of the
world and has proven itself valuable in forest variable retrieval [12,13]. Several studies
have used TanDEM-X for the retrieval of forest variables [3,14–17]. Many of these have
estimated forest heights from TanDEM-X data [3,14,17–21], and a few have investigated



Remote Sens. 2023, 15, 4195 3 of 16

height development due to deforestation, silvicultural treatments, or growth [22–24], or
used phase height development to estimate biomass and volume changes [25–27].

The use of TanDEM-X data for SI prediction has so far been limited to Persson and
Fransson [9], Wallerman et al. [10], and Persson and Fransson [11]. In these studies, simple
linear models relating TanDEM-X phase heights to ALS percentiles or Lorey’s heights
(i.e., basal area weighted mean heights) from field data were used as calibration. Wallerman
et al. [10] estimated SI when the age was provided, with an RMSE of 18.6% (corresponding
to around 6–7 m, as interpreted from a figure) on 314 m2 plots. They used TanDEM-X image
pairs from three growth seasons calibrated using ALS data. Persson and Fransson [11]
used four TanDEM-X acquisitions covering three growth seasons, calibrated using ALS
data or Lorey’s height from field data. They predicted SI with 4.4 m RMSE and age with
17.8 years RMSE on 0.5 ha plots. The need for calibration, however, hampers the scalability
of the methods, as it relies on local high-resolution ALS data or field data. Furthermore,
the usefulness of calibration data decreases with the time between data collection and the
TanDEM-X acquisition date due to forest growth and other changes. Because of this, longer
time series may often need calibration data from multiple time points.

In this study, we wanted to use a longer and denser time series of TanDEM-X acqui-
sitions than in the previous studies and simultaneously avoid the use of calibration of
the TanDEM-based heights via ancillary remote sensing or field data. Additionally, all
remote sensing studies predicting SI that we are aware of use only plots, which appear
to be unaffected by silvicultural treatments during the observation period. This study
included plots subject to different silvicultural treatments during the study period to assess
the potential effects on the predictions.

The remainder of the paper is structured as follows: Section 2 starts with a description
of the test site and field data, after which the TanDEM-X data and its processing into
TanDEM-X-based top heights are detailed. After this, established height development
curves (HDC) and how they are used to calculate SI from field-measured top height and
age are described. This is followed by a description of the method by which the SI and
age are predicted by fitting an HDC to the time series of TanDEM-X-based top heights and
how the results were evaluated. Section 3 presents the results of SI and age predictions.
Section 4 contains a discussion of the results, and finally, Section 5 concludes the paper.

2. Materials and Methods
2.1. Test Site and Field Data

The study was conducted in Remningstorp, a forest test site located in southern Swe-
den (Lat. 58◦30′N, Long. 13◦40′E), consisting of about 1200 ha of commercially managed
hemi-boreal forest. About two-thirds of the forest grows on till, a mixture of glacial debris,
with, except in old spruce stands, a field layer of herbs, blueberry (Vaccinium myrtillus
L.), and narrow-leaf grass (e.g., Deschampsia flexuosa (L.) Trin.). The main tree species are
Norway spruce (Picea abies (L.) H. Karst.), Scots pine (Pinus sylvestris L.), and birch (Betula
spp.). The rest of the forest grows on peatland, dominated by Scots pine. The landscape is
mainly flat, with mild slopes, located 120 m to 145 m above sea level.

SI was determined for 91 circular field plots with a 10 m radius in a survey carried out
in the fall of 2021. The age and height of two dominant trees per plot were measured, and
the dominant species recorded. SI was calculated from the mean age and height for each
plot. Using forest treatment records and inspection of biannual aerial orthophotos, the plots
were classified into 2 clear-cut plots, 45 thinned plots, 7 pre-commercially thinned plots, and
26 untreated plots. Among the 91 plots, 11 plots were not covered by the available treatment
records nor determined clear-cut in the inspection of orthophotos and, therefore, referred to
as “undocumented”. While clear-cuts were evident in the available orthophotos, thinnings
were difficult to detect, and it is likely that a significant portion of these undocumented
plots were, in fact, thinned or pre-commercially thinned. Table 1. shows the mean and
range of SI and the field-measured variables for each treatment group.
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Table 1. Summary statistics on the 10 m radius field plots used in the study.

Treatment Top Height [m]
Min/Mean/Max

Age [Years]
Min/Mean/Max

SI
Min/Mean/Max n

Untreated 14/25/32 25/52/140 13/34/45 26
Pre-commercially thinned 14/20/28 15/25/50 27/35/44 7

Thinned 12/21/32 20/35/105 16/38/50 45
Clear-cut 25/26/28 60/70/80 30/30/30 2

Undocumented 15/24/29 25/49/96 16/34/40 11

SI values based on a previous field survey in 2014 were also available for 51 of the
plots. Since the inherent productive potential of a specific site is not expected to change
significantly in seven years, this dataset provided a means to characterize the uncertainty in
the reference data. For these 51 plots, the variation in terms of Root Mean Square Deviation
(RMSD) and bias, calculated according to Equations (1) and (2), between the 2021 and 2014
surveys of SI was 3.3 m and 2.0 m, respectively.

RMSD =

√√√√∑N
i=1

(
SI2021

i − SI2014
i

)2

N
(1)

bias =
∑N

i=1

(
SI2021

i − SI2014
i

)
N

(2)

2.2. SAR Data

Thirty TanDEM-X scenes were acquired in a bi-static configuration over Remningstorp
between 11 August 2013 and 24 September 2018. The scenes were acquired in strip-map
mode and included a vertical transmit/receive (VV) polarization, acquired either as a single
polarization or as a single channel from a dual-polarization scene. The bandwidths were
100 MHz or 150 MHz, respectively. A single polarization was chosen to avoid polarization-
dependent systematic differences in phase heights, and the VV polarization specifically
was chosen because it provided the best temporal coverage of the time period under study.
Furthermore, using meteorological records, only acquisitions from dates preceded by a
three-day average temperature of above 5 ◦C were included since freezing temperatures
severely affect the observed radar phase heights from vegetation. The height of ambiguity,
HoA, ranged between 43 m and 100 m, but most scenes were acquired with a HoA between
50 m and 65 m. The incidence angles ranged from 19◦ to 40◦.

The data were delivered in the Coregistered Single look Slant range Complex (CoSSC)
format. A complex interferogram was computed with 5 × 5 spatial averaging in range and
azimuth. The interferogram was flattened with respect to earth curvature, and Goldstein
filtered [28]. The flattened phase was unwrapped and converted to phase height by
scaling with the wavenumber, and the interferometric coherence was estimated from the
flattened interferogram using a coherence window of 3 × 3 pixels. Finally, the scenes were
interpolated to a ground resolution of 10 m × 10 m. The estimated coherence was corrected
for decreasing signal-to-noise ratio [3,15,17].

The radar signal penetrates significantly into the canopy, and for boreal coniferous
forests, this leads to a negative elevation bias of the canopy heights that can sometimes
be as large as 10–20 m [3]. In [29], a correction of this bias was proposed, which has
successfully been evaluated on TanDEM-X data over temperate and hemi-boreal forests [24,
30]. According to [29], the canopy height bias is given by

∆h =
|HoA|

2π
tan−1

(√
|γ|−2 − 1

)
, (3)
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where γ is the volume coherence, and HoA is the height of ambiguity. The InSAR phase
center heights in the time series were corrected for elevation bias by calculating ∆h on pixel
level and correcting the height values to produce InSAR-based canopy heights. A thorough
derivation of (3) is given in [29]. As the bias correction assumes penetration into an infinite
volume, it is not theoretically valid when the signal has significant ground contributions,
and as a rule of thumb, the canopy height should be at least twice the bias correction. The
correction was applied to all plots, although some field plots with low canopy heights
or sparse forests could potentially violate this criterion. The ground contributions to the
pixels with the highest phase heights on each plot are generally assumed to be small, and
as described in Section 2.3, only the highest InSAR canopy heights on each plot influence
the estimated top height in the method applied. However, ground contributions are likely
dominant in clear-cut plots after treatment, but these were nevertheless corrected using
Equation (3).

Each acquisition was assigned an integer representing its growth period based on the
date of acquisition. A growth period was defined to start on 15 June, approximating the
halfway point of the actual growth period, and last for one year. The earliest acquisition
date was assigned to growth period 0, and the latest acquisitions were assigned to growth
period 5.

2.3. Top Height Estimation

For each date, the corrected phase height values of pixels covered or intersected by a
polygon defining the field plot region were extracted. In order to estimate the top height
from these pixels, the 90th height percentile was calculated for each plot and date. Different
percentiles were investigated, and generally, the higher percentiles correlated better with
field-measured top heights. The 90th height percentile will hereafter be referred to simply
as TanDEM-X top height.

2.4. Site Index

Established HDCs for common Swedish tree species, as developed in [31,32] and
summarized in [33], describe the expected top height H2 at stand age A2, given a measured
top height H1 at stand age A1:

H2(H1, A1, A2) =
H1 + d + r(H1, A1)

2 + 4βAb2
2

H1−d+r(H1,A1)

, (4)

r(H1, A1) =

√
(H1 − d)2 + 4βH1 A1

b2 , (5)

d = βAb2
SI , (6)

where β and b2 are previously determined tree species-specific fixed parameters, and ASI is
the reference age. Equation (4) is commonly used to calculate SI given field measurements
of top height and age, as was done with the field data in this study. By setting A2 to the
preferred SI reference age and H1 and A1 to the measured height and age, H2 equals the SI.
The HDCs were developed from multiple measurements on sets of field plots in even-aged
forests, the predominant forest type in Sweden, and are therefore valid in such forests.

If H1 is set to a specific SI value instead of a measured height and A1 is set to the
corresponding reference age, H2 gives the expected top height at any age A2. For illustration,
the resulting HDCs of Norway spruce for a few values of SI are shown in Figure 1.



Remote Sens. 2023, 15, 4195 6 of 16Remote Sens. 2023, 15, 4195 6 of 17 
 

 

 
Figure 1. HDC describing the top height growth of Norway spruce. 

2.5. Site Index Estimation 
Setting H1 and A1 in Equation (4) to SI and the corresponding reference age, respec-

tively, and substituting A0 + GP (growth period) for A1, allows us to express TanDEM-X 
top height H as a function of SI and GP, explicitly 𝐻(𝐴 + 𝐺𝑃, 𝑆𝐼) = 𝑆𝐼 + 𝑑 + 𝑟(𝑆𝐼, 𝐴 )2 + 4𝛽(𝐴 + 𝐺𝑃)𝑆𝐼 − 𝑑 + 𝑟(𝑆𝐼, 𝐴 ). (7)

SI and A0 were determined by applying a weighted non-linear least squares regres-
sion of Equation (7) to the time series of TanDEM-X top heights, leaving initial age (age at 
the time of the first TanDEM-X measurement, A0) and/or SI as parameters. The function 
was fit to each field plot using dominant species information from the field data to select 
the correct fixed parameters, and two different prediction cases were applied; (a) estimates 
of both SI and A0 for each plot, and (b) estimates of only SI, assuming that the initial age 
is known. In case (b), A0 in the fitting was supplied from the field data. Figure 2 illustrates 
prediction case (a). In this figure, the process of fitting A0, can be considered as a transla-
tion in time of the time series of TanDEM-X top heights to find the optimal fit, while the 
fitting of SI corresponds to the choice of optimal curve out of the family defined by Equa-
tion (7). 

Figure 1. HDC describing the top height growth of Norway spruce.

2.5. Site Index Estimation

Setting H1 and A1 in Equation (4) to SI and the corresponding reference age, respec-
tively, and substituting A0 + GP (growth period) for A1, allows us to express TanDEM-X
top height H as a function of SI and GP, explicitly

H(A0 + GP, SI) =
SI + d + r(SI, ASI)

2 + 4β(A0+GP)b2

SI−d+r(SI,ASI)

. (7)

SI and A0 were determined by applying a weighted non-linear least squares regression
of Equation (7) to the time series of TanDEM-X top heights, leaving initial age (age at the
time of the first TanDEM-X measurement, A0) and/or SI as parameters. The function was
fit to each field plot using dominant species information from the field data to select the
correct fixed parameters, and two different prediction cases were applied; (a) estimates of
both SI and A0 for each plot, and (b) estimates of only SI, assuming that the initial age is
known. In case (b), A0 in the fitting was supplied from the field data. Figure 2 illustrates
prediction case (a). In this figure, the process of fitting A0, can be considered as a translation
in time of the time series of TanDEM-X top heights to find the optimal fit, while the fitting
of SI corresponds to the choice of optimal curve out of the family defined by Equation (7).

The least squares regression was performed using the nls function from the stats
package of the open-source R programming language [34]. By using the port algorithm, the
solver utilized an implementation of the nl2sol algorithm [35]. The SI and A0 (in prediction
case (a)) were initialized to 25 and 75 and constrained to the intervals [4, 60] and [4, 200],
respectively. This algorithm was chosen because of the possibility of setting bounds for the
parameters. Otherwise, the algorithm tended to diverge or produce implausible parameter
values for plots where TanDEM-X phase heights decreased over time. In case the fitting
did not converge, it was restarted and initialized using the parameter values obtained in
the non-converging fit.
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as horizontal translation of the time series of data points, while the fitting of SI corresponds to the
choice of curve.

The uncertainty of the InSAR phase height is, up to a critical value, roughly inversely
proportional to the interferometric baseline [36] and hence proportional to HoA. Because
of this, scenes with a baseline below, or equally an HoA above, some threshold value
are often omitted in pursuit of high precision. In order to account for the HoA-related
uncertainty without sacrificing temporal resolution, each observation was weighted in the
fitting procedure with the reciprocal of HoA.

The SI and A0 predicted by parameter estimation were visually inspected via plots
of the fitted HDC alongside the TanDEM-X top heights and the HDC expected from
the field-data-based SI and age. The quality of predictions of A0 and SI were evaluated
by comparisons with the corresponding field-data-based values, and prediction results
were further visually evaluated through plots to investigate possible correlations between
prediction errors and SI, stand age, species, or treatment groups. The Root Mean Square
Error (RMSE) and bias were calculated for each treatment group k as

RMSEk =

√
∑i=nk

i=1 (ŷi − yi)
2

nk
, and (8)

biask =
∑i=nk

i=1 (ŷi − yi)

nk
, (9)

where ŷi is the ith prediction, yi the corresponding field data value, and nk is the number of
field plots in group k. Additionally, the coefficient of determination between predictions
and reference values was calculated.

3. Results

In both prediction cases, the HDC fitting resulted in convergent solutions for all
91 field plots. For the vast majority of plots, a convergent solution was computed from the
first initialization, but for a handful of plots, a re-initialization was required, as described
in Section 2.5.
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3.1. Predicting Both SI and Stand Age

In prediction case (a), when predicting both SI and A0, the RMSEs and biases (as
defined in Equations (8) and (9)) tended to increase with the intensity (in terms of expected
relative biomass reduction) of the treatment. Table 2 shows the evaluation results for
this case. For the untreated plots, the predicted SI had an RMSE of 6.9 m. The RMSE of
pre-commercially thinned plots was 9.5 m, increasing to 16.1 m for the thinned group. The
clear-cut group, however, had a slightly lower RMSE of 13.2 m.

Table 2. Treatment-wise summary statistics of SI and age predictions from HDC fitting to time series
of TanDEM-X phase heights. P-c thinned = Pre-commercially thinned.

Treatment SI RMSE
[m] SI R2 SI Bias

[m]
Age RMSE

[Years] Age R2 Age Bias
[Years] n

Untreated 6.9 0.46 −1.6 38 0.406 9.6 26
P-c thinned 9.5 0.24 −7.8 22 0.321 11.9 7

Thinned 16.1 0.06 −12.6 82 0.015 52.5 45
Clear-cut 13.2 - −13.2 137 - 136.8 2

The coefficient of determination between predicted and reference SI was 0.46 for the
untreated plots and decreased to 0.24 for the pre-commercially thinned plots. It was very
low, 0.06, for the thinned plots. R2 of the clear-cut plots is not reported, as it yields no
information with only two observations. A plot of the field measured vs. predicted SI is
shown in Figure 3.

Similarly, the magnitude of the biases of predicted SI increased with the relative
intensity of the treatment, from a bias of −1.6 m for the untreated group to −7.8 m for
the pre-commercially thinned group, −12.6 m for the thinned group, and −13.2 m for the
clear-cut group. However, only the biases for the thinned and pre-commercially thinned
plots were significant at the 95% confidence level (Table 2 and Figure 4).

The predicted initial age A0 had an RMSE of 38 years for the untreated group, 22 years
for the pre-commercially thinned group, and then increased with the intensity of treatment
to 82 for the thinned group and 137 years for the clear-cut plots.

The R2 between predicted and reference age are similar to those for SI, 0.4 for untreated
plots, and decreasing with treatment intensity. The R2 of the clear-cut plots is not reported,
as it yields no information for only two observations.

The bias of predicted initial age increased in magnitude with the intensity of treatment,
with a more intense treatment having a larger positive age prediction bias, going from
9.6 years for the untreated group to 137 years for the clear-cut plots. However, only the age
prediction biases for thinned and clear-cut plots were significant at a 95% confidence level
(Table 2 and Figure 5).

3.2. Predicting SI Assuming Known Age

In prediction case (b), when predicting only SI, using the field-measured age in the
HDC fitting, the precision was better than for case (a), with RMSEs between 2.2 m and
5.3 m for all treatment groups. The biases were also smaller for every treatment, all between
−2 m and 0.5 m (Table 3 and Figure 6. Moreover, none of the biases were statistically
significant at a 95% confidence level. The coefficients of determination, R2, between true
and predicted SI were relatively high, with R2 values between 0.6 and 0.8. A plot of the
field measured vs. predicted SI is shown in Figure 7.

An example of a time series of TanDEM-X top heights for an untreated plot superim-
posed with the fitted HDC and the reference-data-based HDC is shown in Figure 8. The
size of a point representing TanDEM-X top height observation is proportional to its weight
(reciprocal of HoA) in the regression. In this example, the slope is slightly overestimated,
leading to an overestimation of SI and an underestimation of stand age.
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Table 3. Treatment-wise summary statistics of SI predictions assuming known age.

Treatment SI RMSE
[m] SI R2 SI Bias

[m] n

Untreated 4.0 0.80 −0.8 26
P-c thinned 5.3 0.63 −1.21 7

Thinned 3.3 0.73 0.47 45
Clear-cut 2.2 — −1.99 2

3.3. Error Characteristics

A clear correlation between severe underestimations of SI and overestimations of age
was observed, as can be deduced from Table 2, and is perhaps even more clear in Figure 9,
which shows predicted vs. reference SI, colored by the age prediction error. For both
prediction cases, plots of prediction errors against reference age (in case (a)), reference top
height and averaged height residuals from HDC fits were inspected to identify additional
correlations, but none were found.
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Figure 7. Predicted vs. field measured SI, using field measured ages in the fitting. Colored by
treatment. In the bottom left panel, thinned plots are shown in blue, while clear-cut plots are shown
in red.
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4. Discussion

The TanDEM-X top height, i.e., the 90th height percentile of bias-corrected phase
heights, captured the canopy top height reasonably well. This was evidenced by (1) the
relatively small and statistically insignificant prediction biases on untreated plots in case
(a), when predicting both SI and age, and (2) the very low RMSE and bias of the predictions
of SI in case (b), when age was provided from field data.

The RMSE of 4.0 m for prediction case (b) is significantly lower than the RMSE of
6–7 m in [10], which used ALS-calibrated TanDEM-X heights and similarly predicted only
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SI on 10 m radius plots. In [10], the prediction of both SI and age using TanDEM-X data
(corresponding to case (a) in this paper) was unsuccessful due to divergent solutions.

The RMSE for untreated plots in prediction case (a), 6.9 m, is larger than some previous
studies [5,7–9,11], but they cannot be directly compared, as they differ in SI reference ages
and/or the area of evaluation units. For example, this study used 10 m radius plots, while
in [11], reporting 4.4 m and 17.8-year RMSEs, the plots were 16 times larger. In other
studies, such as [5] (2.4 m RMSE) and [7] (about 2.8 m RMSE), the reported SI predictions
differed in species and the reference age (50 years in [5], 40 years in [7]) at which the SI
height is defined, due to local functions and practices.

Silvicultural treatments, from pre-commercial thinning to clear-cutting, lead to un-
derestimation of the slope of the HDC, which in turn leads to underestimation of SI and
overestimation of age. This tendency increased with the intensity of treatment.

We did not observe systematically larger prediction errors for mature stands, as
observed in, for example, [5], where predictions based on measurement periods capturing
later stand development stages with lower height growth rates produced more uncertain
estimates of both SI and age. As the growth rate decreases with age, the importance
of absolute height estimates increases (Figure 2). The absence of increased prediction
uncertainty for older untreated plots further indicates that the absolute top height is
estimated well by the TanDEM-X top height.

Some of the uncertainty in predictions is explained by edge effects. From inspection of
orthophotos, we found that plots with large deviations between predictions and reference
values were often located close to, or even across, stand boundaries or roads since the plot
locations in the field surveys were distributed in a systematic grid. During the analyses, it
was found that for such plots, the measured phase heights could be drastically different
depending on look direction, which caused us to use only acquisitions from a descending
orbit. This maximized the duration and resolution of the time series. Removal of such edge
plots would likely have led to lower RMSEs in the predictions, but they were nevertheless
kept in order to better reflect realistic results with a minimum amount of manual interven-
tion. Because of this, it is also reasonable to expect higher precision for larger prediction
units, where boundary effects have a smaller impact on the prediction or can be dealt with,
for example, by using buffer zones.

Given the small prediction biases observed for untreated plots in case (a) and the
apparent overall precision of top height estimates, we expect even longer time series to
increase the quality of predictions of both SI and age significantly from the results for
prediction case (a) in untreated plots. Longer time series may also mitigate the underestima-
tion of slope resulting from treatments if the influence of such treatments on the TanDEM-X
top height is transient in nature. Future studies should investigate the inclusion of multiple
polarizations as a way to further increase usable observations.

Further, the prediction of SI and age via weighted non-linear regression readily accom-
modates the inclusion of other height data sources since top heights based on any source
could simply be added to the time series and weighted according to the uncertainty of the
source. Alternatively, since the SI prediction quality was shown to be much better assuming
known age, the method could also be combined with other data sources by supplying
age from field data or predictions from photogrammetric time series, as in [37]. In this
study, the dominant species was assumed to be known, but in a practical application, the
dominant species could also be predicted based on other data sources.

It should be noted that although the method proposed does not use any ancillary field
data or remote sensing data such as ALS for calibration of the TanDEM-X data, it does
require an accurate DTM in order to obtain reliable canopy heights from phase heights.
This requirement is fulfilled in a rapidly increasing part of the world. Additionally, the
HDCs used are developed using data from even-aged stands, and their applicability in
other types of forest should be further investigated.

As the method presented does not rely on local calibration and easily accommodates
and benefits from additional TanDEM-X scenes that extend or increase the temporal resolu-
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tion of the prediction period, it is suited for producing wall-to-wall estimates over large
areas of forest.

5. Conclusions

SI, the expected top height at some reference age, and stand age are important variables
in forest management and forecasting. This study presented and evaluated a method of
predicting SI and age using only time series of TanDEM-X data and a DTM.

The method consists of fitting established HDC to the time series, using the 90th
height percentile of canopy penetration corrected phase heights as a surrogate for forest top
heights. Predicted SI and age were retrieved as parameter values minimizing the squared
top height residuals.

SI and age could be unbiasedly predicted for untreated plots, and the RMSE of
predictions is likely to decrease with the length and temporal resolution of the time series
available. When the stand age was known, the SI was predicted with an RMSE comparable
to that of field-based measurements.

The results for treated plots indicate that the RMSE and bias of predictions increase
with the intensity of silvicultural treatments, with a larger relative decrease in stem volume
on average leading to a larger underestimation of SI and an overestimation of stand age
and a higher RMSE for both variables.

In general, the results demonstrate viability for large-scale wall-to-wall mapping of
SI using time series of TanDEM-X data without the need for ancillary data for height
calibration. Further studies should investigate the use of multiple polarizations and both
orbit directions to increase the length and temporal density of useful time series in an effort
to further increase the obtained prediction quality.
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