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Abstract: The 6 February 2023 earthquake doublet (Mw 7.7 and Mw 7.6) that occurred on the East
Anatolian Fault Zone (EAFZ) triggered a significant amount of soil liquefaction phenomena in SE
Türkiye and NW Syria. The great areal extent of the affected area and the necessity of rapid response
led to the adoption and improvement of a workflow for mapping liquefaction phenomena based on
remote sensing data. Using satellite imagery, we identified 1850 sites with liquefaction manifestation
and lateral spreading deformation. We acquired a thorough map of earthquake-triggered liquefaction
based on visual mapping with optical satellite imagery (high and very high-resolution) and the aid
of radar satellite imagery and interferometry. The majority of sites are found along meandering
sections of river valleys, coastal plains, drained lakes, swamps, and lacustrine basins along the East
Anatolian Fault, highlighting once again the influence of geomorphology/surficial geology on the
distribution of liquefaction phenomena. A total of 95% of the liquefaction occurrences were mapped
within 25 km from the surface trace of the fault, confirming the distance from fault rupture as a more
effective tool for predicting the distribution of liquefaction than epicentral distance. Thus, taking into
consideration the rapid documentation of these phenomena without the limitations in terms of time,
cost, and accessibility of the field investigation techniques, this desktop-based approach can result in
a rapid and comprehensive map of liquefaction from a strong earthquake, and can also be used as
a future guide for subsequent field investigations for liquefaction hazard mapping.

Keywords: liquefaction; lateral spreading; Turkey–Syria earthquakes; satellite imagery;
interferometry; geomorphology

1. Introduction

Soil liquefaction occurs when a strong ground shaking changes the arrangement of
saturated silty and fine sandy soil particles and increases the pore water pressure [1–3].
The consequences of liquefaction include the ejection of a mixture of water and sand
at the ground surface resulting in a ground surface subsidence, and lateral spreading
phenomena. The recent earthquake-induced liquefaction phenomena, triggered by the
2010–2011 Canterbury earthquake sequence in New Zealand [4,5] and the 2012 Emilia
earthquake sequences in Italy [6,7] indicated that liquefaction can be the major cause of
severe economic losses affecting the resilience of the community.

Documentation of liquefaction case histories is one of the most important steps for
understanding the mechanism of liquefaction triggering and has significantly contributed
to the mitigation of the liquefaction-induced failure models [8,9]. Rapid estimates of the
effects of an earthquake can help improve emergency response and minimize induced
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casualties [10]. Post-earthquake liquefaction data collection traditionally relies on field
investigation. However, in cases of large seismic events, field-based mapping is less
efficient in terms of time and cost, where the liquefaction area is too extended and can
be sporadically due to the inaccessibility of some locations [11]. Furthermore, the short
lifespan of surface liquefaction manifestations holds back their in situ detection and requires
immediate response from the reconnaissance team. In order to establish a site investigation
plan and improve the efficiency and impact of field reconnaissance trips, remote sensing
techniques are applied to preliminary document the liquefaction sites [12].

Remote sensing techniques range from simple visual/manual classification methods to
semi-automated thematic classification and change detection techniques [13]. Liquefaction
can be identified at a regional scale through optical and Synthetic Aperture Radar (SAR)
satellite imagery or at a site-specific level using aerial imagery from UAVs. Optical data
analysis provides a two-dimensional image of the affected area after the earthquake, which
can be used to document the spatial distribution of phenomena across a region. On the other
hand, SAR data can be acquired regardless of the sun illumination and cloud coverage and
allow analytical techniques such as radar interferometry (InSAR). Characteristic examples
of using remote sensing tools to detect liquefaction-induced surface disruption are the
Haiti 2010 [14], Tohoku, Japan 2011 [15], Christchurch, New Zealand 2010–2011 [16],
Oklahoma, US 2011 [17] and Damasi, Greece 2021 [12] events where ejecta, craters, fissures,
and lateral spreading phenomena were mapped by visually looking at the satellite and
aerial imageries.

Moreover, an approach that is proposed for the detection of liquefaction manifestations
is one that is based on the automatic comparison of the pre- and post-event imagery, measur-
ing the differences based on specific indicators of soil moisture (multi-temporal change de-
tection process). After the Bhuj 2001 earthquake in India, Ramakrishnan et al. [18] used this
method to detect the liquefaction phenomena by combining different spectral bands from
Indian Remote Sensing Satellite (IRS-1C) and using the indicator of wetness index for soil
moisture. In addition, Oommen et al. [11] related the surficial manifestations of liquefaction
phenomena with the changes in temperature and water content of the Earth’s surface, using
pre- and post-Landsat imagery. Furthermore, the detection of liquefaction phenomena
using Synthetic Aperture Radar (SAR) images is mainly based on changes in coherence val-
ues between pre- and post-earthquake images by Papathanassiou et al. [12]. Without being
affected by atmospheric conditions, SAR is highly sensitive to various surface changes. As
was shown by recent case studies, liquefied sites/areas identified by SAR techniques are in
good agreement with the ones delineated by traditional field-based methods [15,16,19,20].

The goal of this study is twofold: to detect the liquefaction manifestations that were
widespread along the rupture zone of the February events and to preliminary assess the
correlation of geomorphological features with location and clusters of liquefaction phenom-
ena. The latter issue was initially investigated by Youd and Perkins [21] who proposed
the relevant criteria of liquefaction susceptibility, while many researchers recently high-
lighted this strong correlation concluding that liquefaction manifestations are not randomly
distributed at the epicentral area, but are mainly concentrated at specific depositional
environments [22–29]. In order to achieve this, an extensive remote survey took place, pre-
liminarily focusing on areas close to the earthquake rupture, with low relief values, covered
by Holocene and Quaternary formations of fluvial, lacustrine, and coastal sediments. As
a result, a map of liquefaction surface manifestations, i.e., ejecta and lateral spreading sites
are presented and discussed in the relevant sections at the end of this paper.

1.1. The 6 February 2023 Türkiye/Syria Earthquake Doublet

A large number of destructive earthquakes struck EAFZ in the last 2000 years due to the
dynamic motion of relative plates with slip rates of 10 ± 1 mm/yr [30]. According to seismic
catalogs [31–35], at least four historical earthquakes were related to secondary effects such as
ground openings, sand ejections, and river slumping, causing severe distraction both to the
urban and free field areas. The first three earthquakes occurred near Antioch, with the oldest
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event dated 14 September 458 AD (Ms 6.5) and the other two on 29 March 526 AD (Ms 6.8)
and 29 November 1114 AD (Ms 6.8). On 13 August 1822, a Ms 7.4 earthquake occurred in
Southeastern Anatolia and damaged Gaziantep and Antakya in Turkey and Aleppo and
Han Sheikhun in Northwestern Syria. Most significant instrumental earthquakes along
the EAFZ include the 1964 Malatya Ms 5.7, the 1971 Bingol Ms 6.9, the 1986 Dogansehir,
Malatya Ms 5.9, the 2003 Bingol Mw 6.3, and the 2004 Sivrice Mw 5.5 one. The 2010
Kovancilar, Elazig earthquake of Mw 6.1 was triggered by the activation of a ~30 km
fault at the northeastern extent of the EAFZ [36], while the last largest event before the
6 February 2023 was the 2020 Mw 6.8 Sivrice earthquake that ruptured around 45 km
of the EAFZ [37–39]. Other major earthquakes include the 1975 Lice Ms 6.7 and 1992
Erzincan Mw 6.7 events which were accompanied by many significant aftershocks on the
highly stressed segments of nearby North Anatolian Fault Zone and Southeast Anatolian
Thrust Zone.

The first event Mw 7.7 occurred on 6 February 2023 at 04:17 (01:17 GMT) (AFAD)
at Türkiye’s Pazarcık district in Kahramanmaraş with a focal depth of 8.6 km. The co-
ordinates of the earthquake’s epicenter are N37.288◦, E37.043◦ (AFAD). The initial event
occurred on a splay fault structure below Narli Basin near Pazarcik, and then the rupture
expanded across the main EAFZ [40,41]. The rupture speed of this event was calculated
to be 3.2–3.3 km/s [40,42] with surface displacements on the order of 3–7 m. The spatial
distribution of aftershocks (Figure 1) indicates that the earthquake rupture reached Antakya
(Hatay) in the south and come to an end in the north at the Pütürge segment, close to
the Doğanyol, Elazığ earthquake rupture of 2020 [38,39]. The total rupture length was
measured as 310–350 km [43–45] with a surface rupture mapped length of 270 km [46].
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A second major event (Elbistan earthquake) took place a few hours later at 13:24
(10:24 GMT) in Ekinözü, Kahramanmaraş with Mw 7.6 and a focal depth of 7.0 km (AFAD).
The epicenter of the second earthquake was located at N38.089◦, E37.239◦ (AFAD), close to
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the mapped trace of the Sürgü Fault (SF). The rupture speed for this event was calculated
at 2.5–2.8 km/s [40,42]. The length of the second rupture was 150–170 km with the surface
displacements on the order of 2–8 m [44,45]. Analyses of teleseismic data for both cases
revealed almost pure left-lateral strike-slip motion on nearly vertical fault, while the
two earthquakes were considered as a “twin”, due to their comparable size and the different
fault structures they were detected [40].

The earthquakes affected the provinces of Kahramanmaraş, Adıyaman, Hatay, Os-
maniye, Gaziantep, Kilis, Şanlıurfa, Diyarbakır, Malatya, Adana, and Elazığ, causing more
than 50,000 human casualties in Turkey and Syria. Several segments of transportation and
energy infrastructures were severely damaged [46,47]. The number of collapsed buildings
or the ones that must be demolished reached 156,000 [48].

Extensive earthquake-induced phenomena were documented such as surface ruptures
(primary effects) and liquefaction, rockfalls, and landslides (secondary effects). Among
these effects, surface ruptures and soil liquefaction were the predominant phenomena that
caused failures both in free fields and in manmade environments. An impressive length of
primary surface fault ruptures was documented shortly after the earthquakes, along the
ruptured segments of EAFZ [49–52]. Major rockfalls and landslides were detected in the
area of Adıyaman and Islahiye (Fevzipaşa train station in Gaziantep), where rolling boul-
ders caused damage to the railroad and road network. Furthermore, extensive liquefaction
was observed at the shores of lakes in Gölbaşı (Adıyaman), in the İskenderun Port wharf
area, and in Antakya near the Asi River [49].

1.2. Geological Setting

The epicenters of the two strong earthquakes were recorded in the East Anatolian
Fault Zone (EAFZ), one of the major active tectonic structures of the Eastern Mediterranean
region. The northeast–southwest trending EAFZ constitutes the 580 km long southeast-
ern boundary of the westward-moving Anatolian Block [53,54] and is associated with
frequent shallow seismicity in the top ~20–25 km of the crust and left-lateral strike-slip
type tectonism [38,39,55,56].

As the East Anatolian Fault Zone continues to the southwest, it is divided into several
distinct geometric segments based on fault step-overs, jogs, or changes in fault strike
comprising different pull-apart basins and uplift zones rather than one continuous surface
through fracture [54,57–60]. The main southern EAF strand extends from Karliova to
Antakya and links the Dead Sea Fault Zone (DSFZ) and the Cyprus Arc (CA) around
the Amik triple junction. It consists of seven fault segments, namely from NE to SW as
Karliova, Ilica, Palu, Pütürge, Erkenek, Pazarcik and Amanos Fault segments. The 350 km
long northern strand is forming between Çelikhan and the Gulf of Iskenderun, connecting
the Sürgü–Misis Fault system (SMF) with Kyrenia–Misis Fault Zone (KMF) [54,60,61].

The ruptured southern part of the main strand of the EAFZ is formed by Erkenek,
Pazarcik and Amanos Fault segments. Following a left-lateral strike-slip movement, the
fault dissects mountainous terrain and valley slopes westwards, with Late Pleistocene
and Holocene sediments concentrated close to Çelikhan and in Gölbaşı pull-apart valley.
Pazarcik segment extends between Gölbaşı and Türkoğlu releasing stepovers covered by
Holocene and Quaternary deposits. The Amanos Fault segment begins at Lake Gavur as
Nurdağı section and ends in İslahiye depression filled with Quaternary alluvial deposits
and basaltic lavas. Continuing from the Nurdağı segment, the Hassa Fault joins the area
between İslahiye releasing bend and Demrek restraining stepover, while the last section
of Kirikhan Fault terminates near Topboğazı. Through these three fault sections of 115
km in length, the Amanos segment transects basement rocks, Quaternary basalts, and
alluvial deposits [54].

In the northern strand of the EAFZ, west of Çelikhan, the Sürgü segment traverses
through a valley created by a 17 km long shutter ridge, covered by alluvial deposits. Then
the fault continues for 20 km westward along the southern branch of the Sürgü River Valley,
where tributaries and intervening ridges are systematically offset and finally merge in the
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Nurhak area. The Çardak segment on the other side joins the area between the Nurhak
and the Göksun and bifurcates into two sections, the eastern and the western separated by
a 500 m wide stepover [54].

Karasu Valley forms an NNE-trending topographic depression rising from <100 m in
the south near Antakya to almost 500 m altitude in the north near Kahramanmaras [62].
It is bounded to the west by the southernmost tip of EAF, Amanos Fault, and to the east
by the northernmost segment of DSF, Yesemek Fault. Both marginal faults are left-lateral
strike-slip and overlap each other with a left stepover along the trough. The Karasu River
flows through basaltic and alluvial formations: the first section concludes the NW Saglik
and NE Narli Plains, which are drained by the Aksu River and are separated by a hilly
E–W trending landscape. The middle part of the Karasu trough is a narrow hilly corridor
of ophiolitic rocks, bordered by Quaternary lavas. The last and southern section includes
the Amik Basin and Orontes (Asi) River Valley, close to the Syrian border.

The majority of Holocene and Quaternary sediments are found in pull-apart and
extensional basins along the main strands of EAFZ (Figure 2). These consist mainly of
the Holocene riverbed, floodplain, marsh, lacustrine and coastal plain deposits, Holocene
and Quaternary fans, and Quaternary river terraces and volcanics. Under favorable condi-
tions, such as strong ground motion and elevated groundwater surfaces, many of these
unconsolidated sediments are susceptible to liquefaction.
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Figure 2. Active fault map of Eastern Anatolia showing the East Anatolia Fault segments (black
lines, from [54]). Holocene and Quaternary deposits from [63]. Inset box at lower right shows the
regional tectonic setting modified after [64]. KFS: Karliova Fault segment, IFS: Ilica Fault segment,
PaFS: Palu Fault segment, DSFZ: Dead Sea Fault Zone, CA: Cyprus Arc. PFS: Pütürge Fault seg-
ment, EFS: Erkenek Fault segment, PAFS: Pazarcik Fault segments, AFS: Amanos Fault segments,
NFZ: Narli Fault zone, YF: Yesemek Fault, SUFS: Sürgü Fault segment, CAFS: Çardak Fault segment,
SFS: Savrun Fault segment, EFZ: Enginek Fault zone, TFS: Toprakkale Fault segment, KFS: Karataş
Fault segment, MFZ: Maraş Fault zone, DIFZ: Düziçi–İskenderun Fault zone.
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2. Materials and Methods
2.1. Data

As has been previously mentioned, one of the goals of this study is to delineate within
a short period after the earthquake’s occurrence, the manifestations of possible liquefaction
based on desktop (remote survey) studies. In order to achieve this, a methodology proposed
by [12] was applied. In particular, the studies that must be performed during a post-
earthquake survey are separated into phase I and phase II. The first phase is related to
remote survey studies, realized a few hours or a few days after the occurrence of the
mainshock, aiming to (i) preliminary assess the likely liquefaction areas based on the
empirical relationships correlating the earthquake magnitude to the distance of liquefaction
surface manifestations, (ii) collect basic information considering historical liquefaction
occurrences and geology/geomorphology and (iii) reveal the extent of liquefaction areas
based on pre- and post-event satellite imageries and associated interferograms. Having
detected the liquefaction zones, the second phase (phase II) can be realized, consisting of
a field-based reconnaissance survey including ground-truthing techniques.

2.1.1. Optical Satellite Imagery

For identifying and mapping liquefaction manifestations from the 6 February 2023
earthquakes, we used mostly optical satellite imagery that was acquired in the first days
and up to four weeks after the event (Figure 3).
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Copernicus Sentinel-2 multispectral imagery with an acquisition swath of 290 km and
10 m spatial resolution (for red, blue, green, and near-infrared bands) offered a suitable
overview of the affected area. While the resolution is not optimal, the coverage of individual
acquisitions and frequent revisits (3–5 days) can provide a rapid dataset to identify major
manifestations of liquefaction-related phenomena. We used Sentinel-2 images as the first
step in identifying sites of interest. Flooding of the plains and the upper course of Orontes
River Valley in the south, near Antakya (Figure S1), and snow coverage of the northern areas
prohibited the use of semi-automated methods for liquefaction mapping, and only visual
mapping was performed. Water extruded from craters or fissures and saturated liquefaction
ejecta can be identified by utilizing near-infrared and short-wave infrared bands of Sentinel-
2 as surface moisture and water. But the presence of flood water and snow makes the
distinction between flood-related and liquefaction-related water hard to distinguish; thus,
we avoided the use of multi-spectral band ratios and pseudo-color composites to identify
liquefaction-related phenomena. Sentinel-2 imagery was successfully exploited for rapid
remote mapping of liquefaction phenomena in recent earthquakes such as the 2020 Mw 5.8
Lone Pine, CA earthquake [65] and 2021 Mw 6.3 Thessaly, Greece earthquake [12,66].

The next step after the exploitation of Sentinel-2 imagery was acquisition of Planet
optical imagery for a significant part of the affected area (excluding areas with snow cover
to the north). Image acquisitions of the Planetscope constellation (with an acquisition swath
of 24–32 km and 3–4 m spatial resolution) for 2 February, 8 February, and 13 February were
obtained and examined. Coverage map of Planet imagery is presented in the supplementary
section (Figure S2). A number of individual frames (from both Planetscope and SkySat
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constellation sensors) in various spots were also published by Planet as open data and
obtained through the OpenAerialMap portal.

The majority of our mapping was performed with very high-resolution (VHR) optical
satellite imagery that covered a significant part of the earthquake rupture and affected areas.
A large number of VHR frames acquired shortly after the earthquakes (from 7 February to
5 March) were released by Maxar through their Open Data Program (Disaster Response
Geospatial Analytics). Images were acquired by GeoEye-1 and WorldView 1-2-3 sensors
and were published in the Analysis-Ready Data (ARD) format. ARD format involves
pre-processing of the raw imagery such as atmospheric compensation, orthorectification,
pansharpening, and radiometric balancing. Maxar VHR images have a spatial resolution of
0.3–0.7 m, depending on the sensor. A coverage map of Maxar VHR imagery is presented
in the supplementary section (Figure S3).

2.1.2. SAR Satellite Imagery

In addition to optical imagery, we also exploited Synthetic Aperture Radar (SAR)
satellite imagery for identification and mapping of liquefaction manifestations. Copernicus
Sentinel-1A images with an acquisition swath of 250 km and 5 m by 20 m spatial resolution
were available covering the whole study area. Multiple frames of both ascending and
descending orbits were needed to cover the affected area, with an acquisition interval of
12 days for each frame and orbit (as of December 2021 due to the malfunction and decom-
mission of Sentinel-1B satellite). Despite the fact that radar imagery does not offer the same
imaging capabilities as optical imagery, it can be exploited through InSAR (Interferometric
Synthetic Aperture Radar) processing in order to identify major land cover changes, and
also provide detailed maps of ground surface deformation. Frame id, dates, and coverage
map are included in the supplementary section (Figure S4 and Table S1).

2.1.3. Other Sources

A number of other imagery sources were also available during the post-earthquake
period for detecting liquefaction phenomena. Aerial and satellite mapping of the area
around the earthquake ruptures was available from the Turkish Ministry of National
Defense, General Directorate of Mapping. These orthophotos were used to fill in areas not
covered by Maxar and Planet VHR imagery. Additionally, several UAS (unmanned aircraft
systems) orthophoto surveys of settlements affected by the earthquakes from various
sources, were published through the OpenAerialMap portal.

For the examination of local geomorphological features that might be masked by
modern human activity (croplands, urban expansion), we used declassified KH-4 Corona
optical satellite imagery. Those images, dated in 1960s–1970s, provide a good overview of
surficial fluvial features that might not be visible today due to intense irrigation farming
and land reclamation [67,68]. Orthorectified frames of selected dates were obtained from
the CORONA Atlas of the Middle East project [69]. Frame id and dates of Corona frames
used are included in the Supplementary Materials (Table S2).

2.2. Methodology
2.2.1. Selection of Inspection Area

The 6 February 2023 earthquakes originated from two long fault ruptures of ~350 km
for the Mw 7.8 Pazarcik event and ~160 km for the Mw 7.6 Elbistan event. Overall area
affected was estimated to be larger than 80,000 km2; thus, a workflow focusing on the
identification and mapping of earthquake-induced liquefaction phenomena was necessary
(Figure 4).

Based on previous experience in rapid mapping of liquefaction phenomena [12], we
targeted our search using the published ShakeMap by USGS as a guide, keeping the area
roughly enclosed by the 0.1 g peak ground acceleration (PGA) contour. Uncertainties and
generalization of ShakeMap products drive the selection of a conservative value for PGA
fencing, to account for local effects and simplified fault source modeling. Our research
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started from the area along the surface fault trace, which was preliminary mapped using
optical imagery, co-seismic displacement maps, and InSAR. The locations of earthquake-
induced features such as surface fault rupture and fracture openings are considered sites
prone to detect ejection of liquefied material and zones where the ground motion is expected
to be very strong, particularly in proximity to the fault rupture.
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Figure 4. Analytical flow chart of steps for identification and mapping of liquefaction-related
phenomena using remote sensing data.

The next step of our research was the identification of susceptible to liquefaction
areas close to the earthquake rupture. Using available regional geological maps, we were
able to delineate Holocene and Quaternary surficial geological formations and exclude
older ones, i.e., Pre-Quaternary age, and bedrock areas. Recent non-cohesive fine to
medium grain sediments like coastal deposits, fluvial deposits, alluvial plains, and drained
lakes/swamps are susceptible to liquefaction. These are also the formations that are most
likely to be saturated with a shallow groundwater table. Since Holocene and Quaternary
mapped formations might also include coarse-grained or cohesive sediments and geological
formations like debris/scree, we further screened these areas using digital elevation models.
Low relief areas, meandering river valleys, enclosed basins, pull-apart basins along the
Eastern Anatolian Fault, and narrow fluvial valleys with terraces were primarily selected
for research. Areas with slopes larger than 3 degrees were excluded as they might involve
more cohesive and less susceptible sediments, such as alluvial fans and cemented deposits.
Further visual screening excluded, for example, deep entrenched riverbed valleys and arid
plains with hard arid rock pavement.
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2.2.2. InSAR Analysis

While high-resolution optical images like Sentinel-2 and Planet can offer a quick
assessment of major surface manifestations of earthquake-induced liquefaction phenomena,
interferometry (InSAR) can also map and pinpoint locations where liquefaction and lateral
spreading displacement occurred.

We processed Sentinel-1 interferometric pairs using Alaska Satellite Facility’s (ASF)
Hybrid Pluggable Processing Pipeline (HyP3) for production of wrapped (phase) interfero-
grams and line-of-sight (LOS) displacement maps, and European Space Agency’s Sentinel
Application Platform (SNAP) software for extracting coherence maps.

Significant liquefaction and lateral spreading deformation can be identified through
InSAR as (a) isolated and complex fringe patterns away from fault ruptures in the wrapped
interferograms and (b) concentrations of coherence loss through coherence change de-
tection (CCD). Complex fringe patterns not connected to primary or secondary fault
deformation are attributed and related to ground oscillation or large-scale lateral spreading
displacement [70]. These types of fringe patterns were identified in co-seismic wrapped
interferograms in Hatay Province area (mouth and alluvial valley of Orontes River and
Amik Plain) and also in Narli Basin (Figure 5).
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Figure 5. Co-seismic phase interferogram (Sentinel-1 ascending track, 28 January 2023–9 February
2023) over Amik Plain, Hatay Province; irregular and isolated fringe patterns in the eastern part of
the basin away from the main fault deformation (western part) correspond to spots with significant
liquefaction deformation such as subsidence, lateral spreading, or ground oscillation across the
former Amik Lake floor (dotted line).

Interferometric coherence is a proxy for severe surface disturbance/land cover change
and/or strong localized displacement. Large areas with coherence loss might involve large-
scale lateral spreading displacement and multiple surface manifestations of earthquake-
induced liquefaction [12,15–17]. Concentrations of coherence loss also occur along the
surface fault trace of an earthquake rupture, and it might conceal local major liquefaction
spots. Moving further away from the fault rupture, major areas of coherence loss can be
attributed to liquefaction and lateral spreading, after comparison with pre-event interfero-
metric pair coherence maps to exclude the possibility of temporal land cover changes or
other non-earthquake sources of disturbance. An example of the results produced from
coherence change detection for the 6 February earthquakes in Amik Plain, Hatay Province,
is shown in Figure 6.
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Figure 6. Interferometric coherence over Amik Plain, Hatay Province; pre-earthquake pair (a) in
comparison with co-seismic pair (b). Dark areas mark significant coherence loss. Coherence change
is shown in (c). Concentrations of coherence loss coincide with areas with significant liquefaction
manifestations (d) like sand blows, lateral spreading, and ground oscillation across the former Amik
Lake floor.

2.2.3. Visual Mapping

Mapping of liquefaction manifestations was performed manually, using the inspec-
tion and focus methodology described previously and graphically shown in the flow
chart of Figure 4. The same workflow can be applied for either visual identification and
manual mapping or by semi-automated techniques and processing of imagery. Regard-
ing the 6 February 2023 earthquakes, considering the (a) limitations imposed by signif-
icant snow cover at the northern sections of the study area, (b) steep terrain in large
sections, and (c) presence of irrigated crop areas with significant seasonal and temporal
land cover change, we excluded the use of semi-automated methods of mapping and
adopted a manual approach.

The imagery was examined following the Sentinel-2-->Planet-->VHR sequence, with
gradually increasing detail and smaller feature identification. Site locations were mapped
as points representing either isolated features or concentrations (clustering) of multiple
liquefaction features. Points along areas of multiple features were located roughly every
few tens or hundreds of meters depending on the distribution of features. Considering the
regional scale dimensions of this study, we adopted this method for rapid reconnaissance
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and mapping instead of focusing on detailed delineation of every singular feature in each
site, which is more time-consuming and does not affect the regional distribution of the
inventory. Mapping of identified individual liquefaction features is in progress and the
relevant map will be released in near future. The compiled map of liquefaction site locations
is provided in the supplementary section.

Visual identification of earthquake-induced liquefaction phenomena was based on the
characteristic features that appear on aerial and satellite imagery [13,20,71] (see examples
in Figure 7). Identified features were cross-checked using as many pre-event images as
possible, aiming to exclude the presence of these features before the earthquake and
disqualify possible non-earthquake-related land cover changes. Irrigated crops were
especially inspected for the pre-event presence of patterns that can be a source of false
positive identifications [72]. These patterns or spots in cropland that could not be validated
in the pre-event timeline were excluded from mapping. Liquefaction manifestations on
the surface included mostly linear fissures, circular sand boils/craters, and ejecta along
fault ruptures or ground cracks, either isolated or in complex groups of multiple features
(clusters). Deformation by lateral spreading and ground oscillation was manifested by
parallel ground fractures and cracks, slides towards rivers and canal banks in the former
case, and patterns of ground cracks away from free faces in the latter one. Most liquefaction
phenomena were concentrated along meandering river valleys, abandoned strands or
avulsions of rivers, drained lake basins and swamps, and coastal areas.
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3. Results
3.1. Spatial Distribution of Liquefaction Manifestations

Applying the aforementioned methodology, we identified 1850 sites of liquefaction
and lateral spreading features along the EAFZ (Figure 8). Most of these manifestations were
mapped in proximity to the surface rupture of the first M7.7 event. The second (northern)
M7.6 earthquake rupture affected areas of higher latitude covered by snow, which limited
the detection of liquefaction effects. The northernmost mapped sites are located north
of Malatya, while the southernmost are in the mouth and valley of the Orontes River, in
Hatay Province.
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Figure 8. Overview map of liquefaction and lateral spreading sites identified and mapped using
satellite imagery. Fault rupture is shown with black lines, as mapped from Sentinel-2 imagery and [52].
Epicenters of the February 6th seismic events are marked with yellow stars (AFAD). Quaternary
formations along the fault rupture from [63]. Inset maps 1–3 are described in Figure 9.

In particular, craters and fissures with ejecta and lateral spreading phenomena were
manifested in sites close to the fault rupture covered by fluvial, lacustrine, and coastal
Holocene deposits (Figure 8). High-density areas of liquefaction phenomena are mapped
from the southwestern coastal zone of Antakya and Iskenderun port up to the Northeastern
Gölbasi Basin along the M7.7 fault rupture of the main strand of the East Anatolian Fault
Zone. Sporadic manifestations were mapped in the northern region of Elbistan and Malatya
and were considered to be triggered by the second M7.6 earthquake.
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Figure 9. Detailed inset maps (1–3) along the East Anatolian Fault Zone, where liquefaction and
lateral spreading phenomena were identified for the 6 February 2023 earthquakes. Fault rupture
is shown with black lines, as mapped from Sentinel-2 imagery [52]. Epicenters of the 6 February
seismic events are marked with yellow stars and orange stars for the 20 February M6.4 aftershock
near Antakya (AFAD). Quaternary formations (yellow) along the fault rupture from [63]. Location of
maps (1–3) is shown in previous Figure 8.

A significant number of liquefaction phenomena were identified south of Kahraman-
maras City along the Karasu trough, close to the epicenter of the M7.7 earthquake. The
northern section of Karasu Valley consists of Narli and Saglik Basins (Figure 9), with Maraş
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Basin to the northwest. Most liquefaction and lateral spreading sites follow the Aksu
River meander sections and the abandoned meanders through these basins. Numerous
liquefaction phenomena were detected and mapped on the Pazarcik Dam lake floor and
upstream towards the east. Approximately 20% of the total liquefaction records were
mapped through the area (Figure 9).

The highest density of liquefaction manifestations was mapped north of Antakya, at
Amik (Amuq) Valley and Orontes (Asi) River (Figure 10). Amik Basin is developed at the
triple junction of the Amanos segment (EAF), Hacipasa segment (DSF), and Antakya seg-
ment (CA) [73–75]. Being infilled with Plio-Quaternary sediments of more than 200–300 m
thickness, Amik Plain extends for approximately 36 km long and 40 km wide [76] and is
drained by Orontes, Karasu, and Afrin Rivers from the south, north, and east, respectively.
The western central part of the plain was formerly covered by Amik Lake. During the last
decades, Amik Lake was completely drained [77,78] through an artificial channel system
(the Balıkgölü Canal) into the Orontes River. After the first earthquake on 6th February,
about 35% of the total liquefaction sites were detected within Amik Basin; a significant
number of those concentrated along the central western and southern parts of the valley.
Extensive co-seismic surface ruptures were also mapped through the westernmost part
of the Hatay airport and the main water canal at the western section of the basin that
collects Karasu River water through the basin. Using VHR images, we observed a vast
accumulation of flood water through the area, covering more than 5 km2. The eastern part
of the airport was severely damaged by the liquefaction of the earth-fill sections of the
runways, leading to multiple failures and its closure for 6 days.

The Orontes (Asi) River course constitutes nearly 50 km of the border between Turkey
and Syria and exits to the south through Antakya Valley. During the 6 February seismic
events, a significant number of craters and fissures with ejecta material and lateral spreading
phenomena occurred and were detected by our study in the meandering, delta zones,
and open valley sections of the Orontes River, despite the fact that a section of the river
valley along the Turkey–Syria border was masked by flooding during the first days after
the earthquakes (Figure S1). Very few sites were identified by remote sensing inside the
Antakya urban region and the entrenched sections of the Orontes (Asi) River along Antakya
Valley. Entrenched river valley sections limit the spatial extent of saturated non-cohesive
surficial sediments, while free field liquefaction manifestations inside the Antakya urban
area were limited or impossible to visually identify due to dense urban environment and
the large volume of debris from building damages. However, despite the lack of results
from remote sensing, indications of extensive sub-surface liquefaction in Antakya City were
described by post-earthquake field surveys [49]. We managed to map 563 liquefaction sites
along Orontes River Valley, which account for almost 30% of the total liquefaction records.

The city of Iskenderun was one of the most affected urban centers, due to liquefaction
phenomena after the 2023 seismic events. Iskenderun (Alexandretta) port city is located
along the eastern shore of the Gulf of Iskenderun with approximately 152 km of coastline.
The modern urban area of Iskenderun is built on marshlands and a coastal alluvial plain on
the flanks of the Amanos Mountains. The salt marshes that surrounded the historical city
center were drained during the early 20th century. Most of the liquefaction manifestations
were detected through a former inundated area that was filled up during the 1980s expan-
sion of the coastal front [49,79] (Figure 11). In particular, Iskenderun City was severely
damaged due to widespread lateral spreading and liquefaction along its coastal front fill
to the west and central part, while large areas and sections of piers in the port facilities to
the east were submerged due to lateral spreading phenomena (Figure 12). Subsidence near
the coastal front resulted in shallow flooding of the northernmost part of the city for a few
days after the earthquakes [49]. At the same time, Ataturk Boulevard and the coastal front
were covered by extensive liquefaction ejecta, visible as light–dark gray sand/silt deposits
in post-earthquake VHR satellite imagery.
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Figure 10. (a) Relative elevation model (REM) of Orontes River Valley, south of the former Amik
Lake. Liquefaction sites are marked with red dots. Elevation source: Copernicus DEM. (b) Detection
of liquefaction ejecta material (light colors) and lateral spreading phenomena along a meandering
section of Orontes River in Maxar VHR satellite imagery.
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eral spreading (d). 

Towards the north, extended liquefaction features were observed at the area of 
Gölbasi Lake, which is part of the pull-apart structure of Gölbasi Basin along with the 
lakes Inekli and Azapli [80–82]. The main geological units through this region are Late 
Cretaceous to Plio-Pleistocene age sedimentary rocks. A well-developed drainage system 
coming from the surrounding high topographic escarpments forms around the basin 
large alluvial fans, while the areas between lakes are covered by marshland and irrigated 

Figure 11. (Above) KH-4 Corona declassified satellite imagery from 1969, showing the extent of
landfill and coastal front expansion during the past decades (current shoreline with white line),
(Bottom): Post-earthquake VHR optical satellite imagery by Maxar showing the current status in
Iskenderun. Liquefaction-related phenomena are marked with red.
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Figure 12. Pre-earthquake (a,c) and post-earthquake VHR satellite imagery (Maxar) showing liq-
uefaction ejecta on the piers of Iskenderun port (b) and submersion of specific sections due to
lateral spreading (d).

Towards the north, extended liquefaction features were observed at the area of Gölbasi
Lake, which is part of the pull-apart structure of Gölbasi Basin along with the lakes Inekli
and Azapli [80–82]. The main geological units through this region are Late Cretaceous to
Plio-Pleistocene age sedimentary rocks. A well-developed drainage system coming from
the surrounding high topographic escarpments forms around the basin large alluvial fans,
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while the areas between lakes are covered by marshland and irrigated crops. Following
the Pazarcik segment of EAF, 173 liquefaction sites were mapped through the Holocene
and Quaternary formations of the Gölbasi Basin (Figure 13). Focusing on the Gölbasi Lake
and the homonym town, a significant number of extensive lateral spreading phenomena
(multiple parallel large fractures) were detected along its northern, eastern, and southern
coastline and through the city. It should be pointed out that in some places, large sections
of land were totally submerged along the coastline (Figure 14).
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3.2. Correlating the Distance of Liquefaction Sites with Location of Epicenters and the Fault Rupture

Taking into account the liquefaction inventory compiled based on information pro-
vided by satellite and aerial imagery, we investigated the distribution of liquefaction sites
according to their distance from both the fault rupture and the earthquake epicenters. We
used the Mw 7.7 epicenter from AFAD, and the surface trace of the fault rupture from
Reitman et al. [52].

Considering previous studies [83–86], the expected maximum epicentral distance of
liquefied sites was approximately 150 km for an earthquake magnitude M7.7 (Figure 15).
According to our liquefaction inventory, this statement is validated since 92% of the total
records are distributed within a region 150 km in distance from the epicenter. Regarding
the distribution of liquefaction sites in relation to the surface trace of the fault rupture, the
majority of the occurrences (95%) were detected within a section of 25 km, with very few
sites between 25 and 50 km distance (Figure 16).
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Consequently, both cumulative distance graph curves follow a declining trend, as
the distances from the epicenter and fault rupture increase. However, in the case of the
epicenter’s curve, dense liquefaction effects are detected through a much broader area
(150 km) than those based on the rupture’s distance (25 km), implying that distance from
the fault rupture of the seismic event is (a) more geographically specified and consequently
far less conservative than the epicenter distance and (b) can define more effectively the
limits of liquefaction manifestation distribution.

4. Discussion
4.1. Correlating the Spatial Distribution of Liquefaction Phenomena with the Seismic Parameters
and the Geomorphology

The generation of liquefaction phenomena depends on the susceptibility of the sedi-
ments and on seismic parameters like earthquake magnitude and strong ground motion,
which is strongly related to the distance from the epicenter or fault rupture and the local
site conditions [87,88]. As described in the previous section, the majority of liquefaction
sites triggered by the 6 February 2023 earthquakes in Turkey/Syria were detected within
a certain distance from the fault rupture (25 km). Distance from the fault rupture is a more
suitable metric than epicentral distance for assessing liquefaction occurrence in a relevant
hazard study, whenever a detailed seismogenic source can be defined, also discussed in
compiled magnitude/distance empirical relations [89].

For the purposes of this study, we took into account the ShakeMap [90] of the
6 February 2023 earthquakes, produced by the United States Geological Survey (USGS)
to investigate the spatial distribution of liquefaction sites in relation to the peak ground
acceleration (PGA) and peak ground velocity (PGV). In particular, an updated version of the
original ShakeMap was used (accessed on 26 April 2023) that incorporated a more detailed
fault rupture model [91]. The very first versions of the ShakeMap did not include a finite
fault rupture model and were considered to be inaccurate as only a simple circular distance
from the preliminary epicenter is being incorporated for ground motion attenuation. This
is a known issue with ShakeMap products, which cannot incorporate a fault source without
human input during the first hours or days after an event. A combined raster map of the
maximum PGA and PGV values for both events was produced by stacking of the original
products (Figure 17). In this way, we were able to reduce the uncertainties that arose
due to possible inaccuracies in fault rupture modeling and a lack of detail for local site
conditions, etc., in the attribution of liquefaction occurrences to the two main events.

Distribution analysis and frequency graphs (Figure 17) reveal similar results to distance
from the fault rupture; the majority of mapped liquefaction sites are within a narrow zone
close to the earthquake ruptures where high values of PGA and PGV are observed. The 95th
percentile of liquefaction sites correlates with values of PGA > 0.14 g and PGV > 12 cm/s.
These observations are valuable for the early prediction of earthquake environmental effects
in future events and for the production of liquefaction hazard maps.

The correlation of liquefaction sites with distance from the fault rupture and the values
of strong ground motion (PGA, PGV) defines a geographical boundary to liquefaction
occurrence. However, their distribution and concentration within this specific zone are
uneven. It is pointed out that not all the low relief areas at a short distance from the fault
rupture, covered by recent sediments can manifest liquefaction phenomena; the majority
of mapped liquefaction sites formed clusters in specific types of alluvial sediments. The
variability of geomorphological settings and surficial sediments within these areas is highly
correlated with the severity and clustering of liquefaction. That was the key factor that
motivated us to implement the proposed workflow for remote liquefaction mapping.

In general, geomorphology plays a contributory role regarding the spatial distribution
of liquefaction phenomena [4,12,22,24,25,29,92]. As described in previous sections, the
majority of liquefaction effects were concentrated along the river network in meander loops
(inner part of the meander), abandoned or recently in-filled river strands as well as in
drained lake basins and coastal zones.
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Figure 17. Distribution of liquefaction sites in comparison (a) with peak ground acceleration
ShakeMap and (b) peak ground velocity ShakeMap. Cumulative frequency diagrams for PGA (c)
and PGV (d). Contour of 0.14 g PGA and contour of 12 cm/s PGV that represent the 95th percentile
of liquefaction sites are shown in (a,b) as a dotted line. Yellow stars show the epicenters of the two
mainshocks (M7.7 and M7.6) and orange stars the location of major aftershocks (M6.7 and M6.4).

One of the areas where a large number of liquefaction and lateral spreading occur-
rences were mapped, is near the central section of the Mw 7.7 rupture and its epicenter.
Aksu River is forming a bend west of Pazarcik between the Pazarcik segment of EAF to
the west and the Narli Fault zone to the south, crossing through Saglik and Narli Basins
(Figure 18). These basins are filled with Quaternary alluvial sediments, covered by the
Holocene river, floodplain, and lake deposits [54]. At several locations, the Aksu River
course has been shifted, especially in Narli Basin, as can be observed through morphology
and declassified historical satellite imagery (Corona KH-4). Most of the mapped lique-
faction sites in this area were found along abandoned stretches of Aksu River, migrated
meander sections (see Figure 18 insets), drained swamps, and small lakes inside Narli Plain
and along the EAF and Narli Fault earthquake surface ruptures. Lateral spreading was
observed in numerous drainage and irrigation canals within Narli Plain. In the middle and
southern part of Narli Basin, numerous ground fractures unconnected to free face slopes
and with random orientation were mapped. We interpret this as evidence of extensive
ground oscillation deformation, possibly related to drained lakes and swamps. Figure 18
shows the distribution of liquefaction sites over the USGS near a real-time liquefaction
hazard map [93]. Almost all the sites are within the high probability area correctly pre-
dicted by the USGS model. However, the real-time map overpredicts probable liquefaction
occurrence due to a lack of detailed data about surficial geology and geomorphology.
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Figure 18. Liquefaction and lateral spreading sites (red dots) in Aksu River bend valleys area,
near the epicenter of the Mw 7.7 earthquake (yellow star). Ground cracks and earthquake surface
ruptures shown as red lines. Insets show details of liquefaction ejecta over paleo-meanders of Aksu
River (Maxar Open Data VHR satellite imagery). USGS near real-time liquefaction hazard map as
a reference layer.

The most prominent area of liquefaction manifestations during the 6 February 2023
earthquakes was the Hatay region. Numerous liquefaction and lateral spreading sites
are detected in the area of Antakya, Orontes River Valley, and Amik (Amuq) Plain (see
description in Section 4.1 and Figure 19). Amik Plain is fed by the Karasu River from the
north, the Afrin River from the east, and drained by Orontes (Asi) River to the Mediter-
ranean through Antakya Valley. Orontes River is flowing into Amik Plain from the south,
following Turkey–Syria border, and exits through the Antakya Valley corridor, creating
a large-scale bend (Figure 10). At the eastern and central section, the Orontes (Asi) River
forms a wide floodplain valley with modern and abandoned meandering sections. To the
west, south of Antakya City, runs through an entrenched course and exits into the Mediter-
ranean. A large part of central western Amik Plain was once covered by Amik Lake (Lake
of Antioch), which was completely drained during the 1970s [77,78]. The shoreline of the
lake during the 20th century is shown in Figure 19, but the late historic extent of the lake is
believed to be larger (Figure 19). Thus, we adopted the contour line of 79–80 m as a more
representative paleo-shoreline.
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Figure 19. Topography of Amik (Amuq) Plain. White continuous line (1) marks the 19th–20th century
extent of the now-drained Amik Lake, while white dashed line (2) shows the estimated furthest
extent of the historical lake coastline. The 6 February 2023 liquefaction and lateral spreading sites
shown as orange dots, and earthquake fault rupture with red lines. Contour line interval is 2 m.
Elevation source: Copernicus DEM.

As described in the previous chapter, multiple sand craters, fissures with ejecta ma-
terial, and lateral spreading phenomena were mapped along meanders, paleochannels,
and point-bars formations of the Orontes River Valley (Figure 19). Liquefaction and lateral
spreading manifestation and deformation were almost continuous along the Orontes River
meandering course from the Turkey–Syria border up to the NE of Antakya City. These
phenomena were limited through Antakya Valley due to the entrenched course of Orontes.
A large number of liquefaction sites were also mapped along the Kara Su River exit into
Amik Plain. The rest of the mapped liquefaction and lateral spreading sites in the area
were spread over the drained Amik Lake floor (Figures 19 and 20a) and are related to
lateral spreading along drain and irrigation canals, road and flood embankments, and
small fluvial features.

A large number of ground cracks with significant length were observed over the
former Amik Lake floor. To the west, surface fault ruptures related to a previously poorly
known segment of EAF cross Amik Plain through the Hatay airport. However, ground
cracks and fractures further east of the rupture are related to liquefaction/shaking de-
formation (ground oscillation–lateral spreading) and/or possibly triggered shallow slip
of pre-existing neotectonic fault traces. Some of these ground cracks were interpreted as
primary or secondary fault ruptures [52]. Nevertheless, a large number of those display
random orientations, more similar to lateral spreading and ground oscillation deformation,
while others follow the concave trace of multiple paleo-shorelines, visible in terrain and
historical imagery to the north. Additionally, all ground cracks that were mapped east of
the EAF rupture and Hatay airport are completely contained in the paleo-Amik Lake extent
(Figure 19) with no evidence of continuation to the surrounding alluvial and fan sediments.
This could be a strong indication of ground oscillation across former Amik Lake, expressed
as deformation of the lake floor sediment cover.
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Figure 20. (a) Late Holocene geomorphology of Amik (Amuq) Plain from [74], with liquefaction 
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Figure 20. (a) Late Holocene geomorphology of Amik (Amuq) Plain from [74], with liquefaction and
lateral spreading sites (red dots) and surface ruptures/ground cracks (purple lines). (b) Liquefaction
and lateral spreading sites (red dots) over Amik (Amuq) Plain over a declassified KH-4 Corona
satellite imagery from 1969. Black dotted line marks the estimated furthest extent of historical
Amik Lake.
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The overall distribution of liquefaction and lateral spreading sites in Amik Plain is
strongly correlated to the late Holocene geomorphological conditions as can be seen in
Figure 20a. Geomorphological units of Amik Plain [72] that manifested severe liquefaction
phenomena were the former Amik Lake and the fluvial valley/levee of Orontes River.
Despite modern-era modification of ground surface conditions by large-scale irrigation
and drainage works, Holocene and historical geomorphological features can be identified
through historical imagery and detailed digital terrain models (Figures 19 and 20b).

4.2. Recurrent Liquefaction in Antakya

A few days after the main shock (20 February), a strong earthquake of Mw 6.4 occurred
near Antakya in the Hatay region. This earthquake originated on a NE–SW left-lateral
fault plane, dipping towards NW that roughly coincides with the local Antakya Fault [43].
This strong aftershock led to heavy damage in the Antakya urban area, especially in
buildings already degraded by the main shock [49]. Sentinel-2 images acquired after the
earthquake (24 February) did not reveal any significant change or visual indications of
liquefaction at the alluvial plain near Antakya City and Orontes River Valley. We processed
two couples of Sentinel-1 frames (ascending and descending orbit) that cover the aftershock
timeframe (Figure 21). The interferogram shows a large-scale deformation pattern of
concentering fringes that are attributed to the crustal deformation caused by the Mw 6.4
rupture. The reversed polarity of the fault deformation fringes in the ascending and
descending interferograms matches with mostly horizontal deformation, consistent with
the fault mechanism by AFAD. Along the Antakya Valley, a series of distinct and irregular
fringe patterns and low coherence patches are visible in the phase interferograms (Figure 21).
These small patterns are persistent in both interferometric pairs, excluding atmospheric or
other types of error, and of very shallow origin overlapping the large-scale fault rupture
deformation. We attribute them to (a) deep-seated landslide displacement triggered by the
aftershock in the hilly area northwest of Antakya, and (b) liquefaction and lateral spreading
deformation along the Orontes alluvial plain to the northeast of Antakya. The same area
just outside Antakya urban area also experienced multiple liquefaction manifestations
during the mainshock on 6 February.

Recurrent liquefaction and lateral spreading occurrence were also identified through
satellite interferometry in the 2010–2011 Christchurch, NZ earthquake sequence [16] and
the 2021 Thessaly, Greece earthquakes [12]. This highlights the importance of remote
sensing methods and mapping for the rapid identification of liquefaction and other types
of earthquake environmental effects. The occurrence of strong earthquakes a few days
or weeks after a significant event can create an amalgamation of liquefaction and lateral
spreading phenomena from multiple events that can only be unrolled through satellite
imagery and aerial acquisitions.
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5. Conclusions

We used satellite imagery to map 1850 sites with liquefaction and lateral spread-
ing phenomena triggered by the 6 February 2023 Mw 7.7 and Mw 7.6 earthquakes in
Turkey/Syria. We applied and further improved a methodology used by [12] for rapid
mapping of earthquake-induced liquefaction.

(1) High and very high-resolution optical satellite imagery, with the aid of radar satellite
imagery and interferometry, enabled us to rapidly acquire a thorough map of liquefac-
tion manifestations and sites across a large area affected by the two strong earthquakes.

(2) Despite the limitations of the current mapping data and results, we consider this map
an almost complete documentation of liquefaction site distribution across the affected
area in SE Turkey and Syria. Most areas with significant concentration and severe
magnitude of liquefaction phenomena are also described.

(3) Application of the proposed workflow for mapping liquefaction with remote sensing
data successfully limited the search focus for this study and enabled rapid mapping
through a vast area.

(4) The majority of liquefaction phenomena were found along meandering sections of
river valleys, coastal plains with fine sediments, drained lakes and swamps, and
lacustrine basins along the East Anatolian Fault. In addition, it is crucial to highlight
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the very high liquefaction susceptibility of reclaimed lands as it has been confirmed
in the case of the city of Iskenderum and Hatay airport. These areas are suggested to
be studied in detail in order to decrease the liquefaction potential of the subsoil layers
and consequently minimize the relevant risk to the manmade environment.

(5) Results confirm once again the major correlation between geomorphology/surficial
geology and liquefaction manifestation of strong earthquakes. These geomorpho-
logical conditions can serve as a successful proxy of local site investigations at a
regional scale and can drive future investigations and focus areas of interest for future
liquefaction hazard mapping.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15174190/s1, Figure S1: Flooded areas in Hatay Province
after the 6 February 2023 earthquakes, Figure S2: Coverage map of Planetscope optical imagery
(Planet) used for earthquake-triggered liquefaction mapping, Figure S3: Coverage map of very
high-resolution (VHR) optical imagery (Maxar Open Data) used for earthquake-triggered liquefac-
tion mapping, Figure S4: Coverage map of Sentinel-1 radar satellite imagery frames (Copernicus)
used for earthquake-triggered liquefaction mapping, Table S1: Frame id and dates of Coperni-
cus Sentinel-1 SLC frames, Table S2: Frame id and dates of Corona (KH-4B) declassified satellite
imagery. Mapped liquefaction and lateral spreading sites are provided in a Geopackage file (Lique-
faction_Lateral_Sites_20230206EQ.gpkg).
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February 6, 2023 Mw 7.8 and Mw 7.6, Kahramanmaraş, Turkey earthquake sequence in the East Anatolian Fault Zone. Seismica
2023, 2. [CrossRef]

44. Karabulut, H.; Güvercin, S.E.; Hollingsworth, J.; Konca, A.Ö. Long silence on the East Anatolian Fault Zone (Southern Turkey)
ends with devastating double earthquakes (6 February 2023) over a seismic gap: Implications for the seismic potential in the
Eastern Mediterranean region. J. Geol. Soc. 2023, 180, jgs2023-021. [CrossRef]

45. Mai, P.M.; Aspiotis, T.; Aquib, T.A.; Cano, E.V.; Castro-Cruz, D.; Espindola-Carmona, A.; Li, B.; Li, X.; Liu, J.; Matrau, R.; et al. The
Destructive Earthquake Doublet of 6 February 2023 in South-Central Türkiye and Northwestern Syria: Initial Observations and
Analyses. Seism. Rec. 2023, 3, 105–115. [CrossRef]
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