
Citation: Shih, M.-S.; Chang, K.-C.;

Chou, S.-A.; Liu, T.-S.; Ouyang, Y.-C.

The Automated Detection of

Fusarium Wilt on Phalaenopsis Using

VIS-NIR and SWIR Hyperspectral

Imaging. Remote Sens. 2023, 15, 4174.

https://doi.org/10.3390/rs15174174

Academic Editor: Paul Scheunders

Received: 27 June 2023

Revised: 20 August 2023

Accepted: 23 August 2023

Published: 25 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

The Automated Detection of Fusarium Wilt on Phalaenopsis
Using VIS-NIR and SWIR Hyperspectral Imaging
Min-Shao Shih 1, Kai-Chun Chang 1, Shao-An Chou 1, Tsang-Sen Liu 2 and Yen-Chieh Ouyang 1,*

1 Department of Electrical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
d108064103@mail.nchu.edu.tw (M.-S.S.); g109056069@mail.nchu.edu.tw (K.-C.C.);
g109093006@mail.nchu.edu.tw (S.-A.C.)

2 Taiwan Agricultural Research Institute, Ministry of Agriculture, Taichung 413, Taiwan; tsliu@tari.gov.tw
* Correspondence: ycouyang@nchu.edu.tw

Abstract: Phalaenopsis, an essential flower for export, is significantly affected by fusarium wilt, which
impacts its export quality. Hyperspectral imaging technology offers the potential to detect fusarium
wilt on Phalaenopsis. The goal of this study was to establish an automated platform for the rapid
detection of fusarium wilt on Phalaenopsis. In this research, the automatic target generation process
(ATGP) method was employed to identify outliers in the hyperspectral spectrum. Subsequently, the
Spectral Angle Mapper (SAM) method was utilized to detect signals similar to the outliers. To sup-
press background noise and extract the region of interest (ROI), the Constrained Energy Minimization
(CEM) method was implemented. For ROI classification and detection, a deep neural network (DNN),
a support vector machine (SVM), and a Random Forest Classifier (RFC) were employed. Model
performance was evaluated using three-dimensional receiver operating characteristics (3D ROC), and
the automated identification system was integrated into hyperspectrometers. The proposed system
achieved an accuracy of 95.77% with a total detection time of 3380 ms ± 86.36 ms, proving to be a
practical and effective tool for detecting fusarium wilt on Phalaenopsis in the industry.

Keywords: Automatic Target Generation Process (ATGP); Spectral Angle Mapper (SAM);
Constrained Energy Minimization (CEM); Deep Neural Network (DNN); Support Vector Machine
(SVM); Three-dimensional receiver operating characteristics (3D ROC)

1. Introduction

Phalaenopsis is one of the most popular flowers, and has high economic and ornamental
value. Today, countries involved in the commercial production of orchids include the United
States, Britain, Japan, China, Taiwan, Thailand, Australia, and Singapore. The production
of Phalaenopsis is an industry with a high technical threshold, due to differences in the
optimal growth environments and technologies. However, if quality control is inadequate
in any segment, with results such as pests or diseases, this can cause severe economic
losses. Fusarium is one of the major disease-causing pathogens infecting orchids and is
widely distributed in soil and associated with plants worldwide [1]. Fusarium spp. are very
destructive as they can affect almost all of the plant’s organs and produce a broad range of
symptoms, e.g., crown and root rot, stalk rot, head and grain blight, and vascular wilt [2,3].
These spp. have severely reduced not only the breeding rate of plants, but also the quality
of flowers. In addition, these spp. can be easily spread during shipping, which greatly
increases the loss rate of arrivals. This disease has had a serious impact on the production
and sales of Phalaenopsis, especially in the international market. Therefore, it is necessary to
study and control fusarium wilt in Phalaenopsis.

Currently, the prevention and control of yellowing disease in Phalaenopsis orchids
relies on the disinfection of cultivation substrates [4], followed by chemical or biologi-
cal control [5]. However, the effectiveness of these methods is limited, and cultivation
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management by farmers remains the primary means of prevention. Traditional disease
detection methods, such as visual inspection and pathogen culture, suffer from subjectivity
and time consumption. In recent years, hyperspectral imaging has emerged as a popular
remote sensing technology, and is widely applied in various fields. Hyperspectral images
contain the entire electromagnetic spectrum of each pixel, typically composed of visible
and non-visible spectra, thereby providing a 3D space with higher spectral resolution
than traditional multispectral images. Hyperspectral imaging has also found numerous
applications beyond remote sensing, particularly in food and crop safety inspection. Given
the constant concern for agricultural product quality, the use of hyperspectral imaging
technology for quality detection has gained popularity due to its non-destructive and
real-time nature. Moreover, the rise of machine learning has made it possible to construct
models using large amounts of data and enable the fast and accurate detection of diseases.

In recent years, spectral technology has been widely applied to the detection of var-
ious agricultural crop diseases. In 2018, Albetis et al. [6] explored the potential of using
multispectral images to differentiate between symptomatic and asymptomatic grapevines,
as well as between different disease-infected grapevines. The validity of their predictions
was verified by comparing the error between the predicted infection level (proportion of
symptomatic pixels in grapevines) and the observed infection level (proportion of symp-
tomatic leaves in grapevines). While their method effectively distinguished diseased plants,
most of the plants already exhibited symptoms visible to the naked eye, and the resolution
improved only when the infection reached above 50%. Vélez et al. [7] employed unmanned
aerial vehicles (UAVs) with multispectral cameras, along with photogrammetric and spatial
analysis techniques and machine learning classification methods, for the detection of Botry-
tis bunch rot (BBR). However, the accuracy achieved was only around 70%. Chang et al. [8]
monitored the severity of citrus greening infection in orchards using vegetation indices
derived from multispectral images. Although this showed a certain level of accuracy, it still
could not detect the infection early before visible symptoms were confirmed by the naked
eye. This impediment may be attributed to the limited number of bands in multispectral
images, despite the derivation of multiple vegetation indices. This cannot fully meet the
objective of early disease detection. In this study, hyperspectral imaging was used with
the aim of preserving all of the spectral information. Compared to multispectral images,
hyperspectral images contain a three-dimensional space with higher spectral resolution. In
recent years, hyperspectral imaging has found more applications, especially in food and
crop safety detection. Agricultural product quality has always been a concern for many,
and the use of hyperspectral imaging technology for agricultural product quality inspection
is gaining popularity. Its advantages lie in being non-destructive and having the potential
for early detection.

Previous studies have utilized hyperspectral imaging for detecting diseases in other
crops, such as tea plants, tomatoes [9], and more [10,11]. For example, Lin et al. [12] used
hyperspectral imaging to detect anthracnose in tea plants and achieved an overall accuracy
of 98% for identifying the disease at the leaf level. Zhang et al. [13] developed a method
for the multi-source detection of tomato leaf mildew, with a recognition rate of 97.12%.
Cen et al. [14] used a portable spectrometer to propose a tomato bacterial wilt detection
model with overall accuracies of 90.7% for leaves and 92.6% for stems. Ashourloo et al. [15]
evaluated the impacts of disease stages and symptoms on the spectral characteristics of
plants, and their results demonstrated the reliability of using machine learning techniques
instead of traditional indices. In 2015, Xie et al. [16] investigated the potential of using
hyperspectral imaging for detecting different diseases on tomato leaves. The relevant
paragraph also provides specific details about the methods used in the study, such as the
successive projections algorithm and the extreme learning machine classifier model.

In this study, the application of hyperspectral detection technology to disease identifica-
tion in the orchid industry was realized. It has been observed from prior studies [17–19] that
the acquisition, analysis, and processing of hyperspectral image data are time-consuming,
thereby limiting the real-time application of hyperspectral imaging systems in agricultural
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detection. Therefore, the utilization of statistical indicators, such as mean and variance,
was proposed in order to enhance classifier performance and reduce the hyperspectral
image processing time. Mean and variance were chosen due to their capability to ade-
quately reflect the inherent features present on the phalaenopsis leaves. The mean helped to
mitigate noise generated by non-observed target objects, while the variance captured the
disparities among observed pixel values within the hyperspectral image. The application
of hyperspectral technology in this research for disease detection was not solely dependent
on spectral differences to classify affected leaf segments, but rather, employed statistical
indicators to synthesize pixel information. Subsequently, machine learning methods were
applied to classify the potential extent of leaf susceptibility. By adopting the aforemen-
tioned approach, not only was the high accuracy of disease detection retained, but the
processing time for hyperspectral images was also reduced. Ultimately, a non-destructive
detection platform utilizing hyperspectral technology was proposed, offering automated
classification of infected phalaenopsis. This study not only established a classification method
for phalaenopsis yellowing disease, but also significantly reduced the computational time
associated with this method, which is practically feasible. This enhancement makes the
automated detection platform applicable to real-time inspections on production lines.

2. Materials and Methods
2.1. Pipeline Identification System

Our previous research and experiments were aimed at establishing an automatic pipeline
recognition system. In this paper, we show a tracked mobile platform equipped with stepper
motors. On top of it, two hyperspectral sensors and a color camera are integrated for object
detection purposes. The development of this platform is intended to simulate the shipment
equipment and scenarios in the Phalaenopsis production field. In the future, production
operators will simply need to place Phalaenopsis seedlings on the platform. The system will
then detect the stem base, capture hyperspectral images, and ultimately present disease
detection results. To achieve these objectives, we developed a detection model for yellow spot
disease in Phalaenopsis and established a real-time hyperspectral image processing workflow.
Collaborating with spectral equipment manufacturers, we successfully realized an automated
online detection platform in the final stages of our research.

The hyperspectral scanning platform used in this study is shown in Figure 1. The
system includes two hyperspectral cameras covering different frequency domains: visible
and near-infrared (VNIR) on the upper left and short-wave infrared (SWIR) on the right.
The hyperspectral cameras are interfaced with a computer for data acquisition through line
scanning. Two halogen lamps are positioned at a 45-degree angle to minimize shadowing
and enhance image brightness, thereby reducing the exposure time required for spectral
sampling. The entire system, except for the computer, is enclosed in a darkroom.

2.2. Samples of Phalaenopsis

Phalaenopsis plantlets were cultivated in a greenhouse at the Changhua Research
Center of Royal Base Co., Ltd., in Changhua County, Taiwan, in August 2021. The 3.5-inch
Phalaenopsis Sogo yukidian “V3” plant, one of the most popular varieties worldwide, was
used in this study. All experimental plantlets were 3.5 inches in size, had five mature leaves,
and met the specifications for flowering induction upon shipping. Additionally, expert
visual inspection confirmed that no observable symptoms were present. Upon receiving the
Phalaenopsis in the greenhouse, continuous imaging was conducted using a hyperspectral
camera and RGB images for a period of one week, from Day 0 to Day 6. Throughout
this week, the Phalaenopsis plantlets were placed in an environment with a temperature of
30 ◦C and humidity of 80%, providing optimal conditions for the growth and infection of the
plantlets with fusarium wilt. The infected plants were labeled. Images of the Phalaenopsis at
different stages of infection were captured, as shown in Figure 2.
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Figure 2. The RGB images show healthy and diseased Phalaenopsis. Healthy sample on (a) Day 0,
(b) Day 3, and (c) Day 6. Diseased sample on (d) Day 0, (e) Day 3, and (f) Day 6.
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2.3. Hyperspectrometer

In this study, two cameras were used to capture hyperspectral images of Phalaenopsis,
operating in the VNIR and SWIR spectral bands, respectively. For detailed specifications
of the hyperspectral cameras, please refer to Table 1. The main light source used for
capturing was provided by a halogen lamp, with power supplied by a “3900e-ER” power
supply unit, delivering a power of 150 W. The capturing process was facilitated using the
ISUZU imaging software (version 22.1.3), and the environmental temperature and relative
humidity were maintained at 25 ◦C and 60% during the imaging sessions.

Table 1. Specifications of the hyperspectral cameras.

V10E-B1410CL N17E-InGaAs

Spectral Range (nm) 400–1000 900–1700
Spectral Channels 616 512

Spectral Resolution (nm) 3 5
Spatial Pixels 816 640

2.4. Hyperspectral Image Calibration

Hyperspectral image calibration involves normalizing the spectral reflectance and
reducing noise during sampling. This process requires using white and dark references
and can be achieved using the following formula:

Ic =
Iraw − Idark

Iwhite − Idark
(1)

where Ic is the calibrated hyperspectral image, Iraw is the original raw data, Iwhite is the
white reference value with a Teflon bar, just representing the highest reflectance, and
Idark is the standard black reference value obtained by covering the lens, representing the
highest reflectance.

2.5. Hyperspectral Image Region of Interest (ROI) Extraction

After obtaining the calibrated hyperspectral image following the steps shown in
Figure 3, a simple image cropping process was conducted to remove the plastic casing of
the Phalaenopsis and select the region near the center of the stem base. Chang [20] men-
tioned that the automatic target generation process (ATGP) is an unsupervised method
that iteratively calculates the target signatures and spectral vectors of all pixels through
orthogonal subspace projection (OSP) to find target signatures with the maximum dis-
criminability in the orthogonal space. These target signatures are of particular interest
to us. The advantage of the ATGP method lies in its ability to automatically capture the
spectral features of targets in hyperspectral data without prior knowledge of their types
or signatures. It provides valuable information for subsequent target identification and
classification tasks. Since it is not possible to know the target pixels in advance in industrial
line inspection, we utilized ATGP for automatic target pixel identification in the images.

Chang [21–23] also mentioned that when it is not possible to obtain the spectral
information of all substances in the image, Constrained Energy Minimization (CEM) can
be employed to treat the substances of interest as target objects, while the rest can be
considered background. This allows us to obtain their information from the spectral
database, although background information might not be available. However, CEM can be
overly sensitive to target spectra, so we first utilized a Spectral Angle Mapper (SAM) to
extract geometric features between two spectra. By doing so, we identified pixels in the
image with similar characteristics to the target pixels and averaged their values to create
reference spectral information for CEM. CEM is primarily designed with a finite impulse
response (FIR) filter to minimize the output power and restrict the output of the desired
target features to a specific gain. This helps to highlight the required target signals and
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suppress background signals. Finally, the target signals processed via CEM were subjected
to Otsu’s method for binarization to obtain the final region of interest (ROI).
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Figure 3. The hyperspectral image region of interest (ROI) extraction process. After the acquisition
and calibration of hyperspectral images, reflectance values were extracted. To enhance the image
processing speed, stem base images were retained. During the ROI extraction step, target signals
were initially provided via an automatic target generation process (ATGP). A Spectral Angle Mapper
(SAM) was employed to identify pixels with similarity to the target signals. The Constrained Energy
Minimization (CEM) technique was utilized to amplify the signal, and finally, the Otsu method was
applied for the threshold, resulting in the ultimate ROI.

2.6. Statistical Indicators

The purpose of this research is to develop an automated detection platform applicable
to the Phalaenopsis industry. In disease recognition, there is a significant need to reduce the
processing and computation time for hyperspectral image analysis. To achieve this, simple
statistical methods were employed for new features, allowing for the conversion of existing
features into new ones, potentially increasing the number of features and improving the
accuracy of analysis.

Due to the proximity of the captured hyperspectral images, the spectral characteristics
of the target surface could be adequately reflected. Hence, in this study, efforts were made
to minimize spectral computations while preserving the captured spectral information.
However, individual differences and interferences caused by different target surfaces were
also addressed. To accomplish this, the mean and variance were utilized. In the case of
the mean, each pixel value in the ROI was averaged with a random proportion to reduce
potential noise in individual pixel values. As for the variance, the spectral dispersion of the
pixels in the ROI was measured, and a high variance indicated possible spectral changes in
the target. The mean reduced spectral noise, and the variance reflected spectral consistency.
Through these two measures, the characteristics of the target surface were adequately
represented, and the information to be observed in the spectrum was retained.

In this research, the mean and variance were calculated in the hyperspectral images to
achieve feature transformation with minimal computational time. The practical approach
is as follows: 50% of the spectral reflectance data were randomly selected and used to
compute the mean and variance. These statistical indicators doubled the number of features
compared to the original single-pixel spectral data. For example, in the VNIR bands, after
one computation, the number of features increased from 540 to 1080, as shown in Figure 4.
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two-dimensionalization, followed by the random selection of 50% of the pixels for the calculation of
the mean and variance for each band. The combination of mean and variance was employed as a
new feature value. M and N represent the length and width of the hyperspectral image. L represents
the number of bands/features, and S indicates the number of times random sampling took place.

2.7. Data Training Models

In this study, two kinds of statistical indicators were applied to both the VNIR and
SWIR hyperspectral images captured daily (Day 0–Day 6). The pixel-based data were
retained alongside the mean and variance for classifier training to distinguish between
healthy and diseased samples. Three machine learning methods, namely, a deep neural
network (DNN) [24], a support vector machine (SVM) [25], and a Random Forest Classifier
(RFC) [26], were employed for training and prediction. As the training data might not
encompass all the variations present in different Phalaenopsis plants, the DNN model’s
interpretability on new data might be limited. To address this issue, the SVM and RFC
models were incorporated to enhance classification reliability and interpretability, thus
improving the model’s capability to classify unknown samples. The training process was
shown in Figure 5.

Deep Neural Network

A deep neural network (DNN) is a machine learning method. In this experiment,
we use a Multilayer Perceptron (MLP), which is a type of DNN. In common RGB two-
dimensional (2D) images, the convolution layer is typically used for feature extraction.
However, as mentioned earlier, in our study, we use ATGP, SAM, CEM, and Otsu’s method
to replace the function of feature extraction. Therefore, the DNN portion of our method
mainly consists of the fully connected layer of MLP. The configuration of our fully connected
layer is illustrated in Table 2.

Table 2. The neural network architecture used in the experiments.

Layer Number of Neurons Activation Function

Input Layer 540/1080 ReLU
Hidden Layer 700 ReLU
Hidden Layer 500 ReLU
Hidden Layer 300 ReLU
Hidden Layer 50 ReLU
Output Layer 2 ReLU
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hyperspectral images, after which two sets of datasets, namely, the mean + variance and pixel base,
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a Random Forest Classifier (RFC).

2.8. Model Evaluation

To evaluate the classification ability of a model with high accuracy, it is important to
have an objective statistical value that is not affected by the amount of data. Therefore,
we used the three-dimensional Receiver Operating Characteristic Curve Analysis (3D
ROC) method to assess the classifier model [27–31]. The 3D ROC method can provide
a comprehensive evaluation of the model’s performance by considering different cutoff
values for the predicted probabilities, and can visualize the classifier’s performance in three
dimensions, including its sensitivity, specificity, and accuracy. This method can also help to
determine the optimal threshold value for classification and compare the performance of
different classifiers.

The 3D Receiver Operating Characteristic Curve Analysis (3D ROC)

The 3D receiver operating characteristic (ROC) curve is composed of three 2D charts,
namely,(PD, PF), (PD, τ), and (PF, τ). ROC analysis has been widely used in signal detec-
tion. The principle of ROC is based on the Neyman–Pearson detector (NPD), which uses
continuously changing detection probability (PD) to generate different false alarm probabil-
ity values (PF), and the new value, τ, which we define as the sampling point of the detection
target. The continuous change in τ generates different values of PD and PF. We calculated
the curves of each of the three 2D charts, and the curves of (PD, PF), (PD, τ), and(PF, τ)
denote the areas under the curves (AUCs), AUC(D,F), AUC(D,τ), and AUC(F,τ), respectively.
In 3D ROC curve analysis, there are more analysis methods derived from 2D ROC. We used
six methods, Target Detectability (TD), Background Suppressibility (BS), TD in Background
(TD-BS), Overall Detection Probability (ODP), Overall Detection (OD), and Signal-to-Noise
Probability Ratio (SNPR), to evaluate the classifier model.

1. Target Detectability (TD) indicates the effectiveness of a detector and the maximum
detection probability it can achieve. Its formula is defined as follows:

0 ≤ AUCTD = AUC(D,F) + AUC(D,τ) ≤ 2 (2)

2. Background Suppressibility (BS) is used to describe the ability of a detector to suppress
background noise, with PF as an indicator. A smaller value of AUCF,τ indicates better
Background Suppressibility. The formula for BS is defined as follows:

−1 ≤ AUCBS = AUC(D,F) − AUC(F,τ) ≤ 1 (3)
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3. TD in Background (TD-BS) is the first part of Joint Target Detectability with Back-
ground Suppressibility. It takes into account the probability of falsely detecting noise
as a signal to generate PF. To calculate TD-BS, PF should be subtracted from PD. The
formula for TD-BS is defined as follows:

−1 ≤ AUCTD−BS = AUC(D,τ) − AUC(F,τ) ≤ 1 (4)

4. Overall Detection Probability (ODP) represents the overall probability of correct
classification for both the signal and background data. It is the second part of the Joint
Target Detectability with Background Suppressibility analysis, and is derived from a
classification perspective. The formula for ODP is defined as follows:

0 ≤ AUCODP = AUC(D,τ) +
(

1− AUC(F,τ)

)
≤ 2 (5)

5. Overall Detection (OD) is a single quantitative value of detector performance that
combines the AUC values generated by the three 2D ROC curves to evaluate each
target detector being compared. It provides an overall assessment of the detector’s
ability to differentiate targets from non-targets across a range of operating conditions.
The formula for calculating OD is defined as follows:

−1 ≤ AUCOC = AUC(D,F) + AUC(D,τ) − AUC(F,τ) ≤ 2 (6)

6. Signal-to-Noise Probability Ratio (SNPR) is an effective detection measure that is
derived from a similar idea to the widely used signal-to-noise ratio (SNR) in com-
munication/signal processing. SNPR is defined as the ratio of the target detection
probability (PD) to the false alarm probability (PF), which represents the degree of
improvement in target detection while suppressing the background. The formula for
SNPR is defined as follows:

0 ≤ AUCSNPR =
AUC(D,τ)

AUC(F,τ)
(7)

3. Results
3.1. Reflectance of Phalaenopsis

In this experiment, VNIR, SWIR, and RGB images were captured from Day 0 to Day 6.
Subsequently, the plants were observed, and based on the observations, they were labeled
as either healthy or sick. The ROI was obtained using the process outlined in Figure 3,
and the spectral reflectance was calculated, followed by averaging to obtain the average
spectrum. Figure 6 illustrates the average spectrum of both healthy and diseased plants in
the VNIR and SWIR. Regarding the VNIR reflectance, significant differences were observed
between 530 nm to 690 nm and 740 nm to 950 nm. As for the SWIR sensor, reflectance
values with significant differences were collected between 950 nm to 1130 nm and 1150 nm
to 1320 nm.

3.2. Training Data

In this paper, we aimed to implement classification in the pipeline system, and thus,
we established three classifiers using the original pixel data and classification, as well as
mean–variance data and classification, respectively. The training dataset is presented in
Table 3, and the test dataset is presented in Table 4.

Table 3. The training dataset of healthy and diseased samples.

Healthy Samples Diseased Samples

VNIR 55,600 53,000
SWIR 56,320 52,992
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Table 4. The test dataset of healthy and diseased samples.

Healthy Samples Diseased Samples

VNIR 38,000 42,000
SWIR 38,656 36,864

3.3. Classification

For statistical indicators, 50% of the pixels from the ROI of Phalaenopsis were randomly
selected, and their mean and variance were calculated. Training and prediction were
performed on all of the training and test data using a Multilayer Perceptron (MLP) with
four hidden layers, comprising 700 neurons in the first layer, 500 neurons in the second
layer, 300 neurons in the third layer, and 50 neurons in the fourth layer. The output layer
contained two neurons. The daily accuracy of VNIR data before and after mean–variance
is presented in Table 5, while Table 6 displays the daily accuracy of SWIR data before and
after mean–variance.

Table 5. The daily accuracy of VNIR pixel base and mean–variance.

Input
Features Classifier Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Average

Precision

Pixel 540
SVM 71.73% 84.51% 84.82% 86.84% 86.91% 86.47% 88.39% 84.24%
DNN 72.88% 86.49% 87.10% 87.74% 88.32% 88.39% 90.47% 85.91%
RFC 62.86% 84.46% 81.31% 81.50% 81.29% 80.28% 82.01% 79.10%

Mean–
Variance

1080
SVM 83.97% 84.25% 87.43% 89.50% 90.3% 90.35% 92.24% 88.29%
DNN 86.51% 87.97% 87.22% 87.90% 93.00% 93.24% 95.77% 90.23%
RFC 82.50% 82.68% 87.01% 89.37% 90.04% 91.65% 92.49% 87.96%

Table 6. The daily accuracy of SWIR pixel base and mean–variance.

Input
Features Classifier Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Average

Precision

Pixel 540
SVM 69.80% 70.15% 72.20% 74.64% 76.11% 78.04% 80.8% 74.43%
DNN 70.87% 74.64% 84.42% 85.83% 85.95% 86.53% 88.35% 82.37%
RFC 67.33% 68.98% 69.67% 74.47% 75.62% 76.27% 77.40% 72.82%

Mean–
Variance

1080
SVM 66.36% 66.70% 72.98% 75.28% 80.72% 81.32% 81.94% 75.04%
DNN 63.11% 77.88% 87.29% 88.19% 90.04% 91.58% 91.72% 84.26%
RFC 66.13% 66.20% 71.31% 74.75% 79.25% 79.71% 80.37% 73.96%

The daily accuracy tables demonstrate that as the severity of wilt disease increased
over time, the model’s accuracy also improved. From Tables 5 and 6, it can be observed
that, for both the VNIR and SWIR data, the pixel-based method exhibited slightly lower
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accuracy compared to the mean–variance. Moreover, the mean–variance statistical method
outperformed the pixel-based method in terms of accuracy.

Comparing the performance of the three classification methods (DNN, SVM, and RFC)
based on the results, it is evident that DNN achieved a higher accuracy than SVM and RFC
in both the VNIR and SWIR data. SVM performed slightly better than RFC. DNN also
showed a slight advantage over SVM and RFC in terms of precision.

3.4. The Model Evaluation Using 3D ROC

In this study, in order to ascertain the effectiveness of the model’s classification per-
formance, the quality of background signal suppression was evaluated, as high accuracy
does not necessarily imply good background suppression. For this purpose, the classifier’s
performance was evaluated using 3D ROC analysis, the results of which are presented in
Figure 7. Three 2D plots were generated, each illustrating the area under the curve (AUC),
from which six performance evaluation metrics were computed, as shown in Tables 7 and 8.
Based on the 2D ROC curves (PD, PF), the AUC was calculated, with this area defined as
the overall detection rate (DR), serving as a metric to assess the detector’s effectiveness.
A DR of 1 indicated optimal detector performance, while a DR of 0.5 indicated the worst
performance. Tables 7 and 8 reveal that for both VNIR and SWIR, the DNN exhibited the
best performance, whereas RFC performed less favorably. The 2D ROC curves (PD, PF), (PD,
τ), and (PF, τ) were further used to evaluate the detector, along with its target detectabil-
ity (TD) and background suppressibility (BS). In this aspect, it was observed that DNN
yielded superior results, whereas SVM and RFC demonstrated less pronounced differences.
Additionally, in terms of AUCODP and AUCOD, minimal variations were observed among
the three classifiers. AUCSNPR offered a comprehensive assessment of both TD and BS,
providing valuable and crucial insights. Tables 7 and 8 indicate that DNN outperformed
the other classifiers by a significant margin in terms of AUCSNPR. Consequently, it can be
concluded that the DNN classifier exhibits better background suppression and superior
classification performance compared to the other three classifiers.

Table 7. AUC values calculated for the detection results using statistical indicators from VNIR in
three classifiers from the three 2D ROC curves of (PD, PF).

AUC(D, F) AUC(D, τ) AUC(F, τ) AUCTD AUCBS AUCTD-BS AUCODP AUCOD AUCSNPR

SVM 0.9579 0.4703 0.3009 1.4281 0.6569 0.1694 1.1694 1.1272 1.5628
DNN 0.9674 0.5831 0.0967 1.5505 0.8708 0.4864 1.4864 1.4538 6.0312
RFC 0.9142 0.4875 0.2427 1.4017 0.6715 0.2448 1.2448 1.1590 2.0086

AUC: area under the curve. AUC(D,F), AUC(D,τ), and AUC(F,τ): AUC values of 2D ROC curve of (PD,PF), (PD,τ),
and (PF,τ).

Table 8. AUC values calculated for the detection results using statistical indicators from SWIR in
three classifiers from the three 2D ROC curves of (PD, PF).

AUC(D, F) AUC(D, τ) AUC(F, τ) AUCTD AUCBS AUCTD-BS AUCODP AUCOD AUCSNPR

SVM 0.9032 0.3817 0.1162 1.2849 0.7870 0.2654 1.2654 1.1686 3.2833
DNN 0.9338 0.5187 0.0772 1.4525 0.8566 0.4415 1.4415 1.3753 6.7169
RFC 0.8773 0.3997 0.1340 1.3960 0.7434 0.3848 1.3848 1.2621 3.8723

AUC: area under the curve. AUC(D,F), AUC(D,τ), and AUC(F,τ): AUC values of 2D ROC curve of (PD,PF), (PD,τ),
and (PF,τ).
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3.5. Automated Pipeline Identification System

Our previous research and experiments aimed to establish an automated pipeline
identification system. For this purpose, in this paper, we developed three classifiers for
prediction and used their calculated probabilities to vote for the final classification. To
achieve this integration, we collaborated with Isuzu spectrum equipment manufacturers.
Through their engineers, we connected a new Python interface that eliminated the 90 s of
image calibration from the original process, as shown in Figure 8. We also accelerated the
two processes of translating raw files to mat files and capturing ROI information, reducing
the total processing time from 8 min to 1.5 min, as depicted in Figure 9. Moreover, we
designed a new user interface and automatic ROI image capture, as illustrated in Figure 10.
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The flowchart in Figure 8 primarily addresses the last three steps. In the “Translate
RAW file to mat file” step, we used the Python library to read the ENVI format file from
VNIR directly, which significantly reduced the file reading time and eliminated the need
for format conversion. In the “Capture ROI information” step, we marked the conveyor
belt and placed the stem base on the marking point after positioning the potted plants. This
allowed us to use a simple center for locating a small area when processing the ROI. During
ROI calculation in the prediction part, we used parallel operations to obtain the prediction
results of the three methods and finally voted to obtain the final answer. Additionally, we
are integrating another spectrometer, SWIR, and plan to use segmentation methods such as
Mask-RCNN to capture the ROI in the future.
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4. Discussion
4.1. Benefits of Statistical Indicators

The main area for disease recognition in the visual inspection was found to be
the stem base, rather than the leaves, due to the potential presence of various causes
of leaf yellowing, meaning they were not the primary region for disease detection. In
Figure 2d–f, the progressive development of disease symptoms in infected plants from
no visible symptoms (Day 0) to apparent symptoms (Day 6) can be observed. On Day
3 (Figure 2e), despite leaf yellowing, there was little distinction in disease recognition
between the stem bases of infected plants and healthy ones (Figure 2b). However, on Day 6
(Figure 2f), the stem bases of infected plants displayed evident yellowing, confirming the
presence of the disease. It is evident from Figure 2 that disease symptoms in the stem
bases of infected Phalaenopsis gradually become more pronounced or conspicuous over
time. This observation aligns with the results obtained from the trained models presented
in Tables 5 and 6, where an increase in accuracy with the passage of days can be observed.
As the number of days increased, the accuracy of the Day 0-6 models rose due to the ex-
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pansion of disease symptoms, resulting in a larger area of disease-related features covered
by VNIR and SWIR images, thereby facilitating the differentiation between healthy and
infected Phalaenopsis.

In Table 5, it can be observed that the accuracy of the Day 1–6 trained models was
higher when mean–variance was used as the input feature, as opposed to using pixel-
based features alone. This finding is attributed to the fact that stem base symptoms
are not well-defined in the early stages of the disease, making it challenging to accurately
delineate the region of fusarium wilt infection. Consequently, errors occur when identifying
healthy or infected pixels, affecting the accuracy of models trained using pixel-based
datasets. In contrast, the statistical indicator involves random pixel selection and statistical
calculations, effectively reducing the impact of inaccurate labeling. The process of taking the
mean also helps eliminate anomalous noise, reducing errors caused by noise in the model.
On the other hand, the variance adequately explained the diversity of pixels within the
ROI, which proved advantageous as a feature in the early stages of disease development.
Utilizing the mean and variance values of pixels within the ROI as new features not
only increases the number of features but also improves the accuracy compared to using
pixel-based features alone.

4.2. The Future of Automated Pipeline Identification Systems

In Section 3.5, the integration of VNIR, SWIR, and RGB into the automated pipeline
identification system was described. The user interface of the system is depicted in Fig-
ure 11a. A separate RGB window was included in the interface to facilitate the real-time
monitoring of the conveyor. On the right side of the interface, the two hyperspectral
imagers can be configured, classifier training models can be imported, and the file-saving
path can be selected. Control buttons for the real-time detection mode are located in the
lower right corner. Additionally, we incorporated the original sampling mode for collecting
hyperspectral data, and the corresponding user interface is presented in Figure 11b. The
upper left section allows users to choose the hyperspectral imager, while the lower section
enables adjustments to be made to the camera parameters, the calibration of hyperspectral
images, and the selection of the file-saving path. Similar to the real-time detection mode,
control buttons for conveyor operations are available at the bottom.

Through this integrated interface, both VNIR and SWIR hyperspectral imagers can
be operated simultaneously, streamlining the image acquisition process and reducing
the complexity of managing two separate systems. Previously, users had to operate two
software platforms on one computer to acquire hyperspectral images from both imagers.
Now, this process can be completed through a unified software interface. Additionally, with
a single operation, both VNIR and SWIR images can be scanned simultaneously, resulting
in a 20% increase in user efficiency. In the context of industrial applications, this integration
closely mirrors the actual shipment inspection process, minimizing the need for manual
interventions and increasing the industry’s acceptance of the system.
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5. Conclusions

This study presents a method for detecting fusarium wilt on Phalaenopsis using hyper-
spectral imaging and implements an automated pipeline recognition system for real-time
monitoring in the industry. To achieve real-time monitoring, a simple integration method
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was employed, where the spectral values of each pixel in the hyperspectral images were
randomly sampled at 50% and their mean and variance calculated. This process was
repeated several times, and the combined mean and variance features were then fed into
the classifier for training. The classifier training results showed that the accuracy and preci-
sion of mean–variance in VNIR and SWIR images were superior to those for pixel-based
methods. The best accuracy achieved with the VNIR mean–variance classifier was 95.77%,
and the best accuracy achieved with the SWIR mean–variance classifier was 91.72%.

After confirming the effectiveness of the mean–variance, three classifiers (DNN, SVM,
and RFC) were trained. DNN achieved the best accuracy and precision in both VNIR
and SWIR. In addition to evaluating the accuracy of the classifier models, the 3D ROC
objective measurement method was used to assess the classifier models. The SNPR indicator
demonstrated that DNN had a good background suppression effect in both spectral bands,
outperforming SVM and RFC significantly. Finally, the results of the three classifiers were
combined through voting in the automated pipeline recognition system. After conducting
tests and engaging in discussions with the equipment manufacturer, the three methods
introduced in this study were chosen for detection. The expected detection time for the
three methods was within an acceptable range at 3380 ms ± 86.36 ms. The final detection
results can be determined through a simple voting process.

At present, the identification and quality inspection of agricultural pests mainly rely
on manual visual judgment. However, by optimizing the hyperspectral image processing
workflow, the statistical indicator time can be reduced to a range suitable for real-time
monitoring. The equipment currently used in the industry for fusarium wilt identification
takes approximately 4 s to process a single Phalaenopsis plantlet, which is similar to the
time required by the system proposed in this study. The results of this research also
demonstrate the capability of hyperspectral imaging to detect the disease on Day 3, even
before visible symptoms are apparent to the naked eye. This significant advancement in the
application of hyperspectral imaging can provide real-time assistance in manual judgment
and achieve early warning effects. In the future, band selection techniques will continue
to be developed to simplify the complexity of spectral equipment and reduce the cost of
equipment implementation.

Author Contributions: Conceptualization, M.-S.S. and Y.-C.O.; Methodology, M.-S.S., K.-C.C. and S.-
A.C.; Software, K.-C.C. and S.-A.C.; Validation, K.-C.C. and S.-A.C.; Investigation, M.-S.S.; Resources,
T.-S.L.; Writing—original draft, M.-S.S., K.-C.C. and S.-A.C.; Writing—review & editing, M.-S.S. and
Y.-C.O.; Supervision, Y.-C.O.; Project administration, M.-S.S. and Y.-C.O. All authors have read and
agreed to the published version of the manuscript.

Funding: The research conducted in this paper was supported by Ministry of Agriculture Taiwan
with the grant number 110AS-8.3.2-ST-a6.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Srivastava, S.; Kadooka, C.; Uchida, J.Y. Fusarium species as pathogen on orchids. Microbiol. Res. 2018, 207, 188–195. [CrossRef]

[PubMed]
2. Chen, S.-Y.; Wu, Y.-J.; Hsieh, T.-F.; Su, J.-F.; Shen, W.-C.; Lai, Y.-H.; Lai, P.-C.; Chen, W.-H.; Chen, H.-H. Develop an efficient

inoculation technique for Fusarium solani isolate ‘TJP-2178-10′ pathogeny assessment in Phalaenopsis orchids. Bot. Stud. 2021,
62, 4. [CrossRef] [PubMed]

3. Kim, W.-G.; Lee, B.-D.; Kim, W.-S.; Cho, W.-D. Root Rot of Moth Orchid Caused by Fusarium spp. Plant Pathol. J. 2002, 18, 225–227.
[CrossRef]

4. Gullino, M.L.; Minuto, A.; Gilardi, G.; Garibaldi, A. Efficacy of azoxystrobin and other strobilurins against Fusarium wilts of
carnation, cyclamen and Paris daisy. Crop Prot. 2002, 21, 57–61. [CrossRef]

5. Shanavas, J. Biocontrol of fusarium wilt of vanilla (vanilla planifolia) Using combined inoculation of trichoderma sp. And
Pseudomonas sp. Int. J. Pharma Bio Sci. 2012, 3, 706–716.

6. Albetis, J.; Jacquin, A.; Goulard, M.; Poilvé, H.; Rousseau, J.; Clenet, H.; Dedieu, G.; Duthoit, S. On the Potentiality of UAV
Multispectral Imagery to Detect Flavescence dorée and Grapevine Trunk Diseases. Remote Sens. 2019, 11, 23. [CrossRef]

https://doi.org/10.1016/j.micres.2017.12.002
https://www.ncbi.nlm.nih.gov/pubmed/29458853
https://doi.org/10.1186/s40529-021-00310-z
https://www.ncbi.nlm.nih.gov/pubmed/33788041
https://doi.org/10.5423/PPJ.2002.18.4.225
https://doi.org/10.1016/S0261-2194(01)00066-7
https://doi.org/10.3390/rs11010023


Remote Sens. 2023, 15, 4174 18 of 18

7. Vélez, S.; Ariza-Sentís, M.; Valente, J. Mapping the spatial variability of Botrytis bunch rot risk in vineyards using UAV
multispectral imagery. Eur. J. Agron. 2023, 142, 126691. [CrossRef]

8. Chang, A.; Yeom, J.; Jung, J.; Landivar, J. Comparison of Canopy Shape and Vegetation Indices of Citrus Trees Derived from UAV
Multispectral Images for Characterization of Citrus Greening Disease. Remote Sens. 2020, 12, 4122. [CrossRef]

9. van Roy, J.; Wouters, N.; De Ketelaere, B.; Saeys, W. Semi-supervised learning of hyperspectral image segmentation applied to
vine tomatoes and table grapes. J. Spectr. Imaging 2018, 7, a7. [CrossRef]

10. Hu, N.; Wei, D.; Zhang, L.; Wang, J.; Xu, H.; Zhao, Y. Application of Vis-NIR hyperspectral imaging in agricultural products
detection. In Proceedings of the 2017 9th International Conference on Advanced Infocomm Technology (ICAIT), Chengdu, China,
22–24 November 2017; pp. 350–355. [CrossRef]

11. Dang, H.-Q.; Kim, I.; Cho, B.-K.; Kim, M.S. Detection of bruise damage of pear using hyperspectral imagery. In Proceedings
of the 2012 12th International Conference on Control, Automation and Systems, Jeju Island, Republic of Korea, 17–21 October
2012; pp. 1258–1260.

12. Yuan, L.; Yan, P.; Han, W.; Huang, Y.; Wang, B.; Zhang, J.; Zhang, H.; Bao, Z. Detection of anthracnose in tea plants based on
hyperspectral imaging. Comput. Electron. Agric. 2019, 167, 105039. [CrossRef]

13. Zhang, X.; Wang, Y.; Zhou, Z.; Zhang, Y.; Wang, X. Detection Method for Tomato Leaf Mildew Based on Hyperspectral Fusion
Terahertz Technology. Foods 2023, 12, 535. [CrossRef] [PubMed]

14. Cen, Y.; Huang, Y.; Hu, S.; Zhang, L.; Zhang, J. Early Detection of Bacterial Wilt in Tomato with Portable Hyperspectral
Spectrometer. Remote Sens. 2022, 14, 2882. [CrossRef]

15. Ashourloo, D.; Aghighi, H.; Matkan, A.A.; Mobasheri, M.R.; Rad, A.M. An Investigation Into Machine Learning Regression
Techniques for the Leaf Rust Disease Detection Using Hyperspectral Measurement. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2016, 9, 4344–4351. [CrossRef]

16. Detection of Early Blight and Late Blight Diseases on Tomato Leaves USING Hyperspectral Imaging. Sci. Rep. 2015, 5, 16564.
Available online: https://www.nature.com/articles/srep16564 (accessed on 3 August 2023).

17. Lowe, A.; Harrison, N.; French, A.P. Hyperspectral image analysis techniques for the detection and classification of the early
onset of plant disease and stress. Plant Methods 2017, 13, 80. [CrossRef]

18. Wan, L.; Li, H.; Li, C.; Wang, A.; Yang, Y.; Wang, P. Hyperspectral Sensing of Plant Diseases: Principle and Methods. Agronomy
2022, 12, 1451. [CrossRef]

19. Nguyen, C.; Sagan, V.; Maimaitiyiming, M.; Maimaitijiang, M.; Bhadra, S.; Kwasniewski, M.T. Early Detection of Plant Viral
Disease Using Hyperspectral Imaging and Deep Learning. Sensors 2021, 21, 742. [CrossRef]

20. Ren, H.; Chang, C.-I. Automatic spectral target recognition in hyperspectral imagery. IEEE Trans. Aerosp. Electron. Syst. 2003,
39, 1232–1249. [CrossRef]

21. Chang, C.-I. Target signature-constrained mixed pixel classification for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens.
2002, 40, 1065–1081. [CrossRef]

22. Liu, J.-M.; Chang, C.-I.; Chieu, B.-C.; Ren, H.; Wang, C.-M.; Lo, C.-S.; Chung, P.-C.; Yang, C.-W.; Ma, D.-J. Generalized constrained
energy minimization approach to subpixel target detection for multispectral imagery. Opt. Eng. 2000, 39, 1275–1281. [CrossRef]

23. Chen, S.-Y.; Lin, C.; Tai, C.-H.; Chuang, S.-J. Adaptive Window-Based Constrained Energy Minimization for Detection of Newly
Grown Tree Leaves. Remote Sens. 2018, 10, 96. [CrossRef]

24. Gardner, M.W.; Dorling, S.R. Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric
sciences. Atmos. Environ. 1998, 32, 2627–2636. [CrossRef]

25. Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Their Appl. 1998,
13, 18–28. [CrossRef]

26. Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition,
Montreal, QC, Canada, 14–16 August 1995; Volume 1, pp. 278–282. [CrossRef]

27. Chang, C.-I. An Effective Evaluation Tool for Hyperspectral Target Detection: 3D Receiver Operating Characteristic Curve
Analysis. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5131–5153. [CrossRef]

28. Chang, C.-I.; Chiang, S.-S.; Du, Q.; Ren, H.; Ifarragaerri, A. An ROC analysis for subpixel detection. In IGARSS 2001. Scanning
the Present and Resolving the Future, Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat.
No.01CH37217), Sydney, Ausralia, 9–13 July 2001; IEEE: Piscataway, NJ, USA, 2001; Volume 5, pp. 2355–2357. [CrossRef]

29. Wang, L.; Chang, C.-I.; Lee, L.-C.; Wang, Y.; Xue, B.; Song, M.; Yu, C.; Li, S. Band Subset Selection for Anomaly Detection in
Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4887–4898. [CrossRef]

30. Wang, S.; Chang, C.-I.; Yang, S.-C.; Hsu, G.-C.; Hsu, H.-H.; Chung, P.-C.; Guo, S.-M.; Lee, S.-K. 3D ROC Analysis for Medical
Imaging Diagnosis. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai,
China, 17–18 January 2006; pp. 7545–7548. [CrossRef]

31. Hyperspectral Imaging: Techniques for Spectral Detection and Classification | SpringerLink. Available online: https://link.
springer.com/book/10.1007/978-1-4419-9170-6 (accessed on 3 August 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.eja.2022.126691
https://doi.org/10.3390/rs12244122
https://doi.org/10.1255/jsi.2018.a7
https://doi.org/10.1109/ICAIT.2017.8388944
https://doi.org/10.1016/j.compag.2019.105039
https://doi.org/10.3390/foods12030535
https://www.ncbi.nlm.nih.gov/pubmed/36766063
https://doi.org/10.3390/rs14122882
https://doi.org/10.1109/JSTARS.2016.2575360
https://www.nature.com/articles/srep16564
https://doi.org/10.1186/s13007-017-0233-z
https://doi.org/10.3390/agronomy12061451
https://doi.org/10.3390/s21030742
https://doi.org/10.1109/TAES.2003.1261124
https://doi.org/10.1109/TGRS.2002.1010894
https://doi.org/10.1117/1.602486
https://doi.org/10.3390/rs10010096
https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/10.1109/5254.708428
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1109/TGRS.2020.3021671
https://doi.org/10.1109/IGARSS.2001.978000
https://doi.org/10.1109/TGRS.2017.2681278
https://doi.org/10.1109/IEMBS.2005.1616258
https://link.springer.com/book/10.1007/978-1-4419-9170-6
https://link.springer.com/book/10.1007/978-1-4419-9170-6

	Introduction 
	Materials and Methods 
	Pipeline Identification System 
	Samples of Phalaenopsis 
	Hyperspectrometer 
	Hyperspectral Image Calibration 
	Hyperspectral Image Region of Interest (ROI) Extraction 
	Statistical Indicators 
	Data Training Models 
	Model Evaluation 

	Results 
	Reflectance of Phalaenopsis 
	Training Data 
	Classification 
	The Model Evaluation Using 3D ROC 
	Automated Pipeline Identification System 

	Discussion 
	Benefits of Statistical Indicators 
	The Future of Automated Pipeline Identification Systems 

	Conclusions 
	References

