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Abstract: Northeast China plays a pivotal role in producing commodity grains. The precipitation and
temperature distribution during the growth season is impacted by geographical and climate factors,
rendering the region vulnerable to drought. However, relying on a single index does not reflect the
severity and extent of drought in different regions. This research utilised the random forest (RF)
model for screening remote sensing indices. Relative soil moisture (RSM) was employed to compare
seven commonly used indices: the temperature vegetation dryness index (TVDI), vegetation supply
water index (VSWI), vegetation condition index (VCI), temperature condition index (TCI), vegetation
health index (VHI), multi-band drought index (MBDI), and normalised difference drought index
(NDDI). The effectiveness of these indices for monitoring drought during different developmental
stages of spring maize was evaluated. Trend rates were employed to investigate the temporal changes
in drought patterns of spring maize from 2003 to 2020, and the Sen + Mann–Kendall test was used to
analyse spatial variations. The results showed the following: (1) The seven remote sensing indices
could accurately track drought during critical growth stages with the TVDI demonstrating higher
applicability than the other six indices. (2) The application periods of two TVDIs with different
parameters differed for the drought monitoring of spring maize in different developmental periods.
The consistency and accuracy of the normalised difference vegetation index (NDVI)-based TVDI
(TVDIN) were 5.77% and 34.62% higher than those of the enhanced vegetation index (EVI)-based TVDI
(TVDIE), respectively, in the early stage. In contrast, the TVDIE exhibited 13.46% higher consistency
than the TVDIN in the middle stage, and the accuracy was the same. During the later stage, the TVDIE

showed significantly higher consistency and accuracy than the TVDIN with consistency increases
of 9.61% and 38.64%, respectively. (3) The drought trend in northeast China increased from 2003 to
2020, exhibiting severe spring drought and a weakening of the drought in summer. The southern,
southwestern, and northwestern parts of northeast China showed an upward drought trend; the
drought-affected areas accounted for 37.91% of the study area. This paper identified the most suitable
remote sensing indices for monitoring drought in different developmental stages of spring maize.
The results provide a comprehensive understanding of the spatial–temporal patterns of drought
during the past 18 years. These findings can be used to develop a dynamic agricultural drought
monitoring model to ensure food security.

Keywords: northeast China; spring maize; spatial-temporal pattern; drought monitoring; random
forest model; Sen + Mann–Kendall test model
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1. Introduction

Drought has significant impacts on crop growth, causing fluctuations in food prices
and triggering global food crises [1,2]. The impact of drought is also severe in China, with
an average annual affected area and disaster area of 2.1 × 107 hm2 and 8.9 × 106 hm2,
respectively [3]. Moreover, the average annual direct economic loss is 44 billion CNY [4].
The drought pattern has changed due to global climate warming, worsening the situation
in northeast China [5]. Northeast China is situated in the ‘golden corn belt’ [6], with a corn
planting area of 6 × 106~7 × 106 hm2 and an annual output of over 4×109 t, accounting
for 33% of the total national corn output [7]. Despite the increase in production input
and advancements in science and technology, the planting area and yield of spring maize
remain vulnerable to the effects of drought [8]. The region is characterised by rain-fed
agriculture. The anomalous atmospheric circulation caused by the East Asian tropical
monsoon and the subtropical monsoon has resulted in decreased precipitation during crop
growth seasons in recent years [9]. This frequent occurrence of drought during the spring
maize growth season highlights the importance of obtaining better insights into the patterns
of drought occurrence, development, and recession as well as accurately identifying the
spatial–temporal patterns of drought under the background of climate change [10,11].
Doing so will enable us to take appropriate disaster prevention measures, adjust planting
schedules, ensure the healthy and stable development of the agricultural economy, and
achieve stable grain yields. Thus, this research is critical for northeast China [12].

Current drought monitoring primarily relies on two data sources: meteorological
observation stations and satellite remote sensing [13–15]. However, meteorological stations
are unevenly distributed, making it difficult to carry out high-precision drought monitoring
in areas with sparse stations [15,16]. Additionally, drought monitoring based solely on
meteorological data does not account for the water requirements of vegetation or the water
status of the soil, leading to limitations in agricultural drought monitoring [17]. Due to the
advancement of remote sensing technology, remote sensing data have become more reliable
for monitoring large-scale spatial–temporal patterns of drought [18]. Remote sensing data
offer wide coverage, high spatial resolution, and timeliness, providing information on crop
growth and canopy cover before and after disasters [19].

Remote sensing-based drought monitoring methods fall into four categories. The
first category is the vegetation index (VI) method, which links vegetation growth status
with drought. This method is widely used, and the most commonly used VIs include the
normalised difference vegetation index (NDVI) proposed by Tucker [20], the vegetation
condition index (VCI) proposed by Kogan [21], and the enhanced vegetation index (EVI)
proposed by Liu and Huete [22]. These indices reflect the photosynthetic activity, canopy
structure, and vegetation cover of crops, providing valuable information for monitoring
drought conditions. However, the VI method has some limitations, including sensitivity to
atmospheric conditions, soil background interference, and saturation under high biomass
conditions. The second category is the combined use of VIs and land surface temperature
(LST). Commonly used VIs include the vegetation health index (VHI) proposed by Ko-
gan [23], the vegetation and soil moisture index (VSWI) proposed by Carlson [24], and the
temperature vegetation dryness index (TVDI) proposed by Sandholt [25]. This method com-
bines the advantages of VIs and LST in drought monitoring and has been widely used in
identifying drought and its spatial–temporal patterns [26]. However, these indices are more
suitable for the entire vegetation coverage period, and they are based on statistical analysis;
thus, they may not accurately reflect drought conditions. The third category is based on
the surface energy balance theory, which focuses on the soil. Common indices used in this
method include the crop water stress index (CWSI) proposed by Idso [27] and the water
deficit index (WDI) proposed by Moran [28]. However, this method is only applicable to
periods of bare soil or low vegetation coverage. Additionally, the temperature obtained
from remote sensing images may have substantial uncertainty, limiting the accuracy of this
method for drought monitoring [29]. The fourth category is active and passive microwave
remote sensing. This method has been widely used in soil moisture inversion because
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the data acquisition is not affected by atmospheric conditions [30]. Although microwave
remote sensing is very sensitive to soil moisture, its spatial resolution is often coarse, and
the accuracy of drought identification may not be as high as that of other remote sensing
methods [31].

Due to the complexity of the earth–atmosphere system, the diversity of organisms, and
drought variability, the applicability and accuracy of remote sensing indices for drought
monitoring may be affected by many factors, such as time and space, farmland environ-
ment, crop type, and different developmental stages of crops [32]. Previous studies have
indicated that remote sensing indices vary significantly in different regions, and a single
index may not reflect the intensity and severity of drought in different regions [33–35].
Therefore, it is necessary to evaluate the accuracy and applicability of a drought index
before use. Researchers have improved and revised common remote sensing indices by
considering the influence of the farmland environment and regional climate factors in
different research areas and for different research objects and purposes to improve the
accuracy of drought monitoring. The improved remote sensing indices better reflect the
drought conditions of local crops [36–38]. Some scholars have observed differences in the
sensitive period of remote sensing indices when the indices were constructed with different
parameters [39,40]. Additionally, the correlation difference between the moisture content of
the cultivated soil layer and remote sensing indices has been used to evaluate the applica-
bility of remote sensing indicators to assess agricultural drought and the limitation of their
spatial–temporal application range. Some researchers are also exploring the applicability of
remote sensing indices based on deep learning algorithms, such as the random forest (RF)
model and convolutional neural networks [41,42]. These studies provide a theoretical basis
for improving the accuracy of drought monitoring and determining the sensitive periods
of remote sensing indices constructed with different parameters in northeast China [29].

Drought remote sensing monitoring has a wide range of applications, but drought
characteristics differ in different regions and for different crops [23]. It is crucial to ensure
that the selected indicators are applicable to drought monitoring [13,14]. Most research
on drought monitoring in northeast China utilised meteorological data to evaluate the
intensity, affected area, and spatial–temporal patterns of drought. However, a lack of
research exists on the applicability of drought monitoring indices and the spatial–temporal
patterns of drought using remote sensing data against the background of climate change.
Therefore, this study has two objectives: (1) to evaluate seven widely used drought indices
(TVDI, TCI, VCI, MBDI, VHI, NDDI and VSWI) and determine the best index for drought
monitoring in the study area and (2) to explore the spatial–temporal patterns of drought in
the study area from 2003 to 2020.

2. Material and Methods
2.1. Study Area

The study area covers a total area of approximately 14,500 × 104 hm2 and is located
between 38◦72′–53◦56′N and 115◦52′–135◦09′E, including Liaoning, Jilin, Heilongjiang,
and eastern Inner Mongolia. The main crop in this area is spring maize, which is followed
by soybean and rice [43]. Due to the high cumulative temperature, only one crop per
year is possible for spring maize in northeast China [8]. The study area and the spring
maize planting area are shown in Figure 1a. The area is characterised by high altitudes in
the northwest and southeast with a dominant presence of forestland [9]. The central and
eastern terrain is flat; therefore, these are the main planting areas for spring maize. The
southeast receives more rainfall than the northwest due to geographical and climatic factors.
The spatial–temporal distributions of temperature and precipitation in the spring maize
area are uneven with low rainfall occurring in May and high temperatures in July despite
abundant precipitation (Figure 1b,c) [11,12]. Therefore, the region is prone to large-scale
drought before and after the seedling and kernel-filling periods, significantly affecting the
growth and development of spring maize. The average temperature (Tmean) during the
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growing season has shown an increasing trend, whereas the cumulative precipitation (PRE)
has shown a decreasing trend in the past 36 years (Figure 1d) [43,44].
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Figure 1. The study area in northeast China: (a) spring maize area and sampling areas in 2018,
(b,c) multiyear PRE and Tmean, (d) Tmean and PRE trend in the growing season from 1985 to 2020,
(e) drought investigation of spring maize, (f) agricultural regions. Note: I, Songnen Plain Zone; II,
Baekdu Mountain Zone; III, Lesser Khingan Mountain Zone; IV, Sanjiang Plain Zone; V Greater
Khingan Mountain Zone; VI, Liaoning Plain and Hilly Zone; VII, Hulunbuir Grassland Zone; VIII,
Western Liao River Zone. (g) DEM and meteorological stations, and (h) soil texture.

2.2. Data Sources and Data Processing
2.2.1. NDVI, EVI, and LST Time-Series Data

The MOD09A1 (8-d surface reflectance (SR); 500 m resolution) and MOD11A2 (8-d
LST; 1000 m resolution) data products were downloaded from Google Earth Engine (GEE)
(https://code.earthengine.google.com) (accessed on 3 July 2023). The NDVI and EVI were
calculated based on the SR data using the ENVI + IDL programming environment. Some
values were missing due to clouds and shadows. Therefore, linear interpolation was used to
fill the missing values [45,46]. Additionally, Savitzky–Golay filtering was applied to denoise
the data. Second, a local regression model of NDVI and LST was used to interpolate the
missing LST values to obtain spatially continuous LST data. Finally, the spatial–temporal
resolutions of the remote sensing data used in this study were standardised to 8 d and
1000 m, respectively.

2.2.2. Spring Maize Area

Sentinel-2 SR products from April to August 2018 covering Northeast China were
selected in GEE (https://code.earthengine.google.com) (accessed on 3 July 2023). After
cloud removal and shadow processing, the missing values were replaced by data from
cloudless images from 2017 or 2016 to obtain a composite image covering the study area.
The NDVI and NDWI of the synthetic images from April to July were calculated, and the
seven bands (coastal aerosol, blue, green, red, near-infrared, shortwave infrared 1, and
shortwave infrared 2) of the synthetic images from August were used as the prediction
bands of the RF classifier. The RF classifier consisted of 20 trees, and 4900 sample points in

https://code.earthengine.google.com
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seven categories (water, town, forest land, maize, rice, soybean, and unused land) were
used to train the classifier in GEE. The image was classified into seven categories, and
the maize areas were extracted. The classification accuracy of the spring maize area was
calculated using 194 spring maize points identified and recorded by handheld GPS during
three field surveys in 2018. The final classification accuracy was 87.1% [45]. This study
focused on the applicability of drought monitoring indicators and the spatio-temporal
pattern of drought in spring maize areas under the background of climate change. Since
the field survey data for the accuracy assessments were collected in 2018, the spring maize
area in 2018 was used as the base map of the multiyear distribution of spring maize in
northeast China.

2.2.3. Relative Soil Moisture Data

The relative soil moisture (RSM) data came from the China Land Data Assimilation
System (CLDAS) V2.0 dataset of the China Meteorological Data Network (http://data.
cma.cn) (accessed on 3 July 2023). The daily RSM10 and RSM20 data of the spring maize
growing season in 2017 and 2018 were used as basic data. We used Python 3.7 to convert
the NC format into the TIFF format to construct a geographically weighted regression
model [47] of RSM, NDVI, and LST data. The 5 km resolution RSM data were resampled
to 1000 m. The average RSM value of 8 d in the same period as the remote sensing data
was calculated and recorded as the RSM value of the period, creating RSM data consistent
with the spatial–temporal resolution of the remote sensing data. The RSM was used as the
dependent variable, and the remote sensing indices were the independent variables in the
RF model, which was used to select the optimal remote sensing index.

2.2.4. Validation Data

The validation data were obtained from a real-time survey of spring maize areas in
2018. The survey data included surface soil and plant drought data. The research group
collected surface soil samples before and after the emergence of spring maize from May
14th to 18th, before and after the spring maize big trumpet period between July 12th and
19th (the middle stage of spring maize growth), and before and after the filling period from
August 6th to 14th (the final stage of spring maize growth). The locations of the sample
sites were recorded with handheld GPS devices. A total of 52 soil samples were collected
(Figure 1a), and drought symptoms were recorded (Figure 1c) Soil samples in four soil
layers (5 cm per layer) were obtained at each sample location. The drought status of spring
maize was documented via photography, and the RSM was determined by laboratory
analysis. The survey area for the drought that impacted spring maize in 2018 is shown in
Figure 1a. It covered a large area of spring maize planting locations on different slopes, at
different altitudes, and in soils with different textures. The survey covered every critical
developmental phase from pre-emergence to the filling stage of maize; thus, the data are
highly representative, ensuring the credibility and accuracy of the research findings.

2.2.5. Other Data

We used soil texture data and a digital elevation model (DEM) obtained from the
Resource and Environmental Science Data Centre of the Chinese Academy of Sciences
(http://www.resdc.cn) (accessed on 3 July 2023). We used 1 km resolution soil texture data
to discern sandy, clay, and loam soil. The 30 m resolution DEM data were employed to
extract terrain factors. ArcGIS 10.2 was used to extract and process the pertinent information
from the data, enhancing the accuracy and precision of the results.

2.3. Method
2.3.1. Selection of Remote Sensing Indices

Following studies on the remote sensing monitoring of agricultural drought [19,27,32,33],
seven widely used remote sensing indices were selected. These indexes were calculated

http://data.cma.cn
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using the MOD09A1 and MOD11A2 products. The VI equations and descriptions are listed
in Table 1.

Table 1. Vegetation index type and equations.

Remote Sensing Index Formula Index Type Reference

TVDI
TVDI = LSTVIi − LSTVIimin

LSTVIimax − LSTVIimin

LSTVIimax = a1 + b1VIi
LSTVIimin = a2 + b2VIi

Vegetation Index
Canopy Temperature Sandholt et al. (2002) [25]

VSWI VSWI = NDVI
LST

Vegetation Index
Canopy Temperature Carlson et al. (1994) [24]

VCI VCI = NDVI − NDVImin
NDVImax − NDVImin

Vegetation Index Kogan (1990) [21]

TCI TCI = LSTmax − LST
LSTmax − LSTmin

Canopy Temperature Tja et al. (2020) [48]

VHI VHI = a×VCI +(1− a)× TCI Vegetation Index
Canopy Temperature Kogan (1995) [23]

MBDI MBDI = NDWI
LST

Canopy Water Content
Canopy Temperature Li et al. (2022) [36]

NDDI NDDI = NDVI − NDWI
NDVI + NDWI

Vegetation Index
Canopy Water Content Trisasongko et al. (2015) [37]

2.3.2. Selection of the Optimal Remote Sensing Index and Parameter Optimisation

This study employed the RF package in the R language to establish the RF model and
select the optimal remote sensing index [38]. An RM model consists of multiple decision
trees. Each tree randomly selected 80% of the training samples to construct a decision tree.
The remaining 20% of the data was the out-of-bag sample, which was used as the test set to
compute the out-of-bag error. Assessing this error is similar to performing cross-validation;
thus, there is no need for cross-validation. The RF model had three crucial parameters:
the number of decision trees (ntree), the number of random variables for splitting nodes
(mtry), and the importance of the independent variables. Based on the initial experimental
results, we used 500 ntree and 1/3 of the mtry as inputs into the RF model. The importance
parameter was set to True.

The model outputs the importance values of the independent variables, based on
which we calculated the weights of the independent variables using Equation (1). The
higher the weight, the greater the response of the independent variable to the change in the
RSM, and the stronger the correlation between the independent variable and the RSM.

Pa =
Qa

n
∑

i=1
Qi

(1)

where Pa is the weight of the index; Qi (i = 1,2,3...n) is the importance value of each index,
and Qa (a = 1,2,3...n) is the sum of the important values of all indicators. The value of i is 7
in this study.

The screening and optimisation steps were as follows.

(1) Wen [49] observed that the roots with high water absorption capacity of spring maize
during the seedling stage were primarily located at a depth of 10 cm. Consequently,
we established two RF models for different stages of spring maize growth: one for
the seedling stage and another for the remaining period. We used the seven remote
sensing indices as independent variables in both models. The dependent variables
were RSM10 and RSM20 for soil depths of 10 cm and 20 cm, respectively.

(2) The RF model was utilised to ascertain the importance of the remote sensing indices
in responding to changes in the RSM at various developmental stages of spring maize.
The weighting factor P (Equation (1)) was determined, and the index weights during
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different developmental phases of spring maize were analysed to assess which indices
were the most suitable for different developmental stages of spring maize.

(3) When the construction parameter of the optimal remote sensing index contains VI,
we will calculate the optimal remote sensing index constructed by different VIs. The
optimal remote sensing index in different developmental phases of spring maize
was determined by comparing the coefficient of determination (R2) of the regression
between the optimal remote sensing index and the RSM. The calculation steps were
performed in the ENVI + IDL programming environment.

(4) The optimal remote sensing index was used to analyse the spatial–temporal patterns
of spring maize drought in northeast China from 2003 to 2020.

The flowchart for determining the optimal vegetation index is shown in Figure 2.
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2.3.3. Drought Levels and Validation

The drought levels of spring maize during different periods were based on the stan-
dard ‘Northern China spring maize drought levels’ (QX/T 259-2015), which is a meteoro-
logical industry standard. The drought level was assessed before and after the emergence
of spring maize; the underlying surface type developed from a single surface (completely
bare soil coverage) to a mixed surface. It was determined using the field-measure RSM. The
drought level was ascertained using RSM10 for different soil textures during the emergence–
jointing periods. The soil had vegetation cover during the kernel-filling period, and the
drought level was characterised by the drought symptoms of the maize plants and not the
RSM of the topsoil. The morphological characteristics of the maize plants were recorded,
and the drought level in the tasseling–milk periods was determined by the meteorological
industry standard.

Drought consistency and accuracy were used for model validation. The accuracy vali-
dation method proposed by Ma [50] was used to verify the model for each developmental
stage of spring maize. The equation is as follows.

POD =
H

H + M
× 100% (2)

where POD is the accuracy; H is the number of sample areas whose drought level is
correctly identified; and M is the number of sample areas whose drought level is incorrectly
identified.
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2.3.4. Evaluation of the Multiyear Drought Trend in the Spring Maize Area of
Northeast China

Regression analysis [51] was used to evaluate the time trend of multiyear drought
based on the optimal remote sensing index in different development stages of spring maize.
The slope of the dry edge was selected to analyse the 8-day LST-VI feature space of the key
development period of spring maize from 2003 to 2020. The equation is as follows:

eslope =

n×
n
∑

i=1
i× Xi −

n
∑

i=1
i×

n
∑

j=1
Xi

n×
n
∑

i=1
i2 − (

n
∑

i=1
i)2

(3)

where i is the annual order, which represents the R2 of the dry–wet fitting equation in the
LST-VI feature space of the ith year, and n represents the number of years. When eslope > 0,
the drought trend increases in n years and vice versa.

The Sen + Mann–Kendall test was used to evaluate the spatial trend of multiyear
drought in the spring maize area of northeast China [52]. The Sen trend degree equation is
defined as follows:

β = Median
( xj − xi

j − i

)
, ∀j > i (4)

where 1 < i < j < n; Median() represents the median value. If β > 0, the drought exhibits an
upward trend and vice versa. The Mann–Kendall test statistic S is calculated as follows:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn(xj − xi) (5)

sgn(xj − xi) =


+1 (xj − xi > 0)
0 (xj − xi = 0)
−1 (xj − xi < 0)

(6)

Two test statistics are used for the trend test. The Z value is calculated as follows:

Z =


S−1√
VAR(S)

(S > 0)

0 (S = 0)
S+1√
VAR(S)

(S < 0)
(7)

VAR(S) =
(n(n− 1)(2n + 5)−

m
∑

i−1
ti(ti − 1)(2ti + 5))

18
(8)

where n is the number of data points; m is the number of data groups that appear repeatedly;
and ti is the number of duplicate data points in group i. A bilateral trend test was performed
on the Z value, and the critical value Z1−α/2 was obtained from the distribution table at the
given significance level. When |Z| ≤ Z1−α/2, we accept the null hypothesis that the trend
is not significant. Otherwise, we reject the null hypothesis and determine that the trend
is significant. The critical value Z1−α/2 is 1.65, 1.96, and 2.58, at confidence levels of 90%,
95%, and 99%, respectively. The trend analysis and mutation test were implemented in
MATLAB 2016b. The interpretation of the Mann–Kendall test results is provided in Table 2.

The Mann–Kendall mutation test was selected to analyse the mutation time of the
drought trend. When the UF and UB curves intersect, and the focus is the critical value
(U0.05 = ±1.96), the time corresponding to the intersection is the start time of the mutation.
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Table 2. Interpretation of the Mann–Kendall test results.

β Z Trend Features

β > 0

2.58 < Z Highly significant increase
1.96 < Z ≤ 2.58 Significant increase
1.65 < Z ≤ 1.96 Slightly significant increase

Z ≤ 1.96 Non-significant increase

β = 0 Z No change

β < 0

Z ≤ 1.96 Insignificant decrease
1.65 < Z ≤ 1.96 Slightly significant decrease
1.96 < Z ≤ 2.58 Significant decrease

2.58 < Z Highly significant decrease

2.3.5. Determination of Frequent Drought Periods in the Spring Maize Area of
Northeast China

We used the Penman–Monteith equation recommended by FAO-56 to calculate the
reference evapotranspiration (ET0) using precipitation, temperature, and sunshine hours in
the past 36 years [53]. We determined the time difference between the precipitation and
ET0 in the study period to obtain the period of frequent droughts. The ET0 is calculated
as follows:

ET0 =
0.408 · ∆ · (Rn − G) + γ · 900

Tmean+273 ·U2 · (es − ea)

∆ + γ · (1 + 0.34 ·U2)
(9)

where Rn is the surface net radiation, MJ/(m2·d); g is the soil heat flux, MJ/(m2·d); Tmean
is the average temperature, ◦C; U2 is the wind speed at the height of 2 m, m/s; es is the
saturated water pressure, ea is the actual water pressure, kPa; δ is the slope of the saturated
water pressure curve, kPa/◦C; and γ is the surface constant, kPa/◦C.

3. Result
3.1. Selecting the Optimal Remote Sensing Index

The remote sensing index weights for the RF model describing the relationship
between RSM20 and the indices during maize growth in 2017 and 2018 are shown in
Figure 3a,b. The weight of TVDI is higher than the average weight (0.14) and that of the
other indices during the development process of spring maize.
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3.2. Comparison of NDIV- and EVI-based TVDI
3.2.1. Comparison of Drought Sensitivity of NDIV- and EVI-Based TVDI

Figure 4 shows the R2 of the NDIV-based TVDI (TVDIN) and EVI-based (TVDIE) in
the key growth periods of spring maize in 2018. The R2 of TVDIN was higher than that of
TVDIE in the early growth stage (emergence–jointing stage; day of year (DOY) 105–150).
The maximum, minimum, and average differences in the R2 between the TVDIN and
TVDIE were 0.44, 0.10, and 0.23, respectively. The fitting performance of the TVDIN was
significantly higher than that of the TVDIE, making it more suitable for drought monitoring
in this stage. The difference in the R2 between the TVDIE and TVDIN was 0.02–0.11 in
the middle growth stage (jointing–kernel–filling stage, DOY 150–185). Therefore, this
stage is regarded as the transition period. At the late growth stage (large bell-filling stage,
DOY 185–240), the R2 of the TVDIN was lower than that of the TVDIE, and the maximum,
minimum, and average differences in the R2 between the TVDIE and TVDIN were 0.29,
0.13, and 0.18, respectively. The fitting performance of the TVDIE was significantly higher
than that of the TVDIN; thus, it is more suitable for drought monitoring in this stage.
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3.2.2. Comparison of TVDI Monitoring Accuracy in Different Farmland Environments

Table 3 shows the consistency and accuracy of the TVDIN and TVDIE in drought
monitoring of the main planting areas of spring maize. The consistency and accuracy
of the TVDIE were 5.77% and 34.62% higher than those of TVDIN in the seedling stage,
respectively. The consistency of the TVDIE was 13.46% higher than that of TVDIN, and the
accuracy was same in the kernel-filling stage. The consistency and accuracy of the TVDIE
were 9.61% and 38.46% higher than those of the TVDIN, respectively, in the emergency
period. The consistency (accuracy) of the TVDIE was 5.08% and 11.53% (8.58% and 26.93%)
higher, respectively, than that of the TVDIE for slopes of 0–0.5◦ and 0.5–2.0◦. The consistency
and accuracy of the TVDIE were 17.34% and 9.61% higher, respectively, than those of the
TVDIN for loamy soil. In contrast, the consistency was the same for the TVDIN and TVDIE
for sandy soils, and the accuracy was 17.31% higher than that of the TVDIN. The TVDIE
showed significantly higher consistency (7.69% and 1.92% higher) and accuracy (7.7% and
17.31% higher) than the TVDIN at altitudes of 0–150 m and 150–300 m, respectively. The
drought monitoring consistency and accuracy of the TVDIE were higher than or equal to
those of the TVDIN in the seedling stage. Therefore, the TVDIN is more suitable for drought
monitoring in the early growth stage of spring maize, whereas the TVDIE is more suitable
for drought monitoring in the middle and late growth stages of spring maize. These results
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can be used for selecting indices for drought monitoring in different development stages of
spring maize, which will be addressed in a follow-up paper.

Table 3. Consistency and accuracy TVDIN and TVDIE for different farmland environments.

Item
Accuracy/% Consistency/%

TVDIN TVDIE TVDIN TVDIE

Developmental
stage

Emergence 84.62 78.85 84.62 50.00
Big flare 67.31 80.77 63.46 63.46

Milk stage 73.08 82.69 40.39 78.85

Slope/◦ 0–0.5 69.20 75.00 50.00 61.53
0.5–2.0 81.80 90.38 46.15 73.08

Soil texture
Loam 69.20 86.54 63.46 73.07
Sand 67.31 67.31 50.00 67.31

Elevation/m
0–150 63.46 71.15 71.15 78.85

150–300 84.62 86.54 50.00 67.31

3.3. Spatial–Temporal Pattern of Spring Maize Drought in Northeast China
3.3.1. Temporal and Spatial Evolution Trend of Drought in the Study Area

Figure 5a,b shows the spatial–temporal evolution trends of drought in northeast China,
respectively. The southern, southwestern, and northwestern parts of the study area showed
an increasing drought trend in the key development stages of spring maize in the past
18 years. This area accounts for 37.91% of the total area of spring maize in northeast China
(Figure 5a). The dry edge slope of the LST-VI feature space exhibited an upward trend, and
the wet edge slope showed a downward trend (Figure 5b). This result indicated that the
northeast region experienced more drought and less humidity during the past 18 years.
The Mann–Kendall mutation test showed that the UF and UB curves of the TVDI mean
time series intersected at approximately 2005, and the Z-score at the intersection point
was ±1.96 (Figure 5c). Thus, the mutation occurred in 2005, which was followed by an
increasing trend (1.96 > Z > 0), but the trend was not significant (Z > 1.96).
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3.3.2. Interannual Comparison of Drought during the Growth Period of Spring Maize

Figure 6 shows the spatial–temporal pattern of the average drought conditions in
the early growth stage of spring maize based on the TVDIN and in the middle and late
growth stages based on the TVDIE from 2003 to 2020 in northeast China. Spatially, most
of the spring maize area experienced mild drought before and after the seedling stage,
and the proportion of moderate drought was relatively low. The drought-affected areas
were located in most of Liaoning Province, western Jilin Province, southern eastern Inner
Mongolia, and some parts of southwestern Heilongjiang Province. No drought occurred in
the eastern Jilin Province, and the influence of spring drought was stronger than that of
summer drought before and after the kernel-filling stage in most of Heilongjiang Province.
Most of the drought levels in western Liaoning, western Jilin Province, southern Inner
Mongolia, and southwestern Heilongjiang Province were mild and moderate. The most
serious drought conditions of spring maize occurred from April to May (DOY 105–160)
from 2003 to 2020 in the western and southwestern parts of the study area. The drought
conditions were weaker from June to July (DOY 161–216), and the drought area decreased,
but the spatial distribution of drought differed substantially. Southern Inner Mongolia,
southwestern Jilin, and northwest Liaoning are arid areas. Most of Heilongjiang Province
and the southeastern Jilin Province experienced no drought. Mild and moderate drought
areas are larger in August (DOY 217–240) than in the previous period.
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The area affected by drought in 2003, 2009, 2013, and 2018 exceeded 30%, and that
affected by severe drought accounted for more than 8% (Figure 7).
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3.4. Frequent Drought Periods in the Study Area

Figure 8 shows the percentage of ET0, monthly ET0, percentage of precipitation,
and monthly precipitation in northeast China from 1985 to 2020. The precipitation was
significantly lower than the ET0 from April to May, limiting the water supply of spring
maize and causing drought conditions. The difference between precipitation and ET0
decreased in June, and the drought eased. The precipitation was significantly higher than
the ET0 from July to August, and the drought was alleviated in a large area. However,
starting in September, the ET0 was significantly higher than the precipitation, and the
drought intensified again. The percentage of PRE showed an increasing trend from April
to July and a decreasing trend from July to September. The ET0 percentage increased from
April to May and decreased from May to September. Frequent droughts occurred in the
study area in spring and autumn.
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Figure 9 shows the proportion of different drought levels obtained from 8-day TVDI
data in northeast China from 2003 to 2020. The area experienced two significant drought
events. The first one occurred from April to May. There was very little precipitation, and the
glacier meltwater did not reach the cultivated areas, as shown in Figure 9. The vegetation
cover was low, or there was bare soil, and the ET0 was greater than the precipitation,
resulting in severe drought events during this period. The second drought occurred in
August–September when the maize plants were relatively tall and the water requirement
was large. Although rainfall was abundant in this period, the temperature was high, the
ET0 was greater than the precipitation, and the vegetation did not receive sufficient water.
The maize was in the jointing–tasseling period from June to July, and the precipitation and
temperature were suitable in the study area, providing suitable growing conditions for
maize. The drought conditions derived from the TVDI were consistent with those based on
the meteorological indices depicted in Figure 8.
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4. Discussion
4.1. Applicability of TVDI for Monitoring Spring Maize Drought in Northeast China

The difference in the accuracy between the drought conditions obtained from meteo-
rological indices and from remote sensing monitoring was reflected in two aspects [13–15].
First, meteorological monitoring typically uses indices to assess climate change in a specific
period to characterise drought conditions. Remote sensing methods have been widely used
for drought monitoring, such as the inversion of parameters (e.g., crop canopy parameters).
In this study, the accuracy and reliability of the remote sensing-based drought monitoring
results were better than those of the meteorological monitoring results. Second, meteoro-
logical data are typically point data; thus, interpolation is required to obtain continuous
data, and the spatial–temporal resolutions are not sufficiently high. Remote sensing data
are raster data with high spatial–temporal resolutions, providing higher accuracy than
meteorological data. Numerous experiments have been conducted to verify the feasibility
of remote sensing indices for drought monitoring systematically [54–56]. Following previ-
ous studies [3,5,7,14,15], we defined the most suitable periods for using the TVDIN and
TVDIE for drought monitoring by calculating the difference in the R2 for the relationship
between the RSM and the TVDIE and TVDIE (Figure 4). The R2 of the TVDIN (dry edge
slope) was higher than that of the TVDIE in the seedling–jointing period (DOY 105–150) of
spring maize. The fitting performance of the TVDIE was significantly higher than that of
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the TVDIE, and it was more suitable for drought monitoring. The R2 values of the TVDIN
and TVDIE were the closest during the jointing–kernel-filling period (DOY 150–185), which
was regarded as the transition period of TVDIN and TVDIE. The R2 of the TVDIN (dry edge
slope) was lower than that of the TVDIE during the kernel-filling period (DOY 185–240).
The fitting performance was significantly higher for the TVDIE than for the TVDIN, making
it more suitable for drought monitoring.

The consistency and accuracy of drought monitoring were 84.62% and 78.85% in
the early growth stage and 82.69% and 78.85% in the middle and late growth stages,
respectively (Table 3). Previous studies [57–59] also observed differences in the sensitive
periods when different remote sensing indices were used for drought monitoring, which
is consistent with the results of this study. Although previous studies used the same
research methods as this study, differences were observed. In previous studies [25,27,40],
16-day products and a TVDI based on different vegetation indices were used for drought
monitoring from May to September [57]. These studies showed that the applicability and
accuracy of the TVDI based on different parameters did not differ much in the period of
low vegetation coverage. However, the applicability and accuracy of the TVDI based on
the EVI/LST were higher than those of the TVDI with other parameters in the period of
high vegetation coverage. The authors only discussed the sensitivity of the drought indices
in different vegetation coverage periods. In contrast, we assessed the sensitive period of
TVDI drought monitoring in different developmental stages of spring maize using 8-day
remote sensing products. Thus, a more precise period could be defined for TVDI drought
monitoring than in previous studies [6,35,37,48], resulting in a more accurate identification
of drought periods.

Remote sensing indices used for drought monitoring are affected by the vegetation
type and farmland environment, resulting in different levels of applicability. Therefore, the
applicability of remote sensing indices should be considered to enable the identification
of agricultural drought. Most studies evaluated the correlation between remote sensing
indices and RSM [57,58]. Following previous studies [31,39–42], we used the RF model
to select suitable indices to describe the relationship between the indices and RSM. The
optimal indices were used for drought monitoring in northeast China. The TVDI exhibited
higher performance for the drought monitoring of spring maize in northeast China than
the other six remote sensing indices (Figure 3).

This study has the following limitations. First, this study focused on the spatial–
temporal characteristics of drought in northeast China. However, different agricultural
areas are affected by different factors influencing drought, and regional differences exist
in the spatial–temporal characteristics of drought. Therefore, a follow-up study will be
conducted to analyse more detailed spatial–temporal patterns of drought and influencing
factors in different agricultural areas. Second, this study showed that the TVDI was more
suitable for the drought monitoring of spring maize in northeast China than other remote
sensing indices. This index performed well for drought monitoring in the early (TVDIN)
and middle and late (TVDIE) growth stages of spring maize. However, the meteorological
conditions, farmland environment, spring maize varieties, and growth stages differ in
different drought conditions. We only considered the farmland environment and develop-
ment stage. In a follow-up study, we plan to extract VI anomalies in the time series and
construct remote sensing indices for different risk areas and different drought periods to
perform more accurate real-time and dynamic monitoring of agricultural drought.

4.2. Spatial–Temporal Pattern of Drought in the Study Area

The global surface temperature will continue to rise under the existing greenhouse
gas emission scenario, and the water cycle will change, altering the drought pattern and
drought risk in China [39]. Drought and waterlogging result in plant water stress. A
decreasing drought trend may result in waterlogging. Therefore, understanding the spatial–
temporal pattern of drought can prevent or mitigate droughts in areas with frequent
droughts and provide information to implement drainage measures to prevent waterlog-
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ging in areas with wetting trends. This study used Sen + MK trend analysis to investigate
drought trends in the spring maize area in northeast China (Figure 5a). The results showed
that the southern, southwestern, and northwestern parts of the study area exhibited an
increasing drought trend in the key development stages of spring maize in the past 18 years.
Areas with increasing drought trends comprised 37.91% of the area of northeast China.
This finding was consistent with that of Wei [60]. Although the drought trend increased
in northeast China, differences were observed in different regions. The drought trend
increased significantly in the western part of the study area, unlike in the eastern part.
It was concluded that the uneven spatial distribution of temperature, precipitation, and
climate change in northeast China was the dominant reason.

We examined the change in the slope of the dry and wet edge in the time-series
LST-VI feature space to assess the drought trend in northeast China (Figure 5b). The
results showed that the dry edge slope showed an upward trend, and the wet edge slope
showed a downward trend. Northeast China experienced a trend of increasing drought
and decreasing humidity in the past 18 years. The MK mutation test indicated a drought
mutation time of nearly 18 years (Figure 5c). The UF and UB curves of the TVDI mean time
series intersected in 2005, and the Z-score was 1.96, indicating that the mutation occurred
in 2005. Subsequently, the drought showed an upward trend. A significant increase in
drought has been observed in northeast China since the 1990s [11,42,48]. Although this
study showed a drought trend in northeast China, the trend did not increase significantly.
There are two likely reasons. First, different studies analysed different periods. Previous
studies focused on the spatial–temporal characteristics of drought in northeast China
throughout the year [3,5,61]. In contrast, we focused on the spatial–temporal patterns of
drought during the growth period of spring maize. Autumn is also a frequent drought
period in this area [42]. The precipitation is significantly lower in autumn. Many storms
occur in the monsoon season, resulting in the rapid evaporation of soil moisture and
drought. The crops are harvested in autumn, leading to low vegetation coverage and less
soil moisture retention. Remote sensing inversion methods for soil moisture and canopy
status have been used to assess drought.

The second reason is the difference in the study area. Previous studies focused on
larger regions or agricultural areas in northeast China [3–6,8,9,40], whereas this study
considered spring maize planting areas. Inner Mongolia in the western part of the study
area is characterised by sandy soil, uneven precipitation, and high altitude (Figure 1f–h). It
experiences frequent drought, but no maize is planted in this area (Figure 1a). Therefore,
this study did not consider Inner Mongolia’s drought trend, leading to different results
compared to previous studies. Our conclusions regarding the spatial–temporal trend of
drought in northeast China are reasonable considering these factors.

In addition, previous studies also observed differences in the spatial–temporal drought
trend in northeast China [21,23–25,37,39]. We found that drought before and after the
seedling period in northeast China occurred predominantly in the western Liaoning
Province, western Jilin Province, southern Inner Mongolia, and southwestern Heilongjiang
Province. Drought was less common before and after the jointing period, when most
of the study area experienced no drought. Drought before and after the filling period
occurred primarily in western Liaoning, western Jilin Province, southern Inner Mongolia,
and southwestern Heilongjiang Province. It is assumed that these spatial differences in
drought are due to the farmland properties, soil type, topography, and climate change,
which contributed to the region’s susceptibility to drought. The soil texture in the drought-
prone areas was predominantly loam and sand, and the slope was relatively steep, making
the region prone to soil erosion. In addition, the spring temperature in the region rises
rapidly, but the precipitation is insufficient, and none of the spring glacier meltwater in the
Changbai Mountains and the Greater Khingan Mountains reach the region. The combined
effects of these conditions caused differences in the soil moisture in the region, resulting in
large areas of spring drought. Northeast China experienced extensive periods of rain and
heat, easing the drought extent and intensity in the region.
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Spring warming occurs fast in northeast China, but the precipitation amount is gener-
ally low [11,12]. Summer is characterised by high heat and precipitation. The precipitation
amount decreases in autumn, but the temperature does not decrease significantly [44].
We calculated the percentage of ET0 and precipitation and the monthly scale ET0 and
precipitation [43] (Figure 8). The results showed that the precipitation in April and May
was significantly lower than the ET0, indicating low RSM and vegetation water stress,
resulting in drought. The difference between the TVDIN and TVDIE was the lowest in June
reduced; the RSM increased, and the drought eased. The precipitation was significantly
higher than the ET0 from July to August, and the drought was alleviated in a large area.
However, the ET0 was significantly higher than the precipitation starting in September,
and the drought intensified again. However, spring maize was in the milk period at this
time, and the severe drought did not affect the yield. This result was consistent with the
drought trend obtained from the optimal remote sensing index (Figure 9). Therefore, the
trend of climatic factors changed the drought conditions. In general, spring and summer
are drought-prone periods for spring maize planting areas, and the western, southern, and
southwestern parts of northeast China are drought-prone areas. Irrigation measures should
be implemented in these periods and areas to prevent a reduction in spring maize yield
caused by drought. In addition to focusing on the increasing drought trend in the Liaohe
Plain, we should also consider the possibility of waterlogging in the Sanjiang Plain and
Songnen Plain.

5. Conclusions

The accuracy improvement of agricultural drought monitoring and the applicability
of remote sensing indices have become hot research topics. This study examined the
applicability of seven commonly used remote sensing indices for the drought monitoring
of spring maize in northeast China using the RF model. The results showed that all seven
remote sensing indices were suitable for drought monitoring in the study area, but the
TVDI exhibited the best performance. The TVDIN had high sensitivity and accuracy in
the early stage of spring maize development, whereas the TVDIE performed better in the
middle and late stages. The spatial–temporal patterns of drought in northeast China were
investigated using the TVDIN and TVDIE drought-monitoring indicators. The most severe
drought occurred from April to May, which was followed by a weakening of the drought
from June to July, with large regional differences. The severe drought area increased again
in August. The dominant drought-affected areas included most of Liaoning Province,
western Jilin Province, the southern East Fourth League of Inner Mongolia, and some parts
of southwestern Heilongjiang Province. This study identified spatial–temporal differences
in precipitation and ET0 as the main causes of drought in the study area.
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