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Abstract: Marine oil spills pose a crucial concern in the monitoring of marine environments, and
optical remote sensing serves as a vital means for marine oil spill detection. However, optical remote
sensing imagery is susceptible to interference from sunglints and shadows, leading to diminished
spectral differences between oil films and seawater. This makes it challenging to accurately extract
the boundaries of oil–water interfaces. To address these aforementioned issues, this paper proposes
a model based on the graph convolutional architecture and spatial–spectral information fusion for
the oil spill detection of real oil spill incidents. The model is experimentally evaluated using both
spaceborne and airborne hyperspectral oil spill images. Research findings demonstrate the superior
oil spill detection accuracy of the developed model when compared to Graph Convolutional Network
(GCN) and CNN-Enhanced Graph Convolutional Network (CEGCN), across two hyperspectral
datasets collected from the Bohai Sea. Moreover, the performance of the developed model in oil spill
detection remains optimal, even with only 1% of the training samples. Similar conclusions are drawn
from the oil spill hyperspectral data collected from the Yellow Sea. These results validate the efficacy
and robustness of the proposed model for marine oil spill detection.

Keywords: marine oil spill detection; spatial–spectral fusion; deep learning; airborne hyperspectral
image; spaceborne hyperspectral image

1. Introduction

Marine oil spills are unforeseen events that arise from accidents or operational errors
during the processes of petroleum exploration, development, and transportation, consti-
tuting the most emblematic and severe instances of marine environmental contamination.
These spills pose significant threats to the marine environment, marine organisms, and
human economic activities. Harmful substances can be transferred through the food chain,
leading to long-term challenges in mitigating the resulting impacts [1–5]. Under suitable
conditions, oil spills can also trigger harmful algal blooms, giving rise to more extensive
ecological negative effects [6].

With the increasing demand for petroleum energy in China, the activities of offshore
petroleum resource development, transportation, and storage are growing steadily, result-
ing in an escalating risk of offshore oil spills. As a major importer of crude oil, China relies
on maritime transportation for 90% of its oil supply. In recent years, China has experienced
frequent marine oil spill incidents. For instance, in 2010, an oil spill incident occurred as
the result of an explosion in the Dalian Xingang oil pipeline. During 2011, there was an
oil spill incident in the Penglai 19-3 oilfield [7]. Additionally, in 2013, an oil spill incident
was caused by a leakage and explosion in the Sinopec pipeline at Huangdao [8,9]. The year
2018 witnessed an oil spill incident due to a collision involving the “SANCHI” tanker at
the mouth of the Yangtze River [10,11]. Moreover, in 2019, an oil spill event transpired in
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the vicinity of Dongsha Island in the South China Sea [12]. Following these occurrences, in
2021, another oil spill accident occurred on the oil platform in Penglai 19-3 oilfield. In the
same year, the collision of the oil tanker “Symphony” at the Yangtze River Estuary caused
an oil spill. The above events highlight the necessity and urgency of paying attention to the
issue of oil spills [13]. According to statistic from the China’s State Oceanic Administration,
there is an average of one oil spill incident occurring every four days along the coastal areas
of China, with the provinces of Shandong and Guangdong being especially susceptible to
such accidents [14].

The timely and accurate monitoring of the location and extent of marine oil spills,
identification of oil types, and quantification of oil slick thickness play a crucial role in the
emergency response to and effective disposal of marine oil spill incidents. Remote sensing,
with its advantages of multi-source data, rapid data acquisition, and wide coverage, has
become indispensable in emergency response and damage assessment related to marine
oil spills [15–23]. In recent years, optical remote sensing techniques have been widely
applied for monitoring oil spills on the sea surface [24–38]. Common optical remote sensing
techniques include multispectral, hyperspectral, thermal infrared, ultraviolet, polarimetric,
and LiDAR remote sensing. Among these, hyperspectral remote sensing, due to its higher
spectral and spatial resolution, enables the extraction of subtle features between oil slicks
and background seawater, as well as distinguishing different oil types. Consequently, it has
found extensive applications in monitoring the location and distribution of oil spills [39–43],
identifying oil types [44–48], and quantifying oil slick thickness [49–52].

However, the occurrence of marine oil spills is sudden, and optical remote sensing is
susceptible to weather conditions, particularly disturbances caused by clouds, mist, and
sunglints. These factors not only hinder the acquisition of optical images of marine oil
spills, but also introduce confusion in the spectral and spatial information of oil slicks
and seawater within the imagery, thus limiting the accuracy of marine oil spill detection.
With the advancement of deep learning in image processing and classification, it has
become possible to fully exploit the deep-level spectral and spatial features in images.
This advancement enables effective suppression of the interference of clouds, mist, and
sunglints, thereby showcasing immense potential in the field of marine oil spill detection.
In response to the aforementioned challenges, some scholars have employed deep learning
models based on spectral features for oil spill detection [53–55]. Although these methods
have made certain progress, they have overlooked the importance of spatial information,
such as the incomplete learning of edge information. Subsequently, many scholars have
focused on the integration of spectral and spatial features, gradually developing models
that combine both aspects, such as SSRN [56], DBMA [57], DBDA [58], ENL-FCN [59], etc.
These models have been applied to marine oil spill detection by some researchers, yielding
promising results [60–63].

Optical remote sensing images are susceptible to sunglints, which manifest as reduced
spectral differences between oil slicks and seawater in the imagery and blurred spatial
boundaries between them. Additionally, traditional convolutional networks can cause
information loss during the feature extraction process. These factors significantly impact
the accuracy of marine oil spill detection, particularly in accurately extracting the edge
information of oil-water interfaces. In this study, a hyperspectral detection model for
marine oil spills is developed based on the graph convolutional architecture, integrating
the dual-branch spatial and spectral information. Then, the features extracted from the two
branches are fused. Finally, experiments are conducted on both spaceborne and airborne oil
spill hyperspectral images to validate the effectiveness of the proposed model for marine
oil spill detection.

The main contributions of our study are mentioned as follows:
(1) For the extraction of spatial information, dilated convolutions are employed instead

of standard convolutions, and a deep separable UNET network architecture is proposed to
extract deep and shallow spatial features while enlarging the receptive field;
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(2) For the extraction of spectral information, a residual graph convolution approach
is designed, focusing on the spectral information of each layer and performing residual
calculations to highlight the main spectral information;

(3) To evaluate the effect of the algorithm proposed in this study, we compared the
oil spill detection results of spaceborne and airborne hyperspectral images based on the
proposed method with other two graph convolutional network models. The proposed
algorithm achieves best performance in marine oil spill detection.

2. Proposed Method

Due to the impact of sensor hardware, flight attitude, as well as clouds, wind, and
waves, optical images of oil spills on the sea surface may suffer from some problems,
such as bad lines, stripes, sunglints, and shadows, causing indistinct spectral differences
between the oil film and the background seawater. To address these issues, this study con-
structs a model named Graph Convolutional–DS-UNET Neural Network (DUNET), which
integrates dual-branch spatial and spectral information based on the graph convolutional
architecture, for the detection of marine oil spills in the real oil spill incidents. The DUNET
model consists of three main modules: spectral feature extraction, spatial feature extraction,
and spatial–spectral feature fusion. The overall framework of DUNET is illustrated in
Figure 1.
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Figure 1. The architecture of the DUNET model for marine oil spill detection.

Firstly, linear iterative clustering is used to construct superpixel maps through continu-
ous iteration; Afterwards, in the spectral branch, a residual Graph Convolutional Network
(GCN) is used to extract spectral information. At the same time, in the spatial branch,
feature enhancement modules are used to enhance the preprocessed images and remove
redundancy; a deep separable UNET network is used to learn deep and shallow spatial
information. Finally, the spectral features and spatial features of oil spills extracted from
the two branches are fused, and the Cross Entropy loss function is used for optimization,
so as to classify the finally extracted hyperspectral oil spill features.

2.1. Residual GCN Spectral Feature Extraction Module

The spectral feature extraction module designed based on GCN uses the spatial and
spectral correlation between adjacent superpixel blocks to obtain the one to many rela-
tionship of features in the space by constructing a superpixel map. Assuming G = (V, E),
where V and E represent the vertex set and edge set, respectively. Therefore, we can define
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the Adjacency matrix A, which defines the relationship of each point in the graph. Each
element in the Adjacency matrix can usually be represented by Formula (1):

Ai,j = exp

(
−
∥∥xi − xj

∥∥2

σ2

)
, (1)

where σ is the parameter that controls the width of the Radial Basis Function, and vector
xi, xj represents the spectral characteristics related to vertices νi and νj. After A is calculated,
the corresponding Laplacian matrix L can be solved, as shown in Formula (2).

L = IN − D− 1
2 AD− 1

2 , (2)

where IN represents Identity matrix, and D represents Symmetric matrix of Adjacency
matrix A, Dii = ∑j Aij. More robust graph structure data can be obtained by normalizing
the Laplace matrix. After a series of matrix changes, the expression for GCN is obtained
as follows:

H(l) = σ
(

A(l−1)W(l)
)

, (3)

where H(l) represents the output of layer l, σ(·) represents the activation function, and W
represents the weight.

In order to address the problem of gradient disappearance and overfitting caused by
GCN, a residual GCN is proposed based on ResNet network structure. The expression is
as follows:

HRes
(l+1) = σ

(
A(l)W(l)

)
+ H(l), (4)

The spectral feature information extracted by the residual GCN is named Hspectral.

2.2. Deep Separable U-Net Spatial Feature Extraction Module

The common network structure usually uses pooling layer to reduce the size of
the image, so as to increase the receptive field relatively. However, in this process, some
information will inevitably be lost. The advantage of the Dilated Convolution (or Expansion
Convolution) algorithm is that it can expand the receptive field while avoiding information
loss. It can retain the internal data structure and avoid the use of down sampling. It can
also capture multi-scale context information by setting different expansion rates.

Depthwise Convolution and Pointwise Convolution can be combined to extract feature
information from the Euclidean space of oil films. The number of feature maps after
the Depthwise Convolution is the same as the number of channels in the input layer,
making it impossible to extend the feature map. Moreover, it independently performs
convolution operations on each channel in the input layer, which cannot effectively utilize
the feature information of different channels in the same spatial position. Therefore,
Pointwise Convolution is needed to combine these feature maps to generate new feature
maps. The operation of Pointwise Convolution is very similar to conventional convolution
operations, with a convolution kernel size of 1 × 1 × M. M is the number of channels in the
previous layer. Thus, the convolution operation here will weigh and combine the previous
feature maps in the depth direction to generate new feature maps.

In this paper, DS-UNET is designed to make it more suitable for detecting marine oil
spills by improving the U-Net network. Deep separable convolutions are introduced at the
input and output ends, and dilated convolutions are introduced at the convolutional layer
to achieve lightweight and reduce computational costs. The encoding module consists
of two deep separable convolutional modules, two convolutional modules of 3 × 3, and
one the maximum pooling module of 2 × 2. The decoding module is composed of one
upsampling convolutional layer, concat feature concatenation, two convolutional modules
of 3 × 3, and two deep separable convolutional modules. Among them, deep separable
convolution can reduce computational and parameter complexity. The structure of deep
separable U-net network is shown in Figure 2.
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The output of the decoder is the deep and shallow spatial features extracted from the
encoder, which are concatenated to fully extract the spatial information Hspatial of oil spills
hyperspectral image.

2.3. Feature Fusion

The features obtained two branches are fused by feature concatenation, namely the
spectral information obtained by the residual GCN spectral feature extraction module and
the deep and shallow spatial information obtained by the deep separable U-Net spatial
feature extraction module. Finally, the extracted oil film feature H (Formula (5)) is output.
The eigenvectors are input into the softmax function, and final oil spill detection result is
acquired through the Cross Entropy loss function, as shown in Formula (6).

H = Hspectral·Hspatial, (5)

L(Y, P) = − 1
N ∑N

i=1 ∑C
c=1 yi,c log(pi,c), (6)

where Y represents the true value, P represents the predicted value of each pixel, and yi,c
is the c-th element of label Y. pi,c represents the probability that pixel i belongs to class
c, which is calculated using the softmax function. C and N represent the total number of
categories and samples in the training dataset, respectively.

3. Results and Analysis
3.1. Data

The Bohai Sea, China’s only inland sea, covers an area of 78,000 square kilometers,
accounting for only 2.6% of China’s marine territory. Due to its limited influence from ocean



Remote Sens. 2023, 15, 4170 6 of 17

currents and poor water exchange capacity, the Bohai Sea faces complex, high-intensity,
and multiple sources of human activities. As a result, pollutants are difficult to purify
rapidly, making it become a key area for monitoring pollutant emissions.

In this study, airborne hyperspectral imagery and spaceborne hyperspectral im-
agery obtained from two marine oil spill incidents in the Bohai Sea were selected as
the data sources.

3.1.1. Hyperion Spaceborne Hyperspectral Data

The spaceborne hyperspectral imagery used in this study was Hyperion data ac-
quired on 6 May 2007, in the Liaodong Bay of China (shown by the red pentagram in
Figure 3). Hyperion is one of the three sensors mounted on the EO-1 satellite and is the
first spaceborne civilian imaging spectrometer. The Hyperion imagery covers a spectral
range of 400~2500 nm, spanning spectra from visible light to shortwave infrared, with a
total of 242 spectral bands. The spectral resolution is 10 nm, and the spatial resolution is
30 m. Due to limitations in radiometric calibration and significant influence from water
vapor and signal-to-noise ratio, only 175 bands (426~926 nm, 933~1346 nm, 1427~1810 nm,
1942~2385 nm) are actually usable in this study.
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Figure 3. Distribution location of three oil spill accidents (the red pentagram represents the oil spill
location of the Liaodong Bay in 2007, the orange pentagram represents the oil spill location of the
Penglai 19-3 oilfield in 2011, and the blue pentagram represents the oil spill location of the Dalian
Xingang in 2010).

The Hyperion imagery (Figure 4a) used in our experiments has dimensions of
444 × 400 pixels and contains information on oil slicks, seawater, and vessel tracks. However,
the imagery also suffers from stripe noise and bad lines, severely affecting oil spill detection.
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Figure 4. Hyperspectral oil spill images and corresponding ground truth images: (a) Hyperion
spaceborne image in Liaodong Bay (R: 31, G: 20, B: 11); (b) AISA+ airborne image in Penglai 19-3
oilfield (R: 107, G: 68, B: 28); (c,d) the corresponding ground truth images.

3.1.2. AISA+ Airborne Hyperspectral Data

Unmanned aerial vehicles offer advantages such as high flexibility and strong real-
time capabilities, compensating for the drawbacks of satellite remote sensing, such as lag
and low accuracy. The airborne hyperspectral imagery used in this study was AISA+ data
acquired by the China Marine Surveillance North Sea Aviation detachment on 23 August
2011, in the Penglai 19-3 oilfield (shown by the orange pentagram in Figure 3). The AISA+
imagery covers a spectral range of 400~970 nm, spanning the spectra from visible light
to near-infrared, with a total of 258 spectral bands. The spectral resolution is 5 nm, and
the sensor’s field of view is 39.7◦, with a spatial resolution of 1.41 m at a flying altitude
of 1000 m. The AISA+ imagery (Figure 4b) used for oil spill detection in the Penglai 19-3
oilfield has dimensions of 444 × 364 pixels and was acquired at an approximate altitude of
700 m, with a spatial resolution of approximately 0.99 m. The imagery contains information
on oil slicks, seawater, platform and ships. However, it is also affected by sunglints that
can impact oil spill detection.



Remote Sens. 2023, 15, 4170 8 of 17

3.1.3. Ground Truth Data

The ground truth image of oil spill distribution for the Liao Dong Bay incident
(Figure 4c) was produced through manual visual interpretation based on acquired hy-
perspectral images and expert knowledge. The ground truth image for the Penglai 19-3
oilfield incident (Figure 4d) was generated through manual visual interpretation based on
a combination of on-site aerial photographs, hyperspectral images, and expert knowledge.
Aerial photographs were taken using cameras mounted on Chinese Marine Surveillance
aircraft, while the hyperspectral imagery was obtained synchronously using the AISA+
imaging spectrometer installed on Chinese Marine Surveillance aircraft. The ground truth
image for the Liaodong Bay oil spill incident includes oil slicks seawater and background,
while the ground truth image for the Penglai 19-3 oilfield incident includes oil slicks,
seawater, platforms, and ships.

3.2. Experimental Setup

In this article, we randomly selected 5% of the samples for training, 5% for validation,
and the remaining 90% for testing for each dataset. All experiments were performed on
NVIDIA GeForce RTX 3090 GPU with 24 GB of memory (NVIDIA, Santa Clara, CA, USA).
Table 1 lists the number of training, validation, and testing samples for the three datasets.

Table 1. Number of training, validation, and test samples in three datasets.

Dataset Class Training Validation Test Total

Hyperion data in
Liaodong Bay

Oil slick 219 219 3933 4371
Seawater 5642 5642 101,561 112,845

Background 3019 3019 54,346 60,384

AISA+ data in
Penglai 19-3 oilfield

Oil slick 2691 2691 48,440 53,822
Seawater 5083 5083 91,490 101,656

Platform and ships 307 307 5524 6138

3.3. Experimental Results

The proposed method was applied to the two oil spill hyperspectral datasets, and two
graph convolutional network models, including the GCN [64] and the CNN-Enhanced
Graph Convolutional Network (CEGCN) [65], were selected for comparison. To ensure
fairness in the comparative experiment, the three methods were evaluated using the same
set of hyperparameters. The oil spill detection results of the proposed method and the
other two algorithms on the two hyperspectral datasets are shown in Figure 5.

From Figure 5, it can be observed that there are differences in the oil spill detection
capabilities between the proposed algorithm and the other two algorithms. The DUNET
model achieves the closest results to the ground truth images for both datasets, with
clear oil film boundaries and minimal misclassification. The CEGCN model performs
slightly worse, with some oil films misclassified as seawater. The GCN model exhibits
the largest differences from the ground truth images, particularly in terms of lacking
attention to boundaries and details, as indicated by the dashed circles in Figure 5a,b. The
detection results demonstrate the effectiveness of the DUNET model in utilizing both
spatial and spectral information through dual branches and feature fusion to improve the
detection results.

To quantitatively showcase the oil spill detection capabilities of the proposed model
and the other two methods, four metrics were used for accuracy evaluation of the oil spill
detection results, namely detection accuracy, overall accuracy, average accuracy, and the
Kappa coefficient.
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Overall, the DUNET model outperforms the CEGCN and GCN models in terms of
oil spill detection accuracy, overall accuracy, average accuracy, and Kappa coefficient on
two datasets (Table 2). Specifically, for the Hyperion dataset of Liaodong Bay, the DUNET
model achieves an oil spill detection accuracy of 84.02%, which is 3.05% and 18.33% higher
than that of the CEGCN and GCN models, respectively. The overall accuracy and average
accuracy of the DUNET model are 99.17% and 94.42%, respectively, surpassing the CEGCN
model by 0.62% and 1.05%, as well as the GCN model by 0.80% and 6.34%. As for the
AISA+ dataset of the Penglai 19-3 oilfield, the DUNET model achieves an oil spill detection
accuracy of 95.95%, and an improvement of 2.57% and 6.93% compared to the CEGCN
and GCN models, respectively. The overall accuracy and average accuracy are 96.50% and
94.80%, surpassing the CEGCN model by 1.98% and 1.82%, as well as the GCN model by
4.92% and 5.52%. The Kappa coefficients of the DUNET model on two datasets are higher
than 0.9, which are better than those of the CEGCN model and GCN model, indicating a
strong agreement between the classification results of the DUNET model and the ground
truth images. In summary, the proposed DUNET model achieves the best performance in
oil spill detection compared to the CEGCN and GCN models.
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Table 2. Oil spill detection accuracy of three algorithms based on different datasets.

Dataset Class DUNET CEGCN GCN

Hyperion data in
Liaodong Bay

Oil slick 84.02 80.97 65.69
Seawater 99.39 99.33 98.99

Background 99.84 99.81 99.56
Overall Accuracy (%) 99.17 98.55 98.37
Average Accuracy (%) 94.42 93.37 88.08

Kappa Coefficient 0.9826 0.9797 0.9658

AISA+ data in
Penglai 19-3 oilfield

Oil slick 95.95 93.38 89.02
Seawater 91.35 89.79 85.50

Platform and ships 97.10 95.77 93.31
Overall Accuracy (%) 96.50 94.52 91.58
Average Accuracy (%) 94.80 92.98 89.28

Kappa Coefficient 0.9009 0.8890 0.8288

4. Discussion
4.1. Impact of Different Proportions of Training Samples on Oil Spill Detection Performance

To further validate the robustness of the proposed model under different proportions
of training samples, in this section, we randomly select 1%, 3%, and 5% of the training
samples from the two datasets for model training. The oil spill detection results of the three
methods based on different proportions of training samples are shown in Figure 6.
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Overall, the three methods exhibit different classification performance based on dif-
ferent proportions of training samples. For two hyperspectral datasets, as the proportion
of training samples increases, the accuracy of oil spill detection for the three methods
also gradually improves. However, the proposed DUNET method consistently achieves
the highest detection accuracy, even under the condition of only 1% training samples,
outperforming both CEGCN and GCN in oil film detection. At the same time, it can also
be found that with the increasing proportion of training samples, the oil spill detection
accuracy based on the fusion method of spatial and spectral information tends to stabilize,
especially in the airborne AISA+ dataset. This could be attributed to the higher spectral
and spatial resolution, as well as the larger dimensionality of the AISA+ data.

Furthermore, we conducted a comparison of the running times of DUNET, CEGCN,
and GCN models under different proportions of training samples, as shown in Table 3.
Overall, when considering the same proportion of training samples, the GCN model
exhibited the shortest training time, followed by the CEGCN model, while the DUNET
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model had a slightly longer training time. At the same time, the GCN model demonstrated
the shortest test time, while the test times for the CEGCN and DUNET models were similar.

Table 3. Running time of three models under different proportions of training samples.

Dataset
Proportions

Training Samples

DUNET CEGCN GCN

Training
Time (s)

Test
Time (s)

Training
Time (s)

Test
Time (s)

Training
Time (s)

Test
Time (s)

Hyperion data in
Liaodong Bay

1% 50.64 11.15 40.79 12.23 34.79 10.67
3% 50.84 10.71 41.87 13.25 34.84 10.73
5% 55.57 15.56 39.65 11.09 34.84 10.87

AISA+ data in Penglai
19-3 oilfield

1% 57.43 16.87 42.42 14.47 38.5 14.36
3% 54.43 14.52 42.36 14.7 49.51 25.95
5% 55.38 15.82 42.41 14.41 38.42 14.63

4.2. Application on Oil Spill Image in the Yellow Sea

To further validate the effectiveness and applicability of the proposed method, in this
section, we apply the developed model to AISA+ hyperspectral data that acquired at an oil
spill incident in the Yellow Sea, namely the Dalian Xingang oil spill incident on 6 August
2010. The location of the oil spill image is indicated by the blue pentagram in Figure 3.

4.2.1. Oil Spill Detection Results

The AISA+ image (Figure 7a) used for the oil spill detection experiment in Dalian Xin-
gang has dimensions of 256 × 384 pixels and contains information about both the oil slick
and seawater. However, the image also contains striping and bad lines that can interfere
the oil spill detection. A ground truth image of the oil spill distribution (Figure 7b) was
created through the combination of aerial photographs and manual visual interpretation.
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Figure 7. Hyperspectral oil spill image and corresponding ground truth image: (a) AISA+ airborne
image in Dalian Xingang adjacent water (R: 107, G: 68, B: 28); (b) the corresponding ground truth image.

For the Dalian dataset, we randomly selected 5% of the samples for training, 5%
for validation, and the remaining 90% for testing. Table 4 lists the number of training,
validation, and testing samples for Dalian dataset.

We conducted oil spill detection experiments on AISA+ hyperspectral data in Dalian
using the developed method and two other deep learning models, and the detection results
are shown in Figure 8. Similar to the previous results, the oil spill detection results of the
DUNET model are the closest to the ground truth image, with clear boundaries of the oil
film and minimal misclassification. The CEGCN model performs slightly worse, with some
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oil films being misclassified as seawater. The GCN model lacks attention to boundaries and
fine details in the oil spill detection results, as shown in the dashed circle in Figure 8a–c.

Table 4. Number of training, validation, and test samples in the Dalian dataset.

Dataset Class Training Validation Test Total

AISA+ data
in Dalian

Oil slick 2349 2349 42,278 46,976
Seawater 2566 2566 46,196 51,328
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In order to quantitatively demonstrate the oil spill detection capabilities of the pro-
posed model and the other two methods, four indicators, namely detection accuracy, overall
accuracy, average accuracy, and Kappa coefficient, were used to evaluate the accuracy of
the oil spill detection results, as shown in Table 5.

Table 5. Oil spill detection accuracy of three algorithms based on the Dalian Xingang dataset.

Dataset Class DUNET CEGCN GCN

AISA+ data
in Dalian

Oil slick 98.34 97.19 91.58
Seawater 98.26 97.79 87.59

Overall Accuracy (%) 98.30 97.50 89.50
Average Accuracy (%) 98.30 97.49 89.59

Kappa Coefficient 0.9659 0.9500 0.7899
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Similar to the previous conclusions, the developed DUNET model achieves the highest
accuracy, overall accuracy, average accuracy, and Kappa coefficient on the Dalian oil spill
airborne hyperspectral dataset, followed by the CEGCN model, while the GCN model
performs the worst. The DUNET model achieves an oil spill detection accuracy of 98.34%
based on the Dalian AISA+ dataset, which is an improvement of 1.15% and 6.76% compared
to the CEGCN and GCN models, respectively. The overall accuracy and average accuracy
are both 98.30%, surpassing the CEGCN model by 0.80% and 0.81%, as well as the GCN
model by 8.80% and 8.71%. The Kappa coefficient of DUNET model achieves 0.9659 based
on the Dalian AISA+ dataset, outperforming the CEGCN and GCN models by 0.0159 and
0.1760, respectively. This demonstrates the applicability of the developed oil spill detection
method in other marine areas, effectively detecting oil spills in hyperspectral images under
the influence of striping. This indicates that the developed oil spill detection model is
applicable to oil spill scenarios in other marine areas, effectively detecting oil spills in
airborne hyperspectral images under striping effects.

4.2.2. Analysis of Different Proportions of Training Samples

To further validate the robustness of the proposed model under different proportions of
training samples, in this section, we randomly select 1%, 3%, and 5% of the training samples
from the Dalian oil spill dataset for model training. The oil spill detection results of the
proposed model and the other two deep learning methods based on different proportions
of training samples are shown in Figure 9.
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Overall, as the proportions of training samples increase, the oil spill detection accu-
racy of all three methods gradually improves. However, the proposed DUNET method
consistently achieves the highest accuracy, even under the condition of only 1% training
samples, outperforming both CEGCN and GCN in oil spill detection.

4.3. Analysis of Spectral Resolution of Sensor

Airborne hyperspectral sensors have high spatial and spectral resolution, strong
maneuverability, and the ability to quickly respond to emergency situations, providing
unparalleled advantages in obtaining timely information on marine oil spills. However,
due to weather conditions and limited endurance, airborne hyperspectral data acquired
is often scarce during oil spill incidents. On the other hand, spaceborne hyperspectral
sensors have the advantage of continuously acquiring data consistently on a global scale.
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However, they have lower spatial resolution, are prone to cloud interference, have long
revisit periods, and lower signal-to-noise ratio.

The AISA+ airborne hyperspectral data used in this study has a spectral resolution
of 5 nm and a spatial resolution of 0.99 m. The Hyperion spaceborne hyperspectral data
has a spectral resolution of 10 nm and a spatial resolution of 30 m. Although Hyperion
covers a wider spectral range, from 400 to 2500 nm, spanning visible light to shortwave
infrared, compared to the spectral range of the AISA+ imagery (400~970 nm), it is worth
noting that the oil spill detection accuracy based on AISA+ imagery consistently exceeds
90%, while the accuracy based on Hyperion imagery remains below 85%. This indicates
that the oil spill detection accuracy based on AISA+ imagery, despite noticeable sunglint
interference, is higher than that based on Hyperion imagery due to its higher spectral
resolution. Furthermore, for data with higher spectral resolution, as the proportions of
training samples gradually increase, the oil spill detection accuracy based on the spectral-
spatial fusion method tends to stabilize.

5. Conclusions

China, as a major importer of crude oil, relies heavily on maritime transportation,
with 90% of its crude oil imports being transported by sea. This inevitably increases the
risk of marine oil spills. Timely and accurate monitoring of oil spill locations and extents
plays a crucial role in effectively responding to and managing such unpredictable oil spill
incidents. Hyperspectral remote sensing has been widely adopted for monitoring marine
oil spills due to its superior spectral and spatial resolution capabilities. However, optical
remote sensing images are susceptible to sunglints and shadows, which can reduce the
spectral differences between oil films and seawater, especially in accurately extracting the
edge information of oil-water interfaces. In light of these challenges, this study developed
a GCN-based model that integrates spatial and spectral information from dual branches
for hyperspectral oil spill detection in real marine scenarios.

The main conclusions drawn from this study are as follows: (1) Compared to the GCN
and CEGCN, the proposed DUNET model achieved the best oil spill detection accuracy on
two hyperspectral datasets from the Bohai Sea, confirming its effectiveness in hyperspectral
oil spill detection. (2) The performance of the developed model in oil spill detection remains
optimal, even with only 1% of the training samples, demonstrating its robustness. (3) When
applied to hyperspectral oil spill data from the Yellow Sea, the developed model exhibited
superior detection accuracy compared to the other two algorithms, further validating
its applicability.

The findings highlight the effectiveness of the proposed model in different datasets
and different proportions of training samples, emphasizing its potential significance in
supporting oil spill monitoring and emergency response efforts in marine environments.
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