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Abstract: Landslides are devastating natural disasters that seriously threaten human life and property.
Landslide susceptibility mapping (LSM) plays a key role in landslide hazard management. Machine
learning (ML) models are widely used in LSM but suffer from limitations such as overfitting and
unreliable accuracy. To improve the classification performance of a single machine learning (ML)
model, this study selects logistic regression (LR), support vector machine (SVM), random forest
(RF), and gradient boosting decision tree (GBDT), and proposes a novel heterogeneous ensemble
framework based on Bayesian optimization (BO), namely, stratified weighted averaging (SWA), to test
its applicability in a typical landslide area in Yanbian Prefecture, China. Firstly, a dataset consisting
of 1531 historical landslides was collected from field investigations and historical records, and a
spatial database containing 16 predisposing factors was established. The dataset was divided into
a training set and a test set in a ratio of 7:3. The results showed that SWA effectively improved the
Accuracy, AUC, and robustness of the model compared to a single ML model. The SWA achieved
the best classification results (Accuracy = 91.39% and AUC = 0.967). To verify the generalization
ability of SWA, we selected published landslide datasets from Yanshan country and Yongxin country
in China for testing. SWA also performed well, with an AUC of 0.871 and 0.860, respectively. As
indicated by shapely values (SVs), Normalized Difference Vegetation Index (NDVI) is the factor that
has the greatest impact on landslide occurrence. The landslide susceptibility maps obtained from this
study will provide an effective reference program for land use planning and disaster prevention and
mitigation projects in Yanbian Prefecture, China.

Keywords: landslide susceptibility mapping; ensemble learning; Bayesian optimization; machine
learning models; shapely values

1. Introduction

According to the Critical Incident Database (https://www.emdat.be, accessed on 12
March 2023), landslides around the world have caused 66,438 deaths and economic losses of
approximately USD 10.8 billion [1] during 1900–2020. Accurate prediction of the potential
location of landslides can greatly minimize the losses caused by landslides. Landslide
susceptibility prediction can effectively address this major issue based on the landslide
inventory and related predisposing factors [2,3]. Therefore, landslide susceptibility map-
ping (LSM) is an important part of landslide prevention and management, which is often
considered the first stage of disaster management and can provide scientific guidance for
further disaster management [4,5]. Currently, various models have been designed based on
GIS and machine learning (ML) techniques: from the initial statistical application models
such as the Frequency Ratio (FR), Analytic Hierarchy Process (AHP), and Information
Value Method (IVM) to the current Support Vector Machine (SVM) using kernel approach,
Random Forest (RF) based on [6] Bagging, and XGBoost [7] based on Boosting.

Statistical methods are usually constructed using linear analysis between historical
landslides and predisposing factors and are widely used in LSM due to their simple
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principles and efficient computations. Rehman et al. [8] used Muzaffarabad as the study
area and calculated the subjective and objective weights of all conditioning factors and their
categories using AHP and FR. In addition, Lin et al. [9] explored the application of the IVM
method in geological hazard evaluation to provide a scientific basis for the development of
regional geological hazard prevention and control strategies. However, landslides occur
under the coupling of multiple factors, and the data distribution of multiple contributing
factors is different, so it is obvious that the relationship is not linear in the strict sense.
Therefore, there are limitations to exploring LSM.

However, the ML method [10] can effectively overcome the effects of different data
distributions and is good at capturing nonlinear relationships, improving the computational
efficiency and accuracy of results by leaps and bounds. Models often used for LSM analysis
are logistic regression (LR), support vector machine (SVM), random forest (RF), decision
tree (DT), etc. Research results have been published on the application of these ML models
in LSM. Chen et al. [11] used Chongren County, China, as the study area and combined it
with 333 landslide sites for analysis, finally finding that RF has considerable performance in
terms of AUC and statistical metrics. However, Hong et al. [12] showed that the predictive
performance of LR is better than that of RF. Therefore, there are geographical differences in
the prediction of LSM by different models, and there are limitations to improving the final
classification effect by considering only the optimization of a single model. The ensemble
methods [13] not only integrate the predictions of multiple models but are also more robust
and easier to scale than a single model. The use of ensemble learning for LSM has been
explored by scholars such as Lv et al. [14], who selected three base learners and four
ensemble methods. The ensemble model will give better performance than a single model.

Therefore, for the application of EL in LSM, this paper proposes an ensemble frame-
work for landslide susceptibility prediction in Yanbian Prefecture. In this paper, four of the
most representative ML models, namely, LR, SVM, RF, and GBDT, are selected as single
classifiers and combined with Bayesian optimization (BO) to propose a stratified weighted
averaging (SWA) framework. This study has the following three main contributions. (1) It
introduces BO into the hyperparameter optimization of a single model to improve the
classification ability and robustness of a single model. (2) The four different ML models
have significant differences in algorithm structure and feature processing, and SWA can
reflect the performance improvement for a single model. At the same time, this paper
comprehensively evaluates the performance of all models from multiple metrics, which
can overall reflect the feasibility of all selected models. (3) Due to the uninterpretable
characteristics of the ML training process, we cannot obtain the degree of influence of the
selected conditional factors on the occurrence of landslides. Therefore, the SHAP method
is selected to derive the factors that contribute most to the occurrence of landslides in the
study area. Unlike previous related studies [15], this study obtains a set of model optimal
parameter combinations after BO of a single model, and model derivation is performed
on top of this to search for the best combination of weight values. On the one hand, the
number of discriminative models is increased to improve the accuracy of prediction, and
on the other hand, the computational process is simple and expandable.

2. Study Area and Dataset
2.1. Description of the Area

Yanbian Prefecture (Figure 1) is located in the Changbai Mountains region of Jilin
Province, China, extending between longitudes of 127◦27′E and 131◦18′E and latitudes of
41◦59′N and 44◦30′N. The total area of Yanbian Prefecture is about 42,700 square kilometers,
with the mountainous area accounting for 54.8% of the total area of the Prefecture, the
plateau for 6.4%, the valley for 13.2%, the valley plain for 12.3%, and the hills for 13.3%. The
overall topography of Yanbian Prefecture has a large elevation difference, with the west
being higher and the east lower. The landforms are mountainous, hilly, and basin-like in
3 gradients from the southwest, northwest, and northeast to the southeast. The topography
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of Yanbian Prefecture combines both terrain height and slope factors for the development
of geological hazards.
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Figure 1. The map of study area.

The climate of Yanbian Prefecture is characterized by distinct monsoons, dry and
windy in spring, warm and rainy in summer, cool and less rainy in autumn, and long cold
periods in winter [16]. Precipitation spreads over a more uneven region, decreasing from
the southeast to northwest. The leeward slopes of mountainous areas are smaller than the
windward slopes, and areas close to the ocean with sufficient sources of water vapor are
larger than those distant from the ocean with insufficient water vapor. The yearly average
rainfall is mostly 550–650 mm, with rainfall concentrated from June to August, accounting
for about 60% of the annual rainfall.

2.2. Landslide Inventory

Landslide inventories are the basis for landslide susceptibility studies. Landslide
inventory mapping can enhance our understanding of the relationship between histori-
cal landslide spatial distributions and LSM [17,18]. The landslide inventory of Yanbian
Prefecture is obtained by the Department of Natural Resources of Jilin Province through
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field research and historical disaster records during 2010–2020. The landslides in the study
area are mainly shallow landslides with a thickness of 0.5–10 m in the form of rotation or
translation, most of which are related to the upper soil layer [19]. Landslides are mainly
caused by rainfall.

Since landslides occur in a few areas and most areas are free of geological hazards,
non-landslide points are selected at a ratio of the positive/negative samples of 1:1.15 to
make the dataset more consistent with the actual geological environment. Meanwhile,
according to the relevant studies [20], appropriately increasing the number of negative
samples is beneficial to model training. Therefore, the dataset contains 1531 historical
disaster points and 1761 non-landslide points that are randomly selected on top of the
400 m buffer zone of disaster points. The training and test sets are divided into a 7:3 ratio.

2.3. Data Preparation

Selecting the suitable predisposing factors is a key step in LSM [21]. However, in the
absence of adequate corresponding assessment standards and technical specifications, the
selection of landslide conditioning factors depends on subjective judgment. Reichenbach
et al. [22] analyzed 565 relevant papers over the period of 1983–2016, from which they
found that these factors can be broadly classified into 5 categories: geological, hydrological,
land cover, geomorphological, and other. On the basis of a field survey, a literature review,
and available data from the study area, the following 16 condition factors are selected. All
data preparation is implemented in ArcGIS 10.8 software. All data sources and types can
be seen in Table 1. Elevation, slope, aspect, profile curvature, Topographical Roughness
Index (TRI), Topographical Wetness Index (TWI), and Stream Power Index (SPI) extracted
from the Digital Surface Model (DSM) are provided by the ALOS Global Surface Model.
Lineaments [23] include faults, ridgelines, fissures, or boundaries between strata on the
Earth’s surface, with different lengths and orientations. To extract the lineaments in the
study area, the DSM is used to obtain 0◦, 45◦, 90◦, and 135◦ mountain-shadow maps.

Table 1. Landslide predisposing factors and their type, source, and resolution (scale).

Predisposing Factors Data Type Source Scale/Resolution

Elevation

Raster
Derived from ALOS Global Surface Model ‘ALOS World
3D-30 m’ (http://www.eorc.jaxa.jp/ALOS/en/aw3d30/

data/index.htm, accessed on 1 November 2022)
30 m × 30 m

Slope

Aspect

Profile curvature

TWI

SPI

TRI

The density of lineaments

Landform
Raster

Derived from A New Map of Global Ecological
Land Units 250 m × 250 m

Lithology Derived from A New Global Lithological Map Database

NDVI

Raster

Derived from Resource and Environment Science and
Data Center (https://www.resdc.cn/, accessed on

8 October 2022)

30 m × 30 m

Yearly average rainfall

Derived from Fine Resolution Mapping of Mountain
Environment

(http://digitalmountain.imde.ac.cn/home, accessed on
18 September 2022)

Land cover
Derived from ESRI

(https://livingatlas.arcgis.com/landcover/, accessed on
15 October 2022)

10 m × 10 m

http://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm
http://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm
https://www.resdc.cn/
http://digitalmountain.imde.ac.cn/home
https://livingatlas.arcgis.com/landcover/
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Table 1. Cont.

Predisposing Factors Data Type Source Scale/Resolution

Distance to faults

Polygon

Derived from Seismic Fault Active Survey Data Center
(https://www.activefault-datacenter.cn/, accessed on

20 September 2022)
1:500,000

Distance to roads Derived from National Platform for Common
Geospatial Information Services

(https://www.tianditu.gov.cn/, accessed on
22 September 2022)

1:500,000Distance to the water system

The raster data for lithology and landform are obtained from A New Map of Global
Ecological Land Units [24] and The New Global Lithological Map Database [25]. Fault
data are provided by the Seismic Fault Active Survey Data Center (SFACDC) with a scale
of 1:500,000. Road and water system data are obtained from the National Platform for
Common Geospatial Information Services (NPCGIS). Normalized Difference Vegetation
Index (NDVI) is calculated for each annual year of Landsat 5/8 remote sensing images
based on Google Earth Engine (GEE), and then the maximum NDVI is obtained for the
location of each image pixel. Yearly average rainfall (YAR) is provided from Fine Resolution
Mapping of Mountain Environment during 1991–2020. Landform, Lithology, and Land
cover are categorical variables, so the nearest neighbor resampling method is used to unify
the resolution to 30 m × 30 m.

Elevation [26] controls the direction of watercourses and the density of the drainage
network and has a significant effect on soil moisture and slope (Figure 2a). The slope
controls the shear forces acting on the slope and is one of the key causes of landslides
(Figure 2b). Theoretically, the risk of landslides increases in areas with higher slopes [27,28]
and decreases to zero in areas with slopes below 5◦. Aspect is related [29] to the occurrence
of landslides because slopes with different aspects are affected differently by precipitation
and solar radiation (Figure 2c). Pro Cur (Figure 2d) and TRI (Figure 2g) [30,31] can effec-
tively reflect the topographic complexity and changes in surface relief and erosion patterns.
The presence of lineaments [32] in an area can lead to more water infiltration into joints and
cracks, thus increasing the likelihood of landslides. For quantitative analysis, lineament
density (LD) is used as the predisposing factor (Figure 2h). The development of cracks and
shear cracks along the fracture zone [33], the formation of fault damage zones [34], and
water infiltration can damage the structure of nearby geotechnical bodies, so the distance to
faults (Figure 2k) should be taken into account. The relief of the topography also plays an
important role in the occurrence of landslides. Landslides mainly occur [35] in the loose ac-
cumulation layer, but landslides at bedrock are relatively rare. Lithology (Figure 2j) reflects
the [36] physical and mineralogical properties of geotechnical bodies in the study area.

There are many water systems in the study area, and the rivers near the water systems
have a strong erosion effect on the geotechnical body, which can easily lead to landslides.
And the closer the water system is, the more serious the erosion is, so DTW (Figure 2m)
and SPI (Figure 2f) [37,38] are included in the analysis. TWI (Figure 2e) is a physical
indicator of the effect of regional topography on runoff direction and accumulation. This
index [39] helps to identify rainfall runoff patterns, potential areas of increased soil water
content, and areas of ponding and quantifies the control of topography on underlying
hydrological processes. Rainfall is a common and important trigger in landslide hazards.
Strong rainfall [40] not only softens the sliding zone but also increases the self-weight of the
slope body. And the rainwater (Figure 2p) infiltrates and transports along the joint fissures
and remains for a long time, which makes the rock body soft and changes the internal stress
state of the slope, thus causing landslides to occur.

It is noteworthy that previous relevant studies have rarely considered the effects of
human activities, but such factors cannot be ignored when determining landslide suscepti-
bility. Human construction activities [41] such as slope cutting, road building (Figure 2l),

https://www.activefault-datacenter.cn/
https://www.tianditu.gov.cn/
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and bridge building will change the internal structure of the geotechnical body, thus affect-
ing the stability of the slope. LC (Figure 2o) reflects the situation of land use [42]. Vegetation
cover areas, bare ground, and water bodies have an important influence on the stability of
slopes. NDVI (Figure 2n) reflects the vegetation cover of the study area [43]. The presence
of slope vegetation enhances the resistance of hillsides to landslides. After establishing
a good spatial database, Z-Score [44] normalization is used to facilitate the training of
machine learning (ML) modeling.

z =
x− µ

σ
(1)

where µ represents the overall mean and σ represents the overall standard deviation.
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Figure 2. Maps showing landslide predisposing factors used in Yanbian Prefecture: (a) elevation,
(b) slope, (c) aspect, (d) profile curvature (Pro_Cur), (e) TWI, (f) SPI, (g) TRI, (h) the density of
lineaments (LD), (i) Landform, (j) Lithology, (k) distance to faults, (l) distance to roads, (m) distance
to water systems, (n) NDVI, (o) Land cover (LC), and (p) Yearly average rainfall (YAR).
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3. Methodology

Figure 3 shows the technical route, and this study includes the following steps. First,
a dataset of the 16 predisposing factors mentioned in Section 2.3 and a dataset of hazard
and non-hazard points are prepared. Secondly, 4 conventional ML models such as LR,
SVM, RF, and GBDT are combined with BO for hyperparameter optimization, while a
comparative study is conducted with the SWA model. Thirdly, to solve the black box
problem of modeling, the SHAP method is introduced into the ML model interpretability
analysis to evaluate the contribution value of each conditioning factor, which is introduced
in Section 5.1.
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Figure 3. The flowchart of the developed methodology.

3.1. Evaluation of Predisposing Factors
3.1.1. Information Gain Ratio

To improve the training efficiency of the model, the first step should be to filter
the selected elements. The information gain (IG) is introduced to measure how much
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information the feature can bring to the classification task. The more information it brings,
the more important the feature is. The expression of IG [45] is shown below:

I(X; Y) = H(X)−H(X|Y) = −∑
x

p(x) log p(x)+∑
y

∑
x

p(y)p(x|y) logp(x|y) (2)

where H(X) represents the information entropy of X, and H(X|Y) represents the information
entropy of the subset as a whole after the division based on different values of the Y array,
also known as conditional entropy. The difference between the two is the information gain.

3.1.2. Multicollinearity Analysis

While considering the importance of the features, it is also necessary to consider the
correlation between the features, and the metrics with too high a correlation should be
eliminated to ensure the training efficiency of the model. To this end, the Pearson correlation
coefficient is introduced [46]. This indicator is used to measure the covariance between
variables X and Y, and its value range is [−1, 1]; ρ = 0 means no correlation between the
two variables, and ρ = 1 or ρ = −1 means a linear relationship between the two variables.
The expression is as follows:

ρ =
Cov(X, Y)

σXσY
=

E[(X− µX)(Y− µY)]

σXσY
(3)

where Cov(X, Y) represents the covariance between the variables X and Y; σX and σY
represent the standard deviation of the variables X and Y. µX and µY represent the means
of X and Y, respectively. E(·) represents the mathematical expectation. The strength of
the correlation has the following divisions: very strong (0.9–1.0), high (0.7–0.9), moderate
(0.4–0.7), low (0.2–0.4), and very weak (0.0–0.2).

3.2. Machine Learning Models
3.2.1. Logistic Regression

Logistic regression (LR) is a model often used in supervised learning to solve di-
chotomous classification tasks [47]. It is often used in LSM, and the expression of logistic
regression is shown below:

f (z) =
1

1 + e−z (4)

where z = w1·x1 + w2·x2 + ... + wN . . . xN + b represents the weighted linear combination;
b represents the intercept term of this function; wN represents the coefficients representing
each variable; xN(N = 1, 2, ..., 16) represents the 16 selected predisposing factors; and f (z)
represents the probability value of landslide occurrence, taking values in the range of [0, 1].

3.2.2. Support Vector Machine

Support vector machine (SVM) is a supervised machine learning algorithm that uses
kernel methods and has a very excellent classification effect. SVM is often used in LSM [48].
SVM classifies the model with the smallest possible classification error on the data by up-
dimensioning the data and finding a hyperplane as a decision boundary in the distribution
of data, using the distance from the sample to the hyperplane. And the loss function of the
SVM is as follows:

minw,b,ζ
||w||2

2
+ C

n

∑
i=1

ζi, s.t.yi(w ·Φ(xi) + b ≥ 1− ζi), ζi ≥ 0 (5)

where ||w||2 represents the weight vector w = (w1, w2, . . . wi) of l2 parametrizations. The
vector w represents the weights. Φ(xi) represents the selected kernel function, while
w · Φ(xi) + b ≥ 1− ζi represents the final chosen decision hyperplane. ζi is used as a
slack variable to measure how much the instance allows for interval misclassification. And
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C is used as a penalty factor to control the penalty by weighing between minimization
and ζi, under joint action of the 3 parameters acting together, thus minimizing the overall
loss function.

3.2.3. Random Forest

The basic unit of Random Forest (RF) is the decision tree [49]. Each decision tree is
a classifier. N trees will have N classification results. RF integrates all category voting
results, assigning the most voted category as the final output. A single decision tree
takes cross-entropy or the Gini coefficient to calculate the label impurity for tree building.
Information entropy is used to measure the degree of confusion in the data and can also
be used to measure the label purity of a dataset. The higher the entropy value, the greater
the amount of information contained. The Gini coefficient is used as a measure of purity
by calculating 1 minus the sum of squares of p(i|t). The smaller the Gini coefficient, the
higher the label purity.

Entropy(t) = −
c

∑
i=1

p(i|t)log2 p(i|t) (6)

Gini(t) = 1−
c

∑
i=1

p(i|t)2 (7)

3.2.4. Gradient Boosting Decision Tree

Gradient Boosting Decision Tree (GBDT) [50] is often used in LSM due to its excellent
classification performance and robustness. Unlike RF, GBDT uses regression trees to solve
classification problems. After multiple iterations, each classifier is trained based on the
residuals of the previous classifier, and the accuracy of the final classifier is continuously
improved by reducing the bias.

Specifically, based on the results of the previous weak evaluator f (x)t−1, the loss
function L(x,y) is computed. L(x,y) is used to adaptively influence the construction of the
next weak estimator f (x)t and integrate the model output. The output result of evaluator
is Ht(xi), the result of which is affected by the overall all weak estimators f (x)0 ∼ f (x)T .

Ht(xi) = Ht−1(xi) + η ft(xi) (8)

The Friedman Mean Square Error (F-MSE) [51] is the main impurity measure used in
GBDT. F-MSE can be interpreted as the product of the summed mean of the sample sizes
on the left and right leaf nodes and the squared mean squared error difference between
the left and right leaf nodes. wL and wR represent the sample size on the left and right leaf
nodes, respectively. ri is the residual on sample i. ŷi is the predicted value of sample at the
current sub-node. This approach allows impurities to fall more quickly, making the overall
branching more efficient.

F−MSE =
wLwR

wL + wR
·

∑
L
(ri − ŷi)

2

wL
−

∑
R
(ri − ŷi)

2

wR


2

(9)

3.3. Bayesian Optimization

Hyperparameter optimization [52] can have a significant impact on the performance of
machine learning models, which mainly include various types of grid-based search methods
(GS) [53], Bayesian optimization (BO), and genetic algorithms (GAs). GS methods use
enumeration or random sampling to search for parameters through the defined parameter
space, and the search process generates a significant amount of computation. Although
genetic algorithms [54] can effectively improve model performance, they involve complex
coding and decoding processes and depend on the merit of the initial population. BO [55]
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uses different probabilistic surrogate models (PSMs) with acquisition functions (AFs) to
find the optimal solution fast and accurately.

The basic flow of BO is as follows. Assume that f(x) is a smooth and uniform function.
First, two real observations are selected and the observation curve f* is inferred based
on the PSM and contains the confidence level of this curve. Based on the PSM output,
the maximum value of AF is calculated, and the x pointed by the maximum value is the
next actual observation point. The estimated f* is continuously corrected by multiple
observations. After a set number of estimations, f* continues approximating f(x), and then
the minimum value of the final f* is taken as the minimum value of f(x).

In this paper, the tree-structure parameter estimator (TPE) is used as PSM and AF is
used as the expected increment. The TPE process [56] divides p(x|y) into two parts, and
the equation is shown below:

p(x|y) =
{
l(x) if y < y∗

g(x) if y ≥ y∗
(10)

TPE constructs different distributions for observation point x on either side of the
threshold y∗, where l(x) is the probability density function formed using the observation
variable x(i) such that y∗ > y(i). g(x) is the probability density function using the remaining
observations. The threshold for delineation is the quantile γ, so we have p(y∗ < y(i)) = γ.
Therefore, we can obtain p(x) and the expression for the collection function.

p(x) = γl(x) + (1− γ)g(x) (11)

EIy∗(x) =
∫ ∞

−∞
max(y∗ − y, 0)p(y | x)dy =

∫ y∗
−∞ (y∗ − y)p(y | x)dy

∝
(

γ + (1− γ) g(x)
l(x)

) (12)

3.4. Stratified Weighted Averaging

Weighted averaging (WA) [57] is a common ensemble method that is widely used in
landslide susceptibility prediction. This study aims to proposes an improved ensemble
method based on WA. The stratified weighted averaging (SWA) is implemented in 3 steps.
The whole process searches the weight values as hyperparameters to obtain the final
prediction probability. First, the training set is divided into 5 copies, each containing 1
validation set and 4 sub-training sets (Figure 4). On top of the optimal combination of
parameters for BO, the hyperparameters are adjusted using a grid search for 5 rounds of
training. For a single classifier, 5 derived models can be obtained.

XLR =
xLR1·wLR1 + xLR2·wLR2 + xLR3·wLR3 + xLR4·wLR4 + xLR5·wLR5

wLR1 + wLR2 + wLR3 + wLR4 + wLR5
(13)

XSVM =
xSVM1·wSVM1 + xSVM2·wSVM2 + xSVM3·wSVM3 + xSVM4·wSVM4 + xSVM5·wSVM5

wSVM1 + wSVM2 + wSVM3 + wSVM4 + wSVM5
(14)

XRF =
xRF1·wRF1 + xRF2·wRF2 + xRF3·wRF3 + xRF4·wRF4 + xRF5·wRF5

wRF1 + wRF2 + wRF3 + wRF4 + wRF5
(15)

XGBDT =
xGBDT1·wGBDT1 + xGBDT2·wGBDT2 + xGBDT3·wGBDT3 + xGBDT4·wGBDT4 + xGBDT5·wGBDT5

wGBDT1 + wGBDT2 + wGBDT3 + wGBDT4 + wGBDT5
(16)
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Figure 4. Model derivation.

Next, an intra-group fusion of predicted probabilities is performed (Figure 5). Taking
LR as an example, the predicted probability (XLR) of the LR model is obtained by predicting
the 5 derived models ([LR1, LR2, LR3, LR4, LR5]) on the testing set, using BO search weight
values. xLR1 represents the predicted probability of LR1 on the testing set, and wLR1
represents the weight value of xLR1. And similarly, XSVM, XRF, and XGBDT represent
the predicted probabilities of SVM, RF, and GBDT on the testing set, respectively. As a
result, the predicted probabilities of intra-group fusion are obtained for all 4 base classifiers.
Finally, the weight values of inter-group fusion are obtained by BO to obtain the final
predicted probability (XP), which yields the classification result. The judgment threshold is
also searched as a hyperparameter and the final judgment threshold obtained is 0.5688.

XP =
XLR·wLR + XSVM·wSVM + XRF·wRF + XGBDT ·wGBDT

wLR + wSVM + wRF + wGBDT
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3.5. Model Evaluation Metrics

LSM needs to be validated to have scientific significance, so it is necessary to select the
appropriate indicators to evaluate the selected model. The ROC curve [58] is used as an
important indicator of the overall classification effectiveness of the model. The horizontal
coordinate of the ROC curve is the false positive rate, which represents the proportion of
false samples among all the samples predicted to be of class 0. The vertical coordinate is
the recall rate, which focuses on the proportion of all class 1 samples that are not accurately
identified. The AUC is divided into 4 classes: poor (0.5–0.7), moderate (0.7–0.85), good
(0.85–0.95), and excellent (0.95–1.00).

We obtain the confusion matrix [59] by comparing the predicted labels of the model
in the testing set with the true labels based on the number of samples with false positive
(FP), false negative (FN), true positive (TP), true negative (TN). TS is the sum of the
number of TP, TN, FP, and FN samples. On this basis, Accuracy, Recall, and Precision
are calculated. Meanwhile, to weigh the prediction results against the test set regarding
the proportion of class 1 samples, we consider using the harmonic mean of Precision
and Recall, i.e., F1-Score, as the model evaluation metric [60]. Finally, to measure the
consistency between the predicted and true values, the Kappa coefficient is introduced. The
more unbalanced the confusion matrix, the higher the Pexp and the lower the Kappa value.
The Kappa coefficients’ [61] range is [−1, 1] and can be divided into 5 groups to represent
different levels of consistency: slight (0.00–0.20), fair (0.21–0.40), moderate (0.41–0.60),
substantial (0.61–0.80), and almost perfect (0.81–1.00).

Accuracy =
TP + TN

TP + TN + FP + FN
(18)

Precision =
TP

TP + FP
(19)

Recall =
TP

TP + FN
(20)

F1− Score =
2

1
Recall +

1
Precision

=
2 · Recall · Precision
Recall + Precision

(21)

Kappa =
Pobs − Pexp

1− Pexp
(22)

Pobs =
TP + TN

TS
(23)

Pexp =
(TP + FP)(TP + FN) + (FN + TN)(FP + TN)

TS× TS
(24)

4. Result
4.1. Factor Assessment Results

Figure 6a shows the information gain value (IG) of each landslide conditioning factor.
The top three IG values are elevation, TRI, and yearly average rainfall, which correspond
to the complex topography of Yanbian Prefecture; the following factors are Land cover and
NDVI, which reflect the influence of ecological environment on the occurrence of landslides,
and places with high vegetation cover and good soil and water conservation will inhibit
the occurrence of landslides; TWI is ranked last with IG values of 0, but TWI is an essential
indicator of geological elements and topography analysis. So, it is not excluded.
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As shown by the Pearson correlation coefficient graph (Figure 6b), the correlation
coefficients of any two groups of 16 selected factors are less than 0.7, and there is no strong
correlation. In summary, all 16 selected factors are used in LSM.

4.2. Landslide Susceptibility Maps

There are three main steps in making LSM [62]. Firstly, all the predisposing factors
are added to the pixel cells of the whole study area, and then the probability of landslide
occurrence is predicted separately under different models. Finally, the study area is classi-
fied into five classes using the quantile method, namely, very low, low, medium, high, and
very high. The percentages of very low and very high prediction results (Figure 7) show a
similar distribution pattern in the LSM of the five models.

The predicted results are consistent with the geographic characteristics of the study
area. Very high areas are mostly areas with low elevation, while areas with high vegetation
cover are mostly very low areas. According to the distribution results of LSM, the prediction
results of RF-TPE are mostly distributed in low, median, and high classes, and the prediction
results of GBDT-TPE are the opposite. SWA considers the prediction results of the four
models simultaneously and assigns different weights to make the results of LSM more
reliable.

The percentages of landslide susceptibility classes under the five models are shown in
Figure 8. For the LSM generated by the LR-TPE model, the percentages of pixels occupied
by very high and very low grades are 19.51% and 19.79%, respectively, while low, medium,
and high occupy 20.49%, 20.17%, and 20.05%, respectively. For the LSM generated by
SVM-TPE, the percentages of pixels occupied by very high and very low grades are 19.97%
and 19.94%, respectively, while low, medium, and high occupy 20.15%, 20.07%, and 19.86%,
respectively. For the LSM generated by RF-TPE, the percentage of pixels occupied by
very high and very low grades are 19.95% and 19.71%, respectively, while low, medium,
and high occupy 20.25%, 20.16%, and 19.94%, respectively. For the LSM generated by
GBDT-TPE, the percentages of pixels occupied by very high and very low grades are 19.92%
and 19.96%, respectively, while low, medium, and high occupy 21.18%, 19.71%, and 19.23%,
respectively. For the LSM generated by SWA, the pixels occupied by very high and very low
grades are 19.39% and 19.94%, respectively, while low, medium, and high occupy 20.45%,
20.19%, and 20.04%, respectively. The above results indicate that the high-susceptibility
areas are concentrated in the lower-terrain areas, which are characterized by frequent
human activities, and land cover type is mostly cropland. Meanwhile, according to the
DTR (Figure 2l), landslides are densely distributed near the roads, but the areas with higher
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vegetation cover are usually lower-susceptibility. Combining geomorphology, land cover,
and human activities, the susceptibility distribution has geomorphic plausibility [63].
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4.3. Model Validation and Comparison

The evaluation of model performance plays a key role in LSM. In this study, four ML
models are selected as the base classifier, and BO is used to obtain their optimal parameter
combinations, on top of which the SWA method is used for model fusion. There are
1531 landslide points and 1761 non-landslide points in the study area, and the dataset is
divided into a training set and a testing set according to the ratio of 7:3. In this paper, six
frequently used model performance metrics are selected for comparative study. All models
are built and optimized using the Python libraries: Scikit-Learn 1.0.1 and Hyperopt 0.2.5.
All assessment metrics are obtained through five rounds of cross-validation [64].

Considering the classification effect of landslides and non-landslides (Table 2), GBDT-
TPE (90.88%) outperforms the other models in terms of accuracy, followed by RF-TPE with
SVM-TPE (90.37%) and LR-TPE (88.15%). In terms of the classification accuracy of landslide
points in prediction results, SVM-TPE achieves the best Precision (90.20%), followed closely
by GBDT-TPE (89.11%), then RF-TPE (88.45%) and LR-TPE models (85.40%). In terms of the
accuracy of landslide point classification in the test set, GBDT-TPE obtains the highest Recall
(91.09%), followed by RF-TPE (Recall = 90.63%), SVM-TPE (89.22%), and LR-TPE (88.69%).
In terms of F1-Score, GBDT-TPE obtains the highest F1-Score (0.901), followed by SVM-TPE
(Recall = 0.897), RF-TPE (0.895), and LR-TPE (0.870). The Kappa coefficient is used to
measure the prediction accuracy and the best performance is obtained for GBDT-TPE and
RF-TPE (0.817), followed by SVM-TPE (0.807) and finally LR-TPE (0.761).

Table 2. List of model metrics.

Measures/Methods LR-TPE SVM-TPE RF-TPE GBDT-TPE SWA

TP 392 414 411 409 408

FN 50 50 42 40 34

FP 67 45 48 50 51

TN 478 478 486 488 494

Accuracy 88.15% 90.37% 90.37% 90.88% 91.39%

Recall 88.69% 89.22% 90.63% 91.09% 92.31%

Precision 85.40% 90.20% 88.45% 89.11% 88.91%

F1-Score 0.870 0.897 0.895 0.901 0.906

Kappa 0.761 0.807 0.817 0.817 0.827
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Finally, we compare the single model with SWA (Figure 9). Except for Precision, the
rest of the metrics achieve the best performance with AUC = 0.967 and Accuracy = 91.39%,
while the overfitting is greatly alleviated. This makes the LSM more realistic, while the
robustness of the model is improved.
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5. Discussion
5.1. Analysis of Model Interpretability

The SHAP method [65] is often used to solve ML model interpretability problems. In
interpreting the ML models, the SHAP values (SVs) can be understood as the importance
of the contribution of the selected factors to the predicted values of the model. In the SHAP
summary plots, the vertical coordinates represent the ranking of feature importance, from
top to bottom, from most important to least important. The horizontal axis indicates the SV
size of the selected factors [66], and the color of the selected factors represents the size of
the value taken by the factor. When SV > 0, the larger the SV value, the more it promotes
the occurrence of landslides, and conversely, when SV < 0, the smaller the SV, the more it
inhibits the occurrence of landslides.

shape(Xi) = ∑
s⊆Nr{i}

k!(p− k− 1)!
p!

( f (S ∪ {i})− f (S)) (25)

The Shapley value for feature Xi in a model is shown above, where p is the total
number of features, N\{i} is a set of all possible combinations of features excluding Xi,S
is a feature set in N\{i}, f (S) is the model prediction with features in S, and f (S ∪ {i}) is
the model prediction with features in S plus feature Xi. In terms of topographic factors,
elevation has the highest SV value (Figure 10). It is worth mentioning that this is not to
suggest that elevation is a trigger condition for landslides to occur, but in the area of lower
elevation, the terrain is flat, human engineering activities are frequent, and cutting slopes to
build roads will destroy the original geotechnical structure. At the same time, there is little
vegetation cover, soil erosion is serious, and erosion of geotechnical bodies is aggravated
by heavy rainfall, which very easily causes damage. The lower-elevation area is coupled
with many landslide susceptibility factors. In terms of environmental factors, NDVI has
the highest SV value. Lower vegetation cover or near-water bodies [67] are mostly high-
landslide-susceptibility areas, while higher NDVIs are usually low-landslide-susceptibility
areas. In terms of ecological factors, Land cover (LC) has the highest SV value. LC reflects
the interaction between human activities and the natural environment [68], and areas with
dense built-up areas or areas with dense cropland are usually high-susceptibility areas,
while shrub forest areas are usually low-susceptibility areas. In summary, NDVI is the most
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influential factor for landslide occurrence. It is recommended to build support projects
in landslide-affected areas to prevent residents from being injured by falling rocks, with
emphasis on ecological prevention and control to maintain soil and water stability [69].
After incorporating the spatial database of landslides, a geohazard project with monitoring
and early warning was established to determine the status of landslides and set the warning
level for the reference of the local government [70].
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5.2. Model Optimization

The model optimization in this study is divided into two parts: hyperparametric
optimization of a single model based on BO, and the SWA that integrates the prediction
results of multiple models.

There are five main parameters to be adjusted in the LR model (Table 3). ‘penalty’
adds regular terms to limit model complexity, control empirical and structural risks, and
ultimately alleviate the overfitting. ‘C’ represents the weight of the empirical risk and
structural risk of the model in the loss function. ‘tol’ sets the iteration stopping condition.
‘max_iter’ represents the maximum number of iterations when solving the parameters.
‘solver’ is the solution method of the loss function, which can satisfy both regularized solu-
tion cases. The final combination of the selected parameters is [‘C’ = 0.75, ‘max_iter’ = 400,
‘penalty’ = ‘l1’, solver = ‘liblinear’, ‘tol’ = 0.0977].

Table 3. The parameter space of LR.

Parameters ‘penalty’ ‘C’ ‘tol’ ‘max_iter’ ‘solver’

Selected range [‘l1’, ’l2’] [0.5, 3] [0.0001, 0.1] [100, 10,000] [‘liblinear’, ’saga’]

There are six main parameters to be adjusted in the SVM model (Table 4). ‘kernel’ maps
low-dimensional data to a high-dimensional space, thus enabling the classification task. ‘de-
gree’ determines the maximum number of polynomials. ‘gamma’ affects the kernel function.
In addition, ‘class_weight’ determines the adjustment of the model itself for the sample
weights. C, which is the penalty term coefficient of the relaxation coefficient, determines
the size of the decision boundary. ‘coef0’ is the independent term of the kernel function.
The final selected combination of parameters is [‘C’ = 1.375, ‘class_weight’ = ‘balanced’,
‘coef0’ = 2.532, ‘degree’ = 2, ‘gamma’ = ‘auto’, ‘kernel’ = ‘poly’].

K(x, y) = (γ(x · y) + r)d (26)

K(x, y) = e−γ‖x−y‖2
, γ > 0 (27)

Table 4. The parameter space of SVM.

Parameters ‘kernal’ ‘degree’ ‘gamma’ ‘class_weight’ ‘C’ ‘coef0’

Selected range [‘poly’, ’rbf’] [0, 5] [‘auto’, ‘scale’, [0.0001, 3]] [None, ‘balanced’] [0.001, 2] [2, 7]

There are five tuning parameters for the RF model (Table 5). ‘n_estimators’ is the
parameter with the greatest impact on the model, representing the number of evaluators
involved in modeling. ‘criterion’ determines the branching criterion. ‘max_depth’ repre-
sents the maximum depth allowed for weak estimators. ‘max_features’ determines the
number of randomly selected features. ‘min_samples_split’ limits the number of leaves and
branches. The final selected parameter combination is [‘max_depth’ = 24, ‘max_features’ = 3,
‘min_impurity_decrease’ = 0, ‘criterion’ = ‘gini’, ‘min_samples_split’ = 11, ‘n_estimators’ = 47].

Table 5. The parameter space of RF.

Parameters ‘n_estimators’ ‘criterion’ ‘max_depth’ ‘max_features’ ‘min_samples_split’

Selected range [25, 50] [‘gini’, ‘entropy’] [4, 26] [1, 10] [4, 20]

The GBDT model identifies a total of eight parameter values (Table 6). As with the RF
model, ‘n_estimators’ have the greatest impact on the modeling results. ‘learning_rate’ requires
a trade-off with ‘n_estimators’. H(xi) grows faster and requires fewer ‘n_estimators’ when
‘learning_rate’ increases; ‘subsample’ controls the proportion of samples that are put back into
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the extraction, while other parameters play a similar role to RF. The final combination of param-
eters is [‘learning_rate’ = 0.16, ‘loss’ = ‘exponential’, ‘max_depth’ = 5, ‘max_features’ = ‘sqrt’,
‘min_impurity_decrease’ = 0.65, ‘n_estimators’ = 151, ‘subsample’ = 0.60].

Table 6. The parameter space of GBDT.

Parameters ‘n_estimators’ ‘learning_rate’ ‘criterion’ ‘loss’

Selected range [130, 160] [0.05, 2.05] [‘friedman_mse’, ‘squared_error’] [‘deviance’, ‘log_loss’, ‘exponential’]

Parameters ‘max_depth’ ‘subsample’ ‘max_features’ ‘min_impurity_decrease’

Selected range [5, 13] [0.4, 0.8] [‘log2’,’sqrt’,4,8,’auto’] [0.4, 3.0]

The experimental results show that the ensemble learning method obtains a higher
prediction accuracy than the base classifier. SWA can better alleviate the overfitting and
reduce bias. The four basic classifiers used in this study differ significantly in terms of
classification effect and overfitting, and the greater the difference between the models,
the better the results obtained by fusion will be. The final combination of weight values
for SWA is [0.0014, 0.2866, 0.0404, 0.6716]. Models with better classification performance
(GBDT-TPE) and fitting effectiveness (SVM-TPE) are given higher weight values. At the
same time, models with weak classification performance (LR-TPE) and severe overfitting
(RF-TPE) are given lower weight values. The combination of weights corresponds to the
results of the analysis in Section 4.2. The above analysis shows that the performance
improvement brought by the SWA is a guideline for decision-makers to analyze landslide
susceptibility based on heuristic experimental results.

5.3. Exploration of Model Generalization Ability

To discuss the generalization ability of SWA, the four base models retain their original
parameters in Section 5.2 and SWA is implemented on this basis. This study selects two
scholars’ publicly available landslide inventory datasets for testing. Firstly, the dataset
of landslides in Yanshan County, China (Figure 11a), was made public by Fang et al. [71].
The basic geomorphology of Yanshan County is characterized by a high south and a
low north. This dataset contains 380 historical landslide hazard sites, all of which are
shallow landslides.
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For the accuracy of a single model, SVM-TPE slightly decreases compared to SVM,
but the other three models outperform LR, CNN, and RNN. In terms of Recall, the overall
Recall value of the five selected models is lower than that of the model in the original
paper. However, in terms of Precision, the Precision of five selected models is much higher
than that of the original paper model. In the original paper, Simple averaging (SA) and
Weighted averaging (WA) achieved the same performance, which indicates that the WA
method failed to work. The SWA method in this paper achieves 80.70% Accuracy with
AUC = 0.871, which is better than the classification performance of the original paper.

Wang et al. [72] selected four recurrent neural networks (RNNs) (Figure 11b) for
LSM in Yongxin County, China. The geomorphology of Yongxin County is dominated
by mountains and hills, with the terrain high in the north and south, low in the center,
and tilting from the north and south to the center. The dataset contains 364 historical
landslide hazard sites. A proportion of 70% of these landslides are rotational landslides
and 30% of them belong to translational landslides. The accuracy of the selected model
in this paper is higher than those of the four RNNs. But the Recall of all RNNs is higher
than that of the selected model in this paper. The AUC of SWA is 0.860, which achieves
the best classification of the original paper. In summary, BO is not only good for model
effect improvement but can also improve the generalization ability of the model. SWA
can overcome geographical differences across study regions and reconcile differences in
classification performance over the base classifier, thereby improving the applicability of
test results. Although SWA obtains good performance after cross-regional tests, this study
only combines landslide predisposing factors with the algorithm to maximize the prediction
performance [73,74], without mentioning the difference between landslide susceptibility
and the real geographic environment. Landslide susceptibility zoning needs to consider the
incomplete bias of landslide samples from roads and built-up areas in order to rationalize
disaster prevention and control.

6. Conclusions

Based on 4 ML models (LR, SVM, RF, and GBDT) widely used in LSM, combined with
BO, an ensemble-learning idea is introduced to establish 5 models of LR-TPE, SVM-TPE,
RF-TPE, GBDT-TPE, and SWA for LSM in Yanbian Prefecture. The SWA method combines
the advantages of individual classifiers and achieves better classification performance. The
main conclusions based on the experimental results are as follows:

(i) All models achieve good LSM in the study area, with similar trends in the spatial
distribution of susceptibility classes.

(ii) Secondly, SWA achieves an effective improvement in all metrics (Accuracy, Preci-
sion, Recall, F1-Score, Kappa coefficient, and AUC). In terms of the generalization ability of
the model, SWA still performs well on small sample datasets and is highly applicable. The
SWA method can maintain good stability while increasing the complexity of the model.

(iii) To visualize the contribution of the elements to the classification results in the
modeling process, the SHAP method is selected for analysis in this paper, which results in
the maximum influence of NDVI on the occurrence of landslides.

(iv) In summary, combining ensemble learning theory with ML models will make the
models highly applicable and have the potential to produce reliable LSM. SWA is 19.39%
and 19.94% in the very low and very high regions, respectively, and 20.45%, 20.19%, and
20.04% in the low, medium, and high regions, respectively.

In short, the results of this work can produce high-quality LSMs that can help managers
make sound land spatial planning and reduce the hazards caused by landslides.

Author Contributions: Conceptualization, H.T. and C.W.; data curation, H.T., C.W. and S.A.; formal
analysis, H.T.; investigation Q.W.; software, H.T.; writing—original draft preparation, H.T. and C.W.;
writing—review and editing, H.T., S.A., and C.J. All authors have read and agreed to the published
version of the manuscript.



Remote Sens. 2023, 15, 4159 23 of 26

Funding: This work was supported by the National Natural Science Foundation of China (grant
number 41972267).

Data Availability Statement: Data sharing not applicable.

Acknowledgments: We would like to thank anonymous reviewers for their constructive and insight-
ful comments and suggestions on the earlier version.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kavzoglu, T.; Sahin, E.K.; Colkesen, I. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support

vector machines, and logistic regression. Landslides 2014, 11, 425–439. [CrossRef]
2. Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.R.; Tiede, D.; Aryal, J. Evaluation of Different Machine Learning

Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection. Remote. Sens. 2019, 11, 196. [CrossRef]
3. Chang, Z.; Catani, F.; Huang, F.; Liu, G.; Meena, S.R.; Huang, J.; Zhou, C. Landslide susceptibility prediction using slope

unit-based machine learning models considering the heterogeneity of conditioning factors. J. Rock Mech. Geotech. Eng. 2023, 15,
1127–1143. [CrossRef]

4. De Graff, J.V.; Romesburg, H.C.; Ahmad, R.; McCalpin, J.P. Producing landslide-susceptibility maps for regional planning in
data-scarce regions. Nat. Hazards 2012, 64, 729–749. [CrossRef]

5. Sujatha, E.R.; Kumaravel, P.; Rajamanickam, G.V. Assessing landslide susceptibility using Bayesian probability-based weight of
evidence model. Bull. Eng. Geol. Environ. 2014, 73, 147–161. [CrossRef]

6. Pham, B.T.; Prakash, I.; Singh, S.K.; Shirzadi, A.; Shahabi, H.; Tran, T.-T.-T.; Bui, D.T. Landslide susceptibility modeling using
Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches. Catena 2019, 175, 203–218.
[CrossRef]

7. Kavzoglu, T.; Teke, A. Advanced hyperparameter optimization for improved spatial prediction of shallow landslides using
extreme gradient boosting (XGBoost). Bull. Eng. Geol. Environ. 2022, 81, 201. [CrossRef]

8. Rehman, A.; Song, J.; Haq, F.; Mahmood, S.; Ahamad, M.I.; Basharat, M.; Sajid, M.; Mehmood, M.S. Multi-Hazard Susceptibility
Assessment Using the Analytical Hierarchy Process and Frequency Ratio Techniques in the Northwest Himalayas, Pakistan.
Remote. Sens. 2022, 14, 554. [CrossRef]

9. Lin, J.; Chen, W.; Qi, X.; Hou, H. Risk assessment and its influencing factors analysis of geological hazards in typical mountain
environment. J. Clean. Prod. 2021, 309, 127077. [CrossRef]

10. Pradhan, B. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models
in landslide susceptibility mapping using GIS. Comput. Geosci. 2013, 51, 350–365. [CrossRef]

11. Chen, W.; Peng, J.; Hong, H.; Shahabi, H.; Pradhan, B.; Liu, J.; Zhu, A.-X.; Pei, X.; Duan, Z. Landslide susceptibility modelling
using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Sci. Total. Environ. 2018, 626,
1121–1135. [CrossRef]

12. Hong, H.; Pourghasemi, H.R.; Pourtaghi, Z.S. Landslide susceptibility assessment in Lianhua County (China): A comparison
between a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology 2016, 259,
105–118. [CrossRef]

13. Pham, B.T.; Tien Bui, D.; Prakash, I.; Dholakia, M.B. Hybrid integration of Multilayer Perceptron Neural Networks and machine
learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. CATENA 2017, 149, 52–63.
[CrossRef]

14. Lv, L.; Chen, T.; Dou, J.; Plaza, A. A hybrid ensemble-based deep-learning framework for landslide susceptibility mapping. Int. J.
Appl. Earth Obs. Geoinf. 2022, 108, 102713. [CrossRef]

15. Zeng, T.; Wu, L.; Peduto, D.; Glade, T.; Hayakawa, Y.S.; Yin, K. Ensemble learning framework for landslide susceptibility mapping:
Different basic classifier and ensemble strategy. Geosci. Front. 2023, 14, 101645. [CrossRef]

16. Yao, J.; Qin, S.; Qiao, S.; Liu, X.; Zhang, L.; Chen, J. Application of a two-step sampling strategy based on deep neural network for
landslide susceptibility mapping. Bull. Eng. Geol. Environ. 2022, 81, 148. [CrossRef]

17. Godt, J.; Baum, R.; Savage, W.; Salciarini, D.; Schulz, W.; Harp, E. Transient deterministic shallow landslide modeling: Require-
ments for susceptibility and hazard assessments in a GIS framework. Eng. Geol. 2008, 102, 214–226. [CrossRef]

18. Al-Najjar, H.A.; Pradhan, B. Spatial landslide susceptibility assessment using machine learning techniques assisted by additional
data created with generative adversarial networks. Geosci. Front. 2021, 12, 625–637. [CrossRef]

19. Guo, Z.; Ferrer, J.V.; Hürlimann, M.; Medina, V.; Puig-Polo, C.; Yin, K.; Huang, D. Shallow landslide susceptibility assessment
under future climate and land cover changes: A case study from southwest China. Geosci. Front. 2023, 14, 101542. [CrossRef]

20. Yang, C.; Liu, L.-L.; Huang, F.; Huang, L.; Wang, X.-M. Machine learning-based landslide susceptibility assessment with optimized
ratio of landslide to non-landslide samples. Gondwana Res. 2022, in press. [CrossRef]

21. Ngo, P.T.T.; Panahi, M.; Khosravi, K.; Ghorbanzadeh, O.; Kariminejad, N.; Cerda, A.; Lee, S. Evaluation of deep learning
algorithms for national scale landslide susceptibility mapping of Iran. Geosci. Front. 2021, 12, 505–519. [CrossRef]

https://doi.org/10.1007/s10346-013-0391-7
https://doi.org/10.3390/rs11020196
https://doi.org/10.1016/j.jrmge.2022.07.009
https://doi.org/10.1007/s11069-012-0267-5
https://doi.org/10.1007/s10064-013-0537-9
https://doi.org/10.1016/j.catena.2018.12.018
https://doi.org/10.1007/s10064-022-02708-w
https://doi.org/10.3390/rs14030554
https://doi.org/10.1016/j.jclepro.2021.127077
https://doi.org/10.1016/j.cageo.2012.08.023
https://doi.org/10.1016/j.scitotenv.2018.01.124
https://doi.org/10.1016/j.geomorph.2016.02.012
https://doi.org/10.1016/j.catena.2016.09.007
https://doi.org/10.1016/j.jag.2022.102713
https://doi.org/10.1016/j.gsf.2023.101645
https://doi.org/10.1007/s10064-022-02615-0
https://doi.org/10.1016/j.enggeo.2008.03.019
https://doi.org/10.1016/j.gsf.2020.09.002
https://doi.org/10.1016/j.gsf.2023.101542
https://doi.org/10.1016/j.gr.2022.05.012
https://doi.org/10.1016/j.gsf.2020.06.013


Remote Sens. 2023, 15, 4159 24 of 26

22. Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models.
Earth Sci. Rev. 2018, 180, 60–91. [CrossRef]

23. Kaur, H.; Gupta, S.; Parkash, S.; Thapa, R.; Gupta, A.; Khanal, G.C. Evaluation of landslide susceptibility in a hill city of Sikkim
Himalaya with the perspective of hybrid modelling techniques. Ann. GIS 2019, 25, 113–132. [CrossRef]

24. Sayre, R.; Dangermond, J.; Frye, C.; Vaughan, R.; Aniello, P.; Breyer, S.P.; Cribbs, D.; Hopkins, D.; Nauman, R.;
Derrenbacher, W.; et al. A New Map of Global Ecological Land Units—An Ecophysiographic Stratification Approach; USGS Publications
Warehouse: Washington, DC, USA, 2014.

25. Hartmann, J.; Moosdorf, N. The new global lithological map database GLiM: A representation of rock properties at the Earth
surface. Geochem. Geophys. Geosyst. 2012, 13, 5–6. [CrossRef]

26. Youssef, A.M.; Pourghasemi, H.R. Landslide susceptibility mapping using machine learning algorithms and comparison of their
performance at Abha Basin, Asir Region, Saudi Arabia. Geosci. Front. 2021, 12, 639–655. [CrossRef]

27. Panahi, M.; Gayen, A.; Pourghasemi, H.R.; Rezaie, F.; Lee, S. Spatial prediction of landslide susceptibility using hybrid support
vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms. Sci. Total.
Environ. 2020, 741, 139937. [CrossRef]

28. Tao, Z.; Geng, Q.; Zhu, C.; He, M.; Cai, H.; Pang, S.; Meng, X. The mechanical mechanisms of large-scale toppling failure for
counter-inclined rock slopes. J. Geophys. Eng. 2019, 16, 541–558. [CrossRef]

29. Saha, S.; Arabameri, A.; Saha, A.; Blaschke, T.; Ngo, P.T.T.; Nhu, V.H.; Band, S.S. Prediction of landslide susceptibility in
Rudraprayag, India using novel ensemble of conditional probability and boosted regression tree-based on cross-validation
method. Sci. Total. Environ. 2021, 764, 142928. [CrossRef]

30. Nhu, V.-H.; Hoang, N.-D.; Nguyen, H.; Ngo, P.T.T.; Bui, T.T.; Hoa, P.V.; Samui, P.; Bui, D.T. Effectiveness assessment of Keras
based deep learning with different robust optimization algorithms for shallow landslide susceptibility mapping at tropical area.
Catena 2020, 188, 104458. [CrossRef]

31. Sahin, E.K.; Colkesen, I.; Acmali, S.S.; Akgun, A.; Aydinoglu, A.C. Developing comprehensive geocomputation tools for landslide
susceptibility mapping: LSM tool pack. Comput. Geosci. 2020, 144, 104592. [CrossRef]

32. Singh, P.; Sharma, A.; Sur, U.; Rai, P.K. Comparative landslide susceptibility assessment using statistical information value and
index of entropy model in Bhanupali-Beri region, Himachal Pradesh, India. Environ. Dev. Sustain. 2021, 23, 5233–5250. [CrossRef]

33. Van Dao, D.; Jaafari, A.; Bayat, M.; Mafi-Gholami, D.; Qi, C.; Moayedi, H.; Van Phong, T.; Ly, H.-B.; Le, T.-T.; Trinh, P.T.; et al.
A spatially explicit deep learning neural network model for the prediction of landslide susceptibility. catena 2020, 188, 104451.
[CrossRef]

34. Dong, M.; Zhang, F.; Yu, C.; Lv, J.; Zhou, H.; Li, Y.; Zhong, Y. Influence of a Dominant Fault on the Deformation and Failure Mode
of Anti-dip Layered Rock Slopes. KSCE J. Civ. Eng. 2022, 26, 3430–3439. [CrossRef]

35. Bui, D.T.; Pradhan, B.; Lofman, O.; Revhaug, I.; Dick, O.B. Spatial prediction of landslide hazards in Hoa Binh province (Vietnam):
A comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. catena 2012, 96, 28–40. [CrossRef]

36. Fan, J.; Guo, Z.; Tao, Z.; Wang, F. Method of equivalent core diameter of actual fracture section for the determination of point load
strength index of rocks. Bull. Eng. Geol. Environ. 2021, 80, 4575–4585. [CrossRef]

37. Desalegn, H.; Mulu, A.; Damtew, B. Landslide susceptibility evaluation in the Chemoga watershed, upper Blue Nile, Ethiopia.
Nat. Hazards 2022, 113, 1391–1417. [CrossRef]

38. Sameen, M.I.; Pradhan, B.; Lee, S. Application of convolutional neural networks featuring Bayesian optimization for landslide
susceptibility assessment. Catena 2020, 186, 104249. [CrossRef]

39. Grabowski, D.; Laskowicz, I.; Małka, A.; Rubinkiewicz, J. Geoenvironmental conditioning of landsliding in river valleys of
lowland regions and its significance in landslide susceptibility assessment: A case study in the Lower Vistula Valley, Northern
Poland. Geomorphology 2022, 419, 108490. [CrossRef]

40. Medina, V.; Hürlimann, M.; Guo, Z.; Lloret, A.; Vaunat, J. Fast physically-based model for rainfall-induced landslide susceptibility
assessment at regional scale. catena 2021, 201, 105213. [CrossRef]

41. Tsangaratos, P.; Benardos, A. Estimating landslide susceptibility through a artificial neural network classifier. Nat. Hazards 2014,
74, 1489–1516. [CrossRef]

42. Yao, J.; Qin, S.; Qiao, S.; Che, W.; Chen, Y.; Su, G.; Miao, Q. Assessment of Landslide Susceptibility Combining Deep Learning
with Semi-Supervised Learning in Jiaohe County, Jilin Province, China. Appl. Sci. 2020, 10, 5640. [CrossRef]

43. Pourghasemi, H.R.; Kornejady, A.; Kerle, N.; Shabani, F. Investigating the effects of different landslide positioning techniques,
landslide partitioning approaches, and presence-absence balances on landslide susceptibility mapping. catena 2020, 187, 104364.
[CrossRef]

44. Huqqani, I.A.; Tay, L.T.; Mohamad-Saleh, J. Spatial landslide susceptibility modelling using metaheuristic-based machine learning
algorithms. Eng. Comput. 2023, 39, 867–891. [CrossRef]

45. Mandal, K.; Saha, S.; Mandal, S. Applying deep learning and benchmark machine learning algorithms for landslide susceptibility
modelling in Rorachu river basin of Sikkim Himalaya, India. Geosci. Front. 2021, 12, 101203. [CrossRef]

46. Hong, H.; Liu, J.; Zhu, A.-X. Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing
attributes with the bagging ensemble. Sci. Total. Environ. 2020, 718, 137231. [CrossRef] [PubMed]

47. Kadavi, P.R.; Lee, C.-W.; Lee, S. Landslide-susceptibility mapping in Gangwon-do, South Korea, using logistic regression and
decision tree models. Environ. Earth Sci. 2019, 78, 116. [CrossRef]

https://doi.org/10.1016/j.earscirev.2018.03.001
https://doi.org/10.1080/19475683.2019.1575906
https://doi.org/10.1029/2012GC004370
https://doi.org/10.1016/j.gsf.2020.05.010
https://doi.org/10.1016/j.scitotenv.2020.139937
https://doi.org/10.1093/jge/gxz020
https://doi.org/10.1016/j.scitotenv.2020.142928
https://doi.org/10.1016/j.catena.2020.104458
https://doi.org/10.1016/j.cageo.2020.104592
https://doi.org/10.1007/s10668-020-00811-0
https://doi.org/10.1016/j.catena.2019.104451
https://doi.org/10.1007/s12205-022-1852-0
https://doi.org/10.1016/j.catena.2012.04.001
https://doi.org/10.1007/s10064-021-02236-z
https://doi.org/10.1007/s11069-022-05338-3
https://doi.org/10.1016/j.catena.2019.104249
https://doi.org/10.1016/j.geomorph.2022.108490
https://doi.org/10.1016/j.catena.2021.105213
https://doi.org/10.1007/s11069-014-1245-x
https://doi.org/10.3390/app10165640
https://doi.org/10.1016/j.catena.2019.104364
https://doi.org/10.1007/s00366-022-01695-6
https://doi.org/10.1016/j.gsf.2021.101203
https://doi.org/10.1016/j.scitotenv.2020.137231
https://www.ncbi.nlm.nih.gov/pubmed/32097835
https://doi.org/10.1007/s12665-019-8119-1


Remote Sens. 2023, 15, 4159 25 of 26

48. Kumar, D.; Thakur, M.; Dubey, C.S.; Shukla, D.P. Landslide susceptibility mapping & prediction using Support Vector Machine
for Mandakini River Basin, Garhwal Himalaya, India. Geomorphology 2017, 295, 115–125. [CrossRef]

49. Youssef, A.M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Al-Katheeri, M.M. Erratum to: Landslide susceptibility mapping using
random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their
performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 2016, 13, 1315–1318. [CrossRef]

50. Sachdeva, S.; Bhatia, T.; Verma, A.K. A novel voting ensemble model for spatial prediction of landslides using GIS. Int. J. Remote.
Sens. 2020, 41, 929–952. [CrossRef]

51. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
52. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for Hyper-Parameter Optimization. In International Conference on Neural

Information Processing Systems; Curran Associates Inc.: Dutchess, NY, USA, 2011; pp. 2546–2554.
53. Liu, R.; Yang, X.; Xu, C.; Wei, L.; Zeng, X. Comparative Study of Convolutional Neural Network and Conventional Machine

Learning Methods for Landslide Susceptibility Mapping. Remote. Sens. 2022, 14, 321. [CrossRef]
54. Jaafari, A.; Panahi, M.; Pham, B.T.; Shahabi, H.; Bui, D.T.; Rezaie, F.; Lee, S. Meta optimization of an adaptive neuro-fuzzy

inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide
susceptibility. Catena 2019, 175, 430–445. [CrossRef]

55. Pradhan, B.; Sameen, M.I.; Al-Najjar, H.A.H.; Sheng, D.; Alamri, A.M.; Park, H.-J. A Meta-Learning Approach of Optimisation for
Spatial Prediction of Landslides. Remote. Sens. 2021, 13, 4521. [CrossRef]

56. Ozaki, Y.; Tanigaki, Y.; Watanabe, S.; Onishi, M. Multiobjective tree-structured parzen estimator for computationally expensive
optimization problems. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference, Cancun, Mexico, 8–12
July 2020. [CrossRef]

57. Feizizadeh, B.; Blaschke, T.; Nazmfar, H. GIS-based ordered weighted averaging and Dempster–Shafer methods for landslide
susceptibility mapping in the Urmia Lake Basin, Iran. Int. J. Digit. Earth 2014, 7, 688–708. [CrossRef]

58. Pham, B.T.; Nguyen-Thoi, T.; Qi, C.; Van Phong, T.; Dou, J.; Ho, L.S.; Van Le, H.; Prakash, I. Coupling RBF neural network with
ensemble learning techniques for landslide susceptibility mapping. Catena 2020, 195, 104805. [CrossRef]

59. Bui, D.T.; Tsangaratos, P.; Nguyen, V.-T.; Van Liem, N.; Trinh, P.T. Comparing the prediction performance of a Deep Learning Neu-
ral Network model with conventional machine learning models in landslide susceptibility assessment. Catena 2020, 188, 104426.
[CrossRef]

60. Can, R.; Kocaman, S.; Gokceoglu, C. A Comprehensive Assessment of XGBoost Algorithm for Landslide Susceptibility Mapping
in the Upper Basin of Ataturk Dam, Turkey. Appl. Sci. 2021, 11, 4993. [CrossRef]

61. Bui, D.T.; Tuan, T.A.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction models for shallow landslide hazards: A comparative
assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model
tree. Landslides 2016, 13, 361–378. [CrossRef]

62. Guzzetti, F.; Gariano, S.L.; Peruccacci, S.; Brunetti, M.T.; Marchesini, I.; Rossi, M.; Melillo, M. Geographical landslide early
warning systems. Earth-Sci. Rev. 2020, 200, 102973. [CrossRef]

63. Steger, S.; Brenning, A.; Bell, R.; Petschko, H.; Glade, T. Exploring discrepancies between quantitative validation results and the
geomorphic plausibility of statistical landslide susceptibility maps. Geomorphology 2016, 262, 8–23. [CrossRef]

64. Goetz, J.N.; Brenning, A.; Petschko, H.; Leopold, P. Evaluating machine learning and statistical prediction techniques for landslide
susceptibility modeling. Comput. Geosci. 2015, 81, 1–11. [CrossRef]

65. Lundberg, S.M.; Lee, S. A Unified Approach to Interpreting Model Predictions. arXiv 2017, arXiv:abs/1705.0787. [CrossRef]
66. Kavzoglu, T.; Teke, A.; Yilmaz, E.O. Shared Blocks-Based Ensemble Deep Learning for Shallow Landslide Susceptibility Mapping.

Remote. Sens. 2021, 13, 4776. [CrossRef]
67. Martinez, A.d.l.I.; Labib, S. Demystifying normalized difference vegetation index (NDVI) for greenness exposure assessments

and policy interventions in urban greening. Environ. Res. 2023, 220, 115155. [CrossRef] [PubMed]
68. Wong, C.P.; Jiang, B.; Kinzig, A.P.; Lee, K.N.; Ouyang, Z. Linking ecosystem characteristics to final ecosystem services for public

policy. Ecol. Lett. 2015, 18, 108–118. [CrossRef] [PubMed]
69. He, Z.; Xiao, L.; Guo, Q.; Liu, Y.; Mao, Q.; Kareiva, P. Evidence of causality between economic growth and vegetation dynamics

and implications for sustainability policy in Chinese cities. J. Clean. Prod. 2020, 251, 119550. [CrossRef]
70. Zhang, X.; Zhu, C.; He, M.; Dong, M.; Zhang, G.; Zhang, F. Failure Mechanism and Long Short-Term Memory Neural Network

Model for Landslide Risk Prediction. Remote. Sens. 2022, 14, 166. [CrossRef]
71. Fang, Z.; Wang, Y.; Peng, L.; Hong, H. A comparative study of heterogeneous ensemble-learning techniques for landslide

susceptibility mapping. Int. J. Geogr. Inf. Sci. 2021, 35, 321–347. [CrossRef]
72. Wang, Y.; Fang, Z.; Wang, M.; Peng, L.; Hong, H. Comparative study of landslide susceptibility mapping with different recurrent

neural networks. Comput. Geosci. 2020, 138, 104445. [CrossRef]

https://doi.org/10.1016/j.geomorph.2017.06.013
https://doi.org/10.1007/s10346-015-0667-1
https://doi.org/10.1080/01431161.2019.1654141
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.3390/rs14020321
https://doi.org/10.1016/j.catena.2018.12.033
https://doi.org/10.3390/rs13224521
https://doi.org/10.1145/3377930.3389817
https://doi.org/10.1080/17538947.2012.749950
https://doi.org/10.1016/j.catena.2020.104805
https://doi.org/10.1016/j.catena.2019.104426
https://doi.org/10.3390/app11114993
https://doi.org/10.1007/s10346-015-0557-6
https://doi.org/10.1016/j.earscirev.2019.102973
https://doi.org/10.1016/j.geomorph.2016.03.015
https://doi.org/10.1016/j.cageo.2015.04.007
https://doi.org/10.48550/arXiv.1705.07874
https://doi.org/10.3390/rs13234776
https://doi.org/10.1016/j.envres.2022.115155
https://www.ncbi.nlm.nih.gov/pubmed/36584843
https://doi.org/10.1111/ele.12389
https://www.ncbi.nlm.nih.gov/pubmed/25394857
https://doi.org/10.1016/j.jclepro.2019.119550
https://doi.org/10.3390/rs14010166
https://doi.org/10.1080/13658816.2020.1808897
https://doi.org/10.1016/j.cageo.2020.104445


Remote Sens. 2023, 15, 4159 26 of 26

73. Steger, S.; Mair, V.; Kofler, C.; Pittore, M.; Zebisch, M.; Schneiderbauer, S. Correlation does not imply geomorphic causation in
data-driven landslide susceptibility modelling—Benefits of exploring landslide data collection effects. Sci. Total. Environ. 2021,
776, 145935. [CrossRef]

74. Lima, P.; Steger, S.; Glade, T. Counteracting flawed landslide data in statistically based landslide susceptibility modelling for very
large areas: A national-scale assessment for Austria. Landslides 2021, 18, 3531–3546. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.scitotenv.2021.145935
https://doi.org/10.1007/s10346-021-01693-7

	Introduction 
	Study Area and Dataset 
	Description of the Area 
	Landslide Inventory 
	Data Preparation 

	Methodology 
	Evaluation of Predisposing Factors 
	Information Gain Ratio 
	Multicollinearity Analysis 

	Machine Learning Models 
	Logistic Regression 
	Support Vector Machine 
	Random Forest 
	Gradient Boosting Decision Tree 

	Bayesian Optimization 
	Stratified Weighted Averaging 
	Model Evaluation Metrics 

	Result 
	Factor Assessment Results 
	Landslide Susceptibility Maps 
	Model Validation and Comparison 

	Discussion 
	Analysis of Model Interpretability 
	Model Optimization 
	Exploration of Model Generalization Ability 

	Conclusions 
	References

