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Abstract: In this study, we combined machine learning and remote sensing techniques to estimate
the value of chlorophyll-a concentration in a freshwater ecosystem in the South American continent
(lake in Southern Chile). In a previous study, nine artificial intelligence (AI) algorithms were tested
to predict water quality data from measurements during monitoring campaigns. In this study, in
addition to field data (Case A), meteorological variables (Case B) and satellite data (Case C) were used
to predict chlorophyll-a in Lake Llanquihue. The models used were SARIMAX, LSTM, and RNN, all
of which showed generally good statistics for the prediction of the chlorophyll-a variable. Model
validation metrics showed that all three models effectively predicted chlorophyll as an indicator of
the presence of algae in water bodies. Coefficient of determination values ranging from 0.64 to 0.93
were obtained, with the LSTM model showing the best statistics in any of the cases tested. The LSTM
model generally performed well across most stations, with lower values for MSE (<0.260 (µg/L)2),
RMSE (<0.510 ug/L), MaxError (<0.730 µg/L), and MAE (<0.442 µg/L). This model, which combines
machine learning and remote sensing techniques, is applicable to other Chilean and world lakes that
have similar characteristics. In addition, it is a starting point for decision-makers in the protection
and conservation of water resource quality.

Keywords: water quality; chlorophyll; remote sensing; deep learning; Chile; lakes

1. Introduction

Eutrophication is a phenomenon that occurs in lakes when excess nutrients such as
phosphorus and nitrogen accumulate in the water [1,2]. This leads to the growth of algae
and other aquatic plants, which can deplete oxygen levels in water and create harmful algal
blooms [3,4]. The effects of eutrophication can be devastating to lake ecosystems, leading
to the death of fish and other aquatic species [5,6]. Interventions to reduce eutrophication
in lake watersheds include decreasing fertilizer use in nearby agriculture, limiting the dis-
charge of raw sewage into the lake, and introducing species that consume excess nutrients,
such as carp and tilapia [7,8]. In addition, other practices carried out by lake managers such
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as dredging and aeration are causing an increase in oxygen levels and reducing nutrient
concentrations [9,10].

Chlorophyll-a (Chl-a) is a green pigment found in the chloroplasts of algae, plants, and
some bacteria that is responsible for capturing light energy during photosynthesis [11,12].
It is often used as an indicator of algae presence because it is a primary photosynthetic pig-
ment found in all types of algae [13,14]. The concentration of Chl-a is directly proportional
to the number of algae present in a water sample, making it a useful tool for monitoring
algal growth and detecting harmful algal blooms [15,16]. Additionally, Chl-a can be used
to estimate the primary productivity of aquatic ecosystems, which is an important factor
for understanding the health and functioning of these systems [17,18].

Remote sensing techniques, combined with artificial intelligence models, have revolu-
tionized the way scientists study, and manage the Earth’s natural resources [19,20]. These
techniques involve the use of sensors to collect data remotely, often from satellites, aircraft
or drones [21–23]. By using artificial intelligence algorithms to analyze the collected data,
researchers can gain insights into environmental patterns and make predictions about
future trends [24,25]. With the help of machine learning models, scientists can develop
early warning systems to detect harmful algal blooms, helping to mitigate the negative
effects of eutrophication on lake ecosystems [26–28]. Moreover, multiple remote sensing
studies have been used to monitor water quality in lakes and identify changes in nutrient
concentrations that could lead to eutrophication [29–32]. The combination of remote sens-
ing and artificial intelligence provides a powerful tool for understanding and managing
complex environmental systems.

Chile has several lake districts, from north to south: the district of Altiplanic Lakes,
Nabuelbutan Lakes, Araucanian Lakes, Chiloe Lakes, and Nordpatagonian Lakes or Paine
Towers. Araucanian lakes stand out for their economic, social, and environmental im-
portance. Lake Llanquihue is the largest lake in this chain and there is little scientific
knowledge about aspects of its water quality, which is why it was selected for study in a
previous investigation and specifically in the present one. The objective of this study is
to contribute through combined techniques of remote sensing and machine learning to
develop early tools for monitoring lakes in the follow-up of algal bloom phenomena. For
this, we will follow the following specific objectives: (i) analyze the behavior of the physic-
ochemical and biological variables best related to algal bloom events during the period
1989–2021; (ii) train artificial intelligence models with real in situ data of limnological and
meteorological variables and data from Landsat satellite image sources and (iii) estimate
the concentration of chlorophyll-a in the lake for seasons of the year where monitoring data
are not available and validate these results with data from monitoring campaigns.

2. Materials and Methods
2.1. Site Description

Lake Llanquihue (41◦08′S and 72◦47′W) is a large freshwater lake located in southern
Chile, in the Los Lagos Region [33]. The lake is located at an altitude of 51 m above sea level
(m.a.s.l.) and has an area of approximately 870 km2 (Figure 1), making it one of the largest
lakes in Chile [34]. It is also one of the most emblematic natural landmarks in the region
and is surrounded by the impressive backdrop of the Andes Mountains. The lake is fed by
several rivers and streams, such as the Maullín and Petrohué rivers, which flow into the
lake from east and west, respectively. The mouth of Lake Llanquihue is the Maullín River
that flows into the Pacific Ocean. The lake has a maximum depth of 317 m and an average
depth of 207 m, making it one of the deepest lakes in South America [35]. Lake Llanquihue
is surrounded by several active volcanoes, such as Osorno, Calbuco and Puntiagudo,
which contribute to the region’s rugged and dramatic landscape [36]. The lakeshore is
characterized by beaches, cliffs, and rocky outcrops, with a variety of flora and fauna
present in the surrounding forests and wetlands. The climate around Lake Llanquihue is
classified as temperate oceanic, with mild temperatures and high humidity throughout
the year. The average annual temperature is around 11 ◦C, with averages ranging from
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5 ◦C in winter to 16 ◦C in summer [37]. The region is also known for its frequent rainfall,
especially during the winter months, which contributes to the lush vegetation and fertile
soil of the surrounding area. Overall, Lake Llanquihue is an impressive natural feature and
the product of the dynamic geological and climatic forces that have shaped the landscape
of southern Chile. Its deep, crystal-clear waters, surrounded by volcanoes and green
forests, make it a popular destination for outdoor activities such as hiking, fishing, and
kayaking [38].
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2.2. Sample Collection

The Dirección General de Aguas de Chile (DGA for its acronym in Spanish) has been
monitoring a group of lakes in Chile since 1986. Lake Llanquihue is within the selected
group because it is the second-largest lake in the Chilean territory and because of its
economic-social-cultural importance. The monitoring campaigns carried out in all seasons
of the year consisted of sampling and in situ measurements of parameters at eight stations
located in the lake (Ll1-Ll8, see Figure 1).

The collection of field data on physicochemical and biological parameters, as well as
water samples for algae and pigment identification, is an essential part of water quality
monitoring. The data collected will provide valuable information for understanding the
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health of this water body and identifying potential environmental threats, such as the pos-
sible occurrence of algal blooms. The in-situ parameters selected for this study were Secchi
disk depth (SD), chlorophyll-a (Chl-a) (Standard Methods N◦10,200 H DGALGOCL1/2009),
temperature (◦C), total nitrogen (Nt) (Standard Methods N◦4500-N C) and total phosphorus
(Pt) (Standard Methods N◦4500-P E). By following a standardized protocol and keeping
detailed records, researchers and water managers can make informed decisions regarding
water body management.

2.3. Preprocessing of Landsat 8 Satellite Images

Landsat-8 (L-8 OLI) images were used with a low percentage of clouds (less than 11%)
covering the Llanquihue Lake (path/row: 233/89). L-8 is an Earth observation satellite
of the Landsat project operated by the National Aeronautics and Spatial Administration
(NASA) and the United States Geological Survey (USGS) [39,40]. It has two sensors, the
OLI (Operational Land Imager) which provides nine bands in the visible, near-infrared, and
shortwave spectra and covers from 0.433 µm to 1.390 µm, and the TIRS sensor (Thermal
Infrared Sensor), which covers from 10.30 µm to 12.50 µm [41]. The 14 multispectral images
used have a 30-m spatial resolution and were obtained from the USGS Earth Explorer
(https://earthexplorer.usgs.gov/, accessed on 7 January 2023). The orthorectified and
corrected images of the terrain of Collection 2 Level 1 were selected considering, the
closeness to the sampling date and availability (see Table S1).

Considering a previous visual inspection through the Quality Assessment band (QA)
and the Region of Interest (ROI), the images were atmospherically corrected in the ACO-
LITE software (version 20211124.0) from https://github.com/acolite and accessed on
10 February 2023. ACOLITE is a generic processor that was developed specifically for ma-
rine, coastal, and inland waters, and brings together the atmospheric correction algorithms
and software developed at RBINS for processing of images satellites applied to aquatic
remote sensing [18,42,43]. ACOLITE uses a default atmospheric correction based on Dark
Spectrum Fitting (DSF) [44–46] and Exponential Extrapolation (EXP) [43,47,48] algorithms.

From the resulting bands representing the surface-level reflectance (ρs) for L-8, the values
were extracted in a matrix of 3 × 3 pixels per sampling point, according to [49]. Pixel values
were extracted using ArcGIS software (ESRI’s v. 10.8.2). Only data from cloud-free areas
were used to have high-quality data and to avoid affecting the accuracy of the chlorophyll
concentration estimate. These values were obtained from five multispectral bands: blue (B),
green (G), red (R), near-infrared (NIR), and shortwave infrared (SWIR). In addition, the values
of the Normalized Difference Vegetation Index (NDVI) and Floating Algal Index (FAI) were
used. Both indexes are algorithms included in ACOLITE as part of the recovery of parameters
derived from reflectance [50,51]. The limits of the lake were acquired from the DGA, and only
the water body was considered for the analysis (DGA, 2023) [52].

Single bands are widely used to correlate with in situ data and estimate water quality
parameters, such as chlorophyll [30,53], total suspended solids [54], turbidity [55], and
temperature [56]. Surface reflectance values have shown good performance in these esti-
mations and are even being used in artificial intelligence [57,58], including in algal bloom
detection [24,32,55,59]. NDVI and FAI indices have been used in research related to chloro-
phyll and algal bloom estimation with good precision [18,60,61]. The NDVI is a commonly
used indicator of vegetation photosynthetic activity and has been widely used in algae
and chlorophyll extraction studies [62,63]. On the other hand, FAI is defined as a linear
spread of reflectivity in the near-infrared, red, and shortwave infrared regions and can be
applied to monitor algal blooms. The observation results of this algorithm provide a high
accuracy [61,63,64].

2.4. Prediction Using Statistical and Deep Learning Models
2.4.1. SARIMAX

The SARIMAX (Seasonal Autoregressive Integrated Moving Average with Exogenous
Variables) model is a type of time series model. It is an extension of the ARIMA (Autore-

https://earthexplorer.usgs.gov/
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gressive Integrated Moving Average) model that incorporates both seasonal and exogenous
components [65]. The mathematical model is defined by Equation (1):

yt = βtxt + ut

ϕp(L)
∼
φp(Ls)∆d∆D

s ut = A(t) + θq(L)
∼
θQ(Ls)ζ

(1)

where β in the first part of the formula represents external variables. The model is similar
to the SARIMA model, with the following hyperparameters [66]:

p represents the order for the Autoregressive part (AR)
q represents the order for the moving average part (MA)
I represents the differencing order
P represents the seasonal AR order
Q represents the seasonal MA order
D represents the seasonal differencing
s represents the seasonal coefficients

The complete data pipeline used is shown in Figure 2. Raw data were obtained for each
station (Figure 1). Subsequently, data were resampled at monthly intervals. Autocorrelation
(ACF) and Partial Autocorrelation (PACF) functions were computed. Additionally, the
Dickey Fuller test [67] was employed to examine whether the chlorophyll-a time series
exhibited the characteristics of white noise. Subsequently, a seasonal order was applied,
and, if necessary, a 1-step differentiation was performed. The optimal hyperparameters
were determined through calibration using the pmdarima library (https://github.com/
alkaline-ml/pmdarima, (accessed on 20 February 2023)), and the range of values for
calibration was established based on the ACF and PACF results. Finally, the most suitable
model was selected based on Akaike Information Criteria (AIC) and Bayesian Information
Criteria (BIC).
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2.4.2. Long Short-Term Memory (LSTM)

Subsequently, Long short-term memory (LSTM) was used, which is a variant of a
Recurrent neural network (RNN) proposed by Hochreiter and Schmidhuber in 1997 [68].
This algorithm solves the long-term dependency problem in RNNs by introducing memory
(C) and an appropriate gate structure.

The LSTM cell (Figure 3) has four gates: input (i), forget ( f ), control (c) and output
gates (o). The input gate determines the information that can be inserted and transferred to
the cell:

it = σ(Wi·[ht−1, xt] + bi) (2)

https://github.com/alkaline-ml/pmdarima
https://github.com/alkaline-ml/pmdarima
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The forget gate decides which information from the input is important from previous
memory with:

ft = σ
(

W f ·[ht−1, xt] + b f

)
(3)

The control gate stabilizes the update in the cell state from Ct−1 to Ct using Equations (4) and (5):

∼
Ct = tanh(WC·[ht−1, xt] + bc) (4)

Ct = ft × Ct−1 +
∼
Ct (5)

The output gate generates the output updating the hidden vector ht−1 with Equations (6) and (7):

ot = σt × tanh(Ct) (6)

ht = ot × tanh(Ct) (7)

where σ is the activation function, W corresponds to the weight matrices calibrated during
the training process, tanh is used to scale values in the range of −1 to 1, and b represents
the bias in each step. During the training process, a lag of 9 is constructed from the input
variables. An LSTM layer with a variable number of cells ranging from 30 to 50 was used
based on the size and complexity of the dataset. Furthermore, a Dense layer is employed as
the output layer to facilitate accurate predictions. The latter topology is considered to be
a common configuration in the LSTM algorithm [69]. The complete training structure is
described in Figure 4.

2.4.3. Recurrent Neural Networks (RNN)

We incorporated the architecture of Recurrent Neural Networks (RNN) to assess the
performance of the LSTM models relative to their predecessor. RNN are a class of neural
networks that are suitable for sequential data such as time series [68]. This algorithm is just
a feed-forward neural network that unfolds over time (Figure 5). At each time step, the
network produces an intermediate output ot and maintains an internal state st; therefore,
xt creates the sequential input that is given to the network following Equations (8)–(11):

at = b + Wst−1 + Uxt (8)
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st = tanh(at) (9)

ot = c + Vst (10)

yt = so f tmax(ot) (11)

where U, V and W represent matrices with the parameters of the model learned by standard
propagation, b represents the bias, and yt represents the final output and linear represents
the activation function which in this case is the identity transformation defined in Equation
(12) as previously described by Rumelhart et al. (1986) [70].

linear(ot) = ot
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Figure 6. Schematic representation of RNN structure used for the training in the LI-7 station.
k represents the number of variables (including independent and dependent outcome) depend-
ing on the case it could be 9 (A),12 (B) or 14 (C). L and T represent the number of LSTM units for the
training with values between 10 and 30 depending on the data complexity.

To train this network, we use a sliding window technique to generate training data for
a time-series prediction model using a window of size lookback between 15 and 30 from
the input time series. The corresponding target value (chlorophyll-a) was set as the next
time step after the input sequence. In this way, the model can learn from the input-output
pairs and make predictions based on the observed patterns in the training data.
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Therefore, the data enter the RNN topology passing through a number of units
between 16 and 32, depending on the amount of data and complexity, and finally, a dense
layer produces the predictions. The optimizer and loss metric used were Adam and mean
squared error, respectively. This configuration has been widely used in previous studies on
time-series predictions [68]. The complete training structure is described in Figure 6.

To test the three models described above, cases A, B, and C are defined as follows:

Case A (Measurement Data): In the first case, we included the real variables measured
in the monitoring campaigns for the four seasons of the year and in the eight stations of
the lake.
Case B (Measurement and Meteorological Data): In addition to the actual variables, we
included meteorological data as conditioning variables that can influence the autochthonous
processes of the lake.
Case C (Measurement, Meteorological Data and Satellite Data): In this case, we include
bands and indices from the L-8 satellite image processing.

2.5. Statistical Validation

To analyze the performance of the models defined in Section 2.4, several metrics were
used, such as Mean Squared Error (MSE) as described in [72], Root Mean Squared Error
(RMSE) described in [30], Mean Absolute Error (MAE), Maximum Error describe in [73] and
R2 described in [74] following a similar approach as the one applied in [35]. Thus, it helps in
understanding the accuracy, precision, and potential limitations of estimating chlorophyll-a.
Number of samples for train and test are described in Table 1. Sequential splitting with a
70/30% rule was used to calculate the different error metrics. In this method the time series
are separated as follows, the earlier (later) is used to train (validate) each model across
the different stations (Figure 1) and have been demonstrated good performance to assess
time-series performance in deep learning models [75,76].

Table 1. Number of samples used for (train/test) in the train and validation phases for each station
and case analyzed.

Case LI-1 LI-2 LI-3 LI-4 LI-5 LI-6 LI-7 LI-8

Case A 238/59 77/19 238/59 92/23 238/59 80/35 332/83 67/29
Case B - 36/8 - 36/10 - 36/10 36/12 36/8
Case C - 36/8 - 36/10 - 36/10 36/12 36/8

On the other hand, we used a method called Garson’s weighting to assign importance
or weights to the input variables in neural networks. This method provides a measure
of the relative contribution of each predictor variable explaining the variation in the de-
pendent variable [77]. To obtain weights the method uses the magnitude and direction of
the coefficients obtained from the model. Variables with larger absolute coefficients are
considered to have higher importance. In this way, the most important variables in the
model were obtained for each case of study.

3. Results
3.1. Limnological Behavior and Meteorological Data

The water quality and trophic level of a lake primarily depend on nutrient inputs
(Nitrogen and Phosphorus) from the watershed. This is why they are selected in conjunction
with the transparency, the temperature, and the study variable chlorophyll a. All these
parameters influence the spatio-temporal distribution of algae. Figure 7 shows the behavior
of limnological variables associated with algal blooms. The boxplot shows the distribution
of the numerical dataset of the variables indicated by five key statistics: minimum value,
first quartile (Q1), median (Q2), third quartile (Q3), and maximum value (Q4).
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Chlorophyll-a values vary widely depending on location, season, and environmental
conditions (see Table 2). Chl-a in Lake Llanquihue ranged from a minimum of
Q1 = 0.50 µg/L to a maximum of Q4 = 2.90 µg/L, for all other statistics see Table S2.
Water temperature varied according to seasonality, an expected result with a winter mini-
mum of 1.6 ◦C and a summer maximum of 20 ◦C, the temperature minima and maxima
coinciding with the Chl-a minima and maxima. Nitrogen and total phosphorus were
analyzed in the lake system. The recorded values of nitrogen were low between 0.003
and 0.6 mg/L, while phosphorous was found in higher concentrations between 1.0 and
56.0 µg/L. Transparency is generally high in Llanquihue Lake during most of the year and
for all lake seasons with a maximum of 30 m and a minimum of 6 m in winter, which may
be attributed to turbidity related to precipitation events and strong winds during this time
of year in the Southern Hemisphere.
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Table 2. Meteorological variable for Llanquihue Lake.

Months Temperature
(◦C)

Wind Speed
(m/s)

Relative
Humidity (%)

Cloud Cover
(%)

Accumulated
Precipitation (mm)

Photosynthetic Active
Radiation (mmol/m2)

January 16.43 3.90 62.50 0.50 60.07 63,581.1
February 18.42 3.30 75.50 0.33 47.67 56,124.7

March 17.77 2.70 65.20 0.55 75.00 33,109.3
April 14.89 3.80 89.70 0.70 121.09 19,872.1
May 12.15 4.10 76.20 0.80 184.7 15,883.9
June 9.40 3.90 71.80 1.00 239.60 11,225.7
July 8.64 4.10 78.30 0.90 205.40 10,393.8

August 12.05 2.90 73.30 0.90 207.90 17,965.5
September 13.11 2.70 76.15 0.72 110.70 30,330.5

October 14.00 4.07 62.80 0.69 105.60 42,777.1
November 14.89 3.90 66.01 0.55 80.90 54,885.1
December 15.66 4.20 92.70 0.45 57.10 62,428.7

3.2. Results and Validation of Statistical and Deep Learning Models Cases
3.2.1. Case A (Measurement Data)

Figure 8 shows the behavior of the estimated chlorophyll-a at the eight-sampling
stations during the study period. In each case, we modeled Chl-a for the three models
using SARIMAX, LSTM and RNN.
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Figure 8. Chlorophyll-a estimation of case A in the eight-sampling stations of Llanquihue Lake
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From the results, we can observe that in most of the stations, the models offer a good
retrieval of the temporal variations, except for LI-3, LI-2, and LI-8 when the SARIMAX model
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is used (red line). In addition, the SARIMAX model exhibits higher MSE, RMSE, MaxError,
and MAE (R2 < 0.915) values compared to the other models (RNN and LSTM) (Table 3).

Table 3. Validation metrics for all the stations and models considered in Case A (Section 2.4).

Case A

Station Statistic LI-1 LI-2 LI-3 LI-4 LI-5 LI-6 LI-7 LI-8

SARIMAX

MSE (µg/L)2 0.083 0.787 0.160 0.173 0.043 0.190 0.139 0.787
RMSE
(µg/L) 0.288 0.887 0.400 0.415 0.206 0.436 0.372 0.887

MaxError
(µg/L) 0.505 1.676 0.783 0.726 0.459 0.700 0.955 1.676

MAE
(µg/L) 0.244 0.660 0.350 0.324 0.159 0.366 0.322 0.660

R2 0.892 0.724 0.857 0.864 0.915 0.685 0.793 0.795

LSTM

MSE (µg/L)2 0.014 0.260 0.029 0.166 0.020 0.101 0.039 0.098
RMSE
(µg/L) 0.116 0.510 0.169 0.407 0.142 0.317 0.199 0.314

MaxError (µg/L) 0.194 0.730 0.389 0.625 0.244 0.563 0.423 0.552
MAE (µg/L) 0.106 0.442 0.136 0.348 0.121 0.263 0.152 0.247

R2 0.912 0.932 0.896 0.912 0.934 0.854 0.893 0.936

RNN

MSE (µg/L)2) 0.056 0.045 0.046 0.066 0.0509 0.068 0.030 0.028
RMSE (µg/L) 0.236 0.212 0.214 0.257 0.225 0.260 0.174 0.167

MaxError (µg/L) 0.447 0.331 0.383 0.379 0.451 0.724 0.754 0.238
MAE (µg/L) 0.196 0.176 0.192 0.237 0.191 0.183 0.127 0.146

R2 0.901 0.915 0.876 0.893 0.926 0.827 0.843 0.648

Furthermore, the LSTM model generally performs well across most stations, with
lower values for MSE (<0.260 (µg/L)2), RMSE (<0.510 ug/L), MaxError (<0.730 µg/L), and
MAE (<0.442 µg/L) compared to SARIMAX, with higher values at LI-2 station. Addition-
ally, the R2 values for LSTM were consistently high, indicating a good fit to the data. In
addition, the RNN model shows similar performance to LSTM, with relatively low MSE
(<0.068 (µg/L)2), RMSE (<0.260 ug/L), MaxError (<0.751 µg/L), and MAE (<0.283 µg/L)
values, and the R2 values were also consistently high (>0.827) (Table 3).

3.2.2. Case B (Measurement and Meteorological Data)

Figure 9 shows the results for Case B. In all cases, the estimation of the chlorophyll-a
values was similar. Sampling stations 1, 3 and 5 did not have sufficient data to estimate the
variable with the models.

Similarly, for Case-A, the SARIMAX model showed a moderate performance compared
to the RNN and LSTM models with the MSE, RMSE, MaxError, and MAE metrics relatively
lower (higher) for station LI-6 (LI-8) compared to the others. In addition, the R2 values for
SARIMAX are generally approximately equal to 0.8 (Table 4).

In contrast, the LSTM model generally performs well across all stations with relatively
low MSE (<0.029 (µg/L)2), RMSE (<0.172 ug/L), MaxError (<0.175 µg/L), and MAE
(<0.172 µg/L) values. The R2 values are lower compared to Case A but considering the
smaller amount of data used for the training, there is still a good performance (>0.80).
Besides the RNN model showed a similar performance to LSTM, with low MSE, RMSE,
MaxError, and MAE values across all stations, and R2 values above 0.80 (Table 4).
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Table 4. Validation metrics for all the stations and models considered in Case B (Section 2.4).

Case B

Station Statistic LI-2 LI-4 LI-6 LI-7 LI-8

SARIMAX

MSE (ug/L)2 0.026 0.039 0.023 0.010 0.033
RMSE (ug/L) 0.162 0.197 0.150 0.101 0.183

MaxError (ug/L) 0.172 0.203 0.151 0.108 1.195
MAE (ug/L) 0.162 0.197 0.149 0.102 0.182

R2 0.795 0.781 0.797 0.776 0.812

LSTM

MSE (ug/L)2 0.029 0.022 0.025 0.026 0.013
RMSE (ug/L) 0.172 0.149 0.159 0.150 0.112

MaxError (ug/L) 0.175 0.154 0.161 0.157 0.131
MAE (ug/L) 0.172 0.149 0.159 0.150 0.111

R2 0.816 0.842 0.837 0.821 0.834

RNN

MSE
(ug/L)2 0.019 0.020 0.016 0.019 0.016

RMSE (ug/L) 0.141 0.141 0.129 0.139 0.125
MaxError (ug/L) 0.144 0.144 0.131 0.144 0.146

MAE (ug/L) 0.140 0.141 0.129 0.139 0.124

R2 0.805 0.840 0.830 0.824 0.806
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3.2.3. Case C (Measurement, Meteorological Data and Satellite Data)

Figure 10 shows Case C, which is the most general and complete compared to the two
cases presented before because it integrates all types of data available: measurement in situ
data, meteorological data, and satellite data.
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When comparing the results between Table in Case C vs. Case B, we observe that all
the models’ performance is better in Case C, which is evident with lower values for MSE
(<0.009 µg/L)2), RMSE (<0.097 ug/L), MaxError (<0.103 ug/L), and MAE (<0.097 ug/L)
and higher R2 values (<0.81); however, LSTM and RNN showed better performance against
SARIMAX (Table 5). This suggests that incorporating a larger set of chlorophyll-a-related
variables both directly and indirectly enhances the predictive capacity of the algorithms.

3.3. Feature Importance

Figures 11–13 also show, using Garson’s weighting method [78], the relative impor-
tance or contribution of the independent variables (predictor variables) in explaining the
variance of the dependent variable (outcome variable) for each case used.
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Table 5. Validation metrics for all the stations and models considered in Case C (Section 2.4).

Case C

SARIMAX

MSE (µg/L)2 0.003 0.009 0.002 0.002 0.006
RMSE (ug/L) 0.062 0.097 0.050 0.050 0.083

MaxError (ug/L) 0.07 0.103 0.051 0.057 0.095
MAE (ug/L) 0.062 0.097 0.049 0.050 0.082

R2 0.804 0.807 0.812 0.832 0.796

LSTM

MSE (µg/L)2 0.001 0.002 0.003 0.002 0.001
RMSE (ug/L) 0.072 0.049 0.060 0.040 0.018

MaxError (ug/L) 0.075 0.054 0.061 0.046 0.031
MAE (ug/L) 0.072 0.049 0.059 0.040 0.015

R2 0.857 0.864 0.896 0.877 0.843

RNN

MSE
(µg/L)2 0.001 0.002 0.001 0.001 0.001

RMSE (ug/L) 0.041 0.041 0.029 0.019 0.018
MaxError (ug/L) 0.044 0.044 0.031 0.024 0.031

MAE (ug/L) 0.045 0.041 0.029 0.019 0.015

R2 0.843 0.832 0.815 0.807 0.795Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 25 
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Figure 12. Relative importance through Garson’s weighting method for Case B at five-sampling
stations. N is Nitrogen, P is Phosphorus, Si Silicon, O_D Dissolved Oxygen, Temp temperature,
Conduct Conductivity, Trans Transparency, B blue band, G green band, R red band, INR near infrared
band, SWIR shortwave infrared band, NDVI Normalized Difference Vegetation Index, and FAI,
Floating Algae Index.

Results showed that Nitrogen (N), Phosphorus (P), and Silica (Si) present the highest
feature importance values (ranging from 0.115 to 0.336) in predicting Chlorophyll-a across
all stations in case A. Subsequently, Dissolved Oxygen (O_D) and Temperature (Temp)
showed relative importance ranging from 0.053 to 0.157, with O_D being more significant
than Temp. Conversely, pH, Conductivity (Conduct), and Transparency (SD) exhibited
relatively lower importance, all having values below 0.1.

For Case B (Figure 12), we can see that adding satellite images modifies the order of
importance of some of the variables. Similarly, N and P variables showed higher relative
importance, with contributions of >0.15. However, the B, G, and R bands were more important
(ranging from 0.033 to 0.046) with respect to the Si variable, with contributions < 0.038.

Finally, in Case C (Figure 13), a pattern comparable to that of Case B was observed. The
variables N and P remained the most crucial factors in the predictions (relative importance
above 0.110), followed by the B, G, and R bands, and subsequently the Si variable. Therefore,
the variables INR, SWIR, and O_D exhibit the most significant contributions, and the
remaining variables have a negligible importance of <0.035.
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Figure 13. Relative importance using Garson’s weighting method for Case C. In five-sampling station.
N is Nitrogen, P is Phosphorus, Si Silicon, O_D Dissolved Oxygen, Temp temperature, Conduct
Conductivity, Trans Transparency, B blue band, G green band, R red band, INR near infrared band,
SWIR shortwave infrared band, NDVI Normalized Difference Vegetation Index, and FAI, Floating
Algae Index.

4. Discussion

It is important to monitor the behavior of the lakes since they are sentinels or indicators
of climate change [79]. Human activities accelerate the eutrophication processes of these
southern freshwater ecosystems. In this study, using combined remote sensing and machine
learning techniques, models were created to estimate water quality parameters such as
chlorophyll-a in a lake in southern Chile. Llanquihue Lake is the lake body most vulnerable
to contamination among the lakes of the Araucanian Lake district, owing to its slower water
mass renewal time than the rest (estimated to be 74 years), in addition to the intense use of
its shores [35]. It is the only lake in Chile, with four municipalities located on its shores,
all of which are the main capitals: Puerto Octay, Frutillar, Llanquihue and Puerto Varas.
Currently, Llanquihue Lake, despite maintaining the trophic characteristics of oligotrophic
lakes, the values of key water quality parameters such as chlorophyll-a and nutrients have
increased in Llanquihue Lake, and their trophic level can change in a shorter time than
the natural succession process of aquatic systems. In a previous study, we calibrated and
validated a set of nine artificial intelligence algorithms over a period longer than 30 years
to estimate the chlorophyll-a variable at different points of the lake [35].

In the present work, we aimed to add, in addition to the historical data from the lake
monitoring campaigns conducted by the General Water Directorate of Chile, data from the
Meteorological Directorate of Chile and data from Landsat-8 satellite images. Excellent and
accurate results were obtained for each season of the year in this lake. Model validation
metrics showed that all three models effectively predicted chlorophyll as an indicator of the
presence of algae in this water body. Coefficient of determination values ranging from 0.64
to 0.93 were obtained, with the LSTM model showing the best statistics in any of the cases
tested, and similar results were obtained in [80] when predicting chlorophyll using the
LSTM model. The LSTM model generally performs well across most stations, with lower
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values for MSE (<0.260 (µg/L)2), RMSE (<0.510 ug/L), MaxError (<0.730 µg/L), and MAE
(<0.442 µg/L) compared to SARIMAX, with higher values at LI-2 station. Additionally,
the R2 values for the LSTM were consistently high, indicating a good fit to the data. In
addition, the RNN model shows similar performance as LSTM, with relatively low MSE
(<0.068 (µg/L)2), RMSE (<0.260 ug/L), MaxError (<0.751 µg/L), and MAE (<0.283 µg/L)
values, and the R2 values were also consistently high (>0.827). When comparing the results
between Case C (Measurement, Meteorological and Satellite Data) vs. Case B (Measurement
and Meteorological Data), we observe that all the models’ performance is better in case
C, which is evident with lower values for MSE (<0.009 (µg/L)2), RMSE (<0.097 ug/L),
MaxError (<0.103 µg/L), and MAE (<0.097 µg/L) and higher R2 values (<0.81); however,
LSTM and RNN showed better performance against SARIMAX (Table 5). This suggests
that incorporating a larger set of chlorophyll-a-related variables both directly and indirectly
enhances the predictive capacity of the algorithms. Good chlorophyll predictions have
been obtained in investigations that have used deep learning models and Landsat-8 in
lakes, such as the case of [77–79]; as in the case of this research, these techniques can be
improved by incorporating meteorological variables. The methodology of this study and
other similar methodologies have applications in monitoring water quality and serve as
an early warning tool for hydro-environmental management in inland water ecosystems,
according to [35,81]. It is important to clarify that the precision in the models will always
be greater when more input data are provided. Only available meteorological and satellite
data were used in this manuscript. The more images included in the model, the better the
estimate should be, and image quality can be affected by cloud density (cloud percentage)
as it can alter the pixel value (band or calculated index) and decrease the precision of
the model accuracy. The image quality was not a limitation in our work, but the fact of
not having some images close to the monitoring due to the high cloud percentage, which
prevented the use of some in situ data, was. Generally, in similar investigations, cloudiness
can be a limiting factor in the availability and quality of satellite data, and therefore, affect
the precision of the estimation of water quality parameters.

The “Ley de Bases del Medio Ambiente” (Ley Nº 19.300 de 1994) in Chile defines
aquatic pollution in terms of the existence of standards that establish permissible limits
for the presence of substances, elements, or energies, susceptible to causing environmental
damage. Lake Llanquihue and the Villarrica side are the only lake systems in Chile that
have a secondary water quality standard that seeks to safeguard the use of water resources,
protect, and conserve the aquatic communities and ecosystems of the lake, and maximize
the benefits that the ecosystem services associated with the lake provide [35]. Therefore,
it is of vital importance to maintain a follow-up of these inland aquatic bodies, as Chl-a
is a bioindicator parameter of algae presence commonly used in research. It is relevant
to inform the authorities and the population of the current state and evolution of the
lake through research such as this one. It also provides valuable base information for the
management of water resources that provide us with multiple uses. In the future, we intend
to use the models tested in the estimation of parameters at times of the year when the
conditions of in-situ monitoring of Llanquihue Lake represent a limitation (intense wind
or rainy periods). However, these estimation models are relevant in autumn and winter,
when multispectral satellite images present a high percentage of cloud cover.

5. Conclusions

Combined remote sensing and machine learning techniques have proven to be valu-
able tools for the estimation of environmental proxies, such as chlorophyll-a. Coefficient
of determination values ranging from 0.64 to 0.93 were obtained, with the LSTM model
showing the best statistics in any of the cases tested. The LSTM model generally performs
well across most stations, with lower values for MSE (<0.260 (µg/L)2), RMSE (<0.510 ug/L),
MaxError (<0.730 µg/L), and MAE (<0.442 µg/L). This parameter has been widely used
in different aquatic ecosystems as an indicator of algal biomass and water quality. In
this study, a series of in-situ data from 1989 to 2021 recorded at eight monitoring stations
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spatially distributed in Llanquihue Lake was used to study the behavior of limnological
variables at different points in the lake. The three estimation models employed demon-
strated strong performance in estimating Chl-a, with the LSTM model yielding the most
accurate results. Of the three cases applied in this study, Case C (all variables integrated),
meteorological, water quality measurements, and satellite data showed the most accurate
results for all stations in the lake. These models will be employed in future research focused
on seasonal periods such as autumn and winter, characterized by frequent episodes of rain
or “Puelches” (strong winds). Traditional monitoring methods face increased complexity
during these periods. Therefore, as an alternative, recovery models like the ones presented
above have emerged, taking advantage of deep learning tools to integrate real-time data
with satellite observations, allowing early tools to be developed for monitoring lakes in
tracking algal bloom phenomena. In addition, by combining these data sets, these models
provide a more effective approach to monitoring and analyzing weather conditions during
challenging periods.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15174157/s1. Figure S1. Error Case A, LSTM model. Figure S2.
Error Case A RNN network. Table S1. Satellite Images characteristics. Table S2. Behavior of
limnological parameters in the Lake Llanquihue.
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