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Abstract: Fit-for-purpose land administration (FFPLA) seeks to simplify cadastral mapping via
lowering the costs and time associated with conventional surveying methods. This approach can
be applied to both the initial establishment and on-going maintenance of the system. In Ethiopia,
cadastral maintenance remains an on-going challenge, especially in rapidly urbanizing peri-urban
areas, where farmers’ land rights and tenure security are often jeopardized. Automatic Feature
Extraction (AFE) is an emerging FFPLA approach, proposed as an alternative for mapping and
updating cadastral boundaries. This study explores the role of the AFE approach for updating
cadastral boundaries in the vibrant peri-urban areas of Addis Ababa. Open-source software solutions
were utilized to assess the (semi-) automatic extraction of cadastral boundaries from orthophotos
(segmentation), designation of “boundary” and “non-boundary” outlines (classification), and delimi-
tation of cadastral boundaries (interactive delineation). Both qualitative and quantitative assessments
of the achieved results (validation) were undertaken. A high-resolution orthophoto of the study
area and a reference cadastral boundary shape file were used, respectively, for extracting the parcel
boundaries and validating the interactive delineation results. Qualitative (visual) assessment verified
the completed extraction of newly constructed cadastral boundaries in the study area, although
non-boundary outlines such as footpaths and artifacts were also retrieved. For the buffer overlay
analysis, the interactively delineated boundary lines and the reference cadastre were buffered within
the spatial accuracy limits for urban and rural cadastres. As a result, the quantitative assessment
delivered 52% correctness and 32% completeness for a buffer width of 0.4 m and 0.6 m, respectively,
for the interactively delineated and reference boundaries. The study proposed publicly available
software solutions and outlined a workflow to (semi-) automatically extract cadastral boundaries
from aerial/satellite images. It further demonstrated the potentially significant role AFE could play in
delivering fast, affordable, and reliable cadastral mapping. Further investigation, based on user input
and expertise evaluation, could help to improve the approach and apply it to a real-world setting.

Keywords: automatic feature extraction; cadastral mapping; fit-for-purpose; interactive delineation;
mean-shift segmentation; random forest classification; land administration
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1. Introduction
1.1. Fit-for-Purpose Cadastral Mapping to Accelerate the Implementation of FFPLA

Despite remote sensing and photogrammetry technologies now being increasingly
commonplace in land administration, interest in emerging tools and technologies continues
to rise [1]. Contemporary remote sensing technologies provide centimeter-level spatial
resolution satellite images at a reasonable cost and time compared to aerial photography [2].
Unmanned Aerial Vehicles (UAVs) deliver high-resolution photographs and point cloud
data for a parcel or parcels of interest quicker than conventional surveying using total
station or Global Positioning System (GPS) [3,4]. Global Navigation Satellite System (GNSS)-
enabled mobile devices and web applications boost live data collection and facilitate cloud
data storage [5].

Fit-for-purpose land administration (FFPLA) focuses on simplifying the preliminary
work of the underpinning spatial framework for cadastral mapping. It prefers flexible,
affordable, and upgradable technologies to stringent technical standards and sophisticated
innovations for addressing current land administration issues [6]. Emerging geospatial
technologies provide efficient tools and techniques for cadastral mapping and registration
of insecure tenure rights across the globe, as per the FFPLA requirement [7].

Focusing on cadastral mapping, their is a complex process that takes into account both
technical and legal principles to determine parcel boundaries for new right registration
or updating existing cadastral databases [3]. Maintaining the cadastre and keeping the
data up-to-date is essential, especially, for example, in rapidly urbanizing peri-urban areas
of Ethiopia, where the farmers’ land rights and tenure security are often jeopardized [8].
However, it is still a challenge even for countries with well-established cadastral systems to
track and update the dynamic nature of man-to-land relationships [4,9]. Given the varying
views on the term “cadastre”, this study decidedly refers to it as the mapping of the “where”
component of the land administration system in a fit-for-purpose manner to facilitate new
registration or updating of the “who”, “what”, “how”, and “when” aspects [10].

Thus, the primary concern of cadastral mapping is identifying the spatial extent of
the boundary of the land parcel, the best unit to locate and define ownership rights in land
management [1,11]. A parcel boundary is a spatially referenced demarcation line between
two adjacent properties where one land-use right ends and the other begins [12–14]. It can
be physically marked and mapped using a fixed or general boundary approach [12]. A
fixed boundary defines the property line precisely using accurate surveying equipment and
techniques. A general boundary, on the other hand, is a rough determination of a parcel
that typically uses existing artificial or natural features for demarcation, such as hedges,
ditches, walls, fences, roads, etc. [12,14,15]. The general boundary focuses more on the
tenure security of individual owners than the spatial accuracy and is often preferable for
rural and peri-urban areas [16].

The nature and type of parcel boundaries matter when it comes to defining and apply-
ing methods and technologies for reliable cadastral mapping. In participatory mapping,
parcel owners and concerned parties actively participate while delineating general bound-
aries on printed aerial/satellite imagery, which is later converted to a digital format in
the office using an on-screen digitization technique [12,17]. The approach is viable for
acquiring reliable boundary information; however, the digitization process is time- and
resource-consuming, less accurate, and difficult to repeat in case revision is required [18].
According to Chandrarathna [19], the digitization process took about 8% of the overall
production time to delineate and map 500 plots from UAV imagery in Sri Lanka. Yagol
et al. [20] also consumed 19% of the total time for digitizing and processing 102 parcels
while making a cadastral map from high-resolution satellite imagery in Nepal. Moreover, it
can deliver inconsistent results between individual experts: the experts may not delineate
the same parcel uniformly, in addition to the subjectivity of image interpretation [5].

In summary, cadastral mapping is necessary for creating cadastral databases or updat-
ing existing ones; however, both hardly differ in methodological approach and materials
used for the mapping [21]. While new creation is crucial for any country that seeks to
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establish a reliable land administration, updating is essential whenever land use or own-
ership changes occur. According to Bennett et al. [21], cadastral data subject to frequent
changes include spatial data, party data, and rights data. Spatial or geographic data could
involve subdivision, consolidation, or layering. A party or parties may be entitled to the
land parcel by transfer, inheritance, or acquisition. Land use rights may vary with the time
set: a specific period, ad hoc, repeated, or continuous.

The overall cadastral database creation or updating process could be carried out
systematically, covering the entire area plot by plot or sporadically triggered by the land-
holder [9,21]. However, sporadic cadastral mapping is usually used for ground-based
surveys; mapping with geospatial technologies or Automatic Feature Extraction (AFE)
developments fits the systematic approach [22]. The AFE approach is supposed to be
economical in peri-urban areas where tenure security is at risk due to fast-paced (peri-)
urbanization.

1.2. Urbanization, a Threat to Tenure Security of Peri-Urban Areas of Addis Ababa

Ethiopia is experiencing haphazard urbanization towards the peri-urban outskirts in
response to the high growth rate of the population [8,23]. Due to the absence of a demar-
cated administrative boundary between the rural and urban in Ethiopia, as in the case of
many African countries, the highly dynamic peri-urbanization process is uncontrolled [24].
Most of Ethiopia’s large cities, including the capital Addis Ababa, arose without proper
planning, and urban centers continue to do so to this day [25]. What is peri-urban currently
will be changed to a complete urban system within a few years. The small cities and towns
across the country are the outcomes of such undetermined peri-urbanization [26].

The peri-urban areas are in high demand, both legally as part of government-led de-
velopment projects and illegally in informal settlements [27]. Ethiopia strategically fosters
peri-urbanization by evicting agricultural land from peri-urban farmers for residential
house building or private investment [28]. According to the World Bank Group [29], well-
managed urbanization might boost Ethiopia’s economic growth; otherwise, loss of land
rights and rural–urban migration would be the adverse effects that reduce productivity.

The consequence of the unplanned rapid urbanization is manifested in the peri-urban
areas of the country’s capital, Addis Ababa, the hub of numerous national and international
organizations. The spontaneous expansion of the city, at an approximate rate of 2% per year,
appears to be its distinctive characteristic and a threat to the peri-urban land rights [8,27,30].
Teklemariam and Cochrane [8] demonstrated that changes in the tenure system due to
rapid urbanization highly endangered the Addis Ababa peri-urban farmers’ land rights.
An efficient cadastral and land registration system is vital to manage the impacts of rapid
urbanization and ensure tenure security [31].

A real property registration proclamation was enacted in Ethiopia a century ago in
1907, which allows land transactions in Addis Ababa [32,33]. The 1960 property registration
article and the 1975 urban land and extra housing reform are remarkable developments in
the country’s land tenure system history [33,34]. Since the 1994 urban land lease holding
regulation, the Addis Ababa City Administration has initiated a cadastral project and
worked to register properties for taxation and tenure security purposes [34]. This was a pilot
project designed to serve as the basis for a national solution and a model for other regional
cities and urban areas. However, inefficient integration and updating mechanisms have
rendered the cadastre unable to control the informal settlements and land encroachments
that threaten tenure security [35]. Studies have further declared that the urban cadastral
system of Addis Ababa is not functioning as expected [36,37] for a variety of reasons,
including a lack of broad strategic orientations [38], technical shortcomings, legal gaps, and
insufficient institutional structures [39].

Nonetheless, according to Metaferia et al. [40], the legal, spatial, and institutional
frameworks for the undergoing cadastral project favor emerging geospatial technologies
to boost the efforts in a fit-for-purpose manner. International aid and financial organiza-
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tions also advocate the utilization of freely available, cutting-edge open-source software
technologies for quick tenure registration and cadastral updating [41].

1.3. AFE Practices for Mapping Cadastral Boundaries

The AFE method is commonly used to delineate patterns with predictable arrange-
ments, and it has been applied in various disciplines more reliably than the manual ap-
proach [42]. It employs the spectral information in each pixel (pixel-based) or the geom-
etry and spatial relationships of a group of pixels (object-based) to automatically extract
parcel boundaries [12]. Studies prove that the object-based feature extraction provides
more reliable results than the pixel-based approach, for it considers the image texture,
pixel proximity, feature size, and shape in addition to the spectral information [5,12,43–45].
Crommelinck et al. [12] summarized the steps involved in extracting object-based boundary
features as image segmentation (segmenting the image into spectrally similar features), line
extraction (identifying edge lines or boundary features), and connecting edge or boundary
lines (contour generation) (Figure 1).
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Although still in development, the AFE methods are suggested as a viable FFPLA
alternative to mapping cadastral boundaries in a timely and cost-efficient manner [18,46].
It is highly favored by the periodical improvements in the spatial resolution of the satel-
lite/aerial images to extract general boundary objects without or with fewer human in-
puts [18]. AFE could eventually replace the labor- and time-intensive on-screen digitization.

Several scholars have practiced and proved the potential of different machine-learning
algorithms to fully or semi-automatically extract boundary features from satellite or aerial
images. Although the methodological approaches and the applied algorithms vary, promis-
ing results are obtained for detecting and semi-automatically extracting farmland bound-
aries, which could enhance the rural cadastre [5,16,47–49].

Babawuro and Beiji [47] employed edge detection, morphological operations, and
Hough-Transform (HT) algorithms for detecting and extracting farmland cadastral bound-
aries from high-resolution satellite imagery. Turker and Kok [48] applied a rule-based
perceptual grouping algorithm to automatically extract agricultural field boundaries from
SPOT5 and SPOT4 images, which performed better on high-resolution imagery (SPOT5)
than coarser imagery (SPOT4). The mean-shift image segmentation algorithm has been used
for semi-automatic boundary extraction in rural areas from 0.5 m resolution pan-sharpened
and orthorectified WorldView-2 satellite images [16]. Similarly, Nyandwi et al. [5] used the
World View-2 images to extract general parcel boundaries using an Object-Based Image
Analysis (OBIA) approach that delivers Geographic Information System (GIS)-compatible
vector files. The method involves breaking the image into objects (Segmentation) and
grouping them based on the spectral properties and contextual information (Classifica-
tion). The authors tested both fully automated and expert knowledge techniques using
commercial software (eCognition) and the Estimate Scale Parameter (ESP2) tool to set opti-
mal parameterization values. Crommelinck [49] has developed a procedure for boundary
feature extraction that takes advantage of visible cadastral boundaries on high-resolution
aerial/satellite images. First, it employs Multi-resolution Combinational Grouping (MCG),
an extended version of the globalized probability of boundary (gPb) algorithm, for identify-
ing closed boundaries between objects or segments based on the image texture, color, and
brightness information. Then, a training dataset is generated, labeling the contour lines
with “boundary” and “not boundary” to train a classifier algorithm and predict boundary
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likelihoods for unseen testing data without a boundary label. The third step encompasses
interactively delineating lines with the highest boundary likelihoods to create final cadas-
tral boundaries. A Quantum GIS (QGIS) “BoundaryDelineation” plugin is created to guide
the interactive delineation by determining a least-cost path between user-selected nodes
or connecting around a selection of lines or end points of selected lines generated in the
first step.

Despite the problem of determining an appropriate threshold value to avoid over-
or under-segmentation, which could yield extra boundary features [16,48], statistical val-
idation of the achieved results confirms the potential of the AFE approach for mapping
cadastral boundaries. Turker and Kok [48] attained 82.6% for the SPOT5 and 76.2% for
the SPOT4 images matching between the automatically extracted agricultural field bound-
aries and the reference dataset. With a sample set of images that possessed haystacks
and bushes, Wassie et al. [16] obtained 55.4% completeness, 16.3% correctness, and 14.4%
quality, buffering the extracted and reference lines by 0.5 m and 3 m, respectively. The
OBIA approach implemented by Nyandwi et al. [5] extracted 45% of visible boundaries in
rural areas (completeness) and 47.4% correctness, although it failed in urban areas due to
the features’ complexity and spectral reflectance ambiguity.

The accuracy assessment of interactively delineated cadastral boundaries in Crom-
melinck’s [49] study delivered 67% spatial correctness and 37% completeness. Additionally,
compared to manual on-screen digitizing, the interactive boundary delineation approach
reduced the time required to extract boundary lines by 38% and the number of clicks by
about 80%. Koeva et al. [50] also evaluated the boundary delineator QGIS plugin against
the seven characteristic elements of FFPLA. The tool has proven to be attainable and
upgradeable, for it is freely available and open for further improvement.

Overall, the AFE approach uses fewer resources and produces results faster than
conventional methods and manual digitization, but with less absolute and relative accuracy
for both individual parcels and the breadth of the cadastral area being mapped. Promising
results have been obtained while employing the approach in rural, peri-urban, and urban
settings [5,16,51].

1.4. Objective and Structure of the Study

Thus, tenure security challenges due to rapid (peri-) urbanization and the opportuni-
ties from emerging geospatial technologies for cost- and time-effective cadastral mapping
are the basis for the overarching motivation and objectives of this research. As mentioned,
several authors illustrated the viability of the AFE approach for cadastral mapping in
different ways, such as by using open-source tools (e.g., Wassie et al. [16]), employing pro-
prietary software solutions (e.g., Nyandwi et al. [5]), and developing codes for the complete
process (e.g., Crommelinck [49]). However, studies have yet to assess the significance of
emerging and freely available geospatial technologies for automatically extracting cadastral
boundaries, as advised in [2,18,52].

Therefore, the purpose of the study is to explore the potential role of the AFE approach
for extracting parcel boundaries in peri-urban areas in a fast, affordable, and reliable
manner, as required by FFPLA. It employs ready-to-use open-source software solutions
for the (semi-) automatic extraction, classification, and delineation of cadastral boundaries,
focusing on peri-urban areas in Addis Ababa. The approach is supposed to contribute
to the overall endeavor to register land tenure rights and update cadastral records in a
fit-for-purpose manner.

For further setting, the next section illustrates the methodological approach with a brief
description of the case of peri-urban areas and the datasets for the study (Section 2). Then,
the AFE test and processing results are presented (Section 3) and thoroughly discussed
(Section 4) in sequence. Finally, conclusions and recommendations for future improvements
are made based on the study findings (Section 5).
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2. Methods and Materials
2.1. Study Area

Addis Ababa is one of the fastest-growing cities in Sub-Saharan Africa. Its geographic
location is roughly 9◦2′N Latitude and 38◦45′E Longitude, at an average altitude of 2400 m
above sea level. Addis Ababa covers 540 square kilometers of territory and contains
ten administrative divisions known as “sub-cities” (recently restructured to eleven). The
six peripheral sub-cities (Akaki-Kitaly, Bole, Kolfe-Keranio, Gulele, Nifas-Silk-Lafto, and
Yeka) account for 92% of the total area [27]. These sub-cities are subject to a high rate
of urbanization in the peri-urban areas of the neighboring Oromia Special Zone cities,
resulting in chaos like farmers’ displacement and environmental deterioration [53]. The
Akaki-Kality sub-city was chosen as the case study region because it demonstrates the
influence of increasing urbanization on the tenure system of peri-urban areas of Addis
Ababa (Figure 2).
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Akaki-Kality is one of the largest sub-cities, covering 156 square kilometers of land,
the majority of which are industrial zones and agricultural fields [54]. It is located in the
southeast of Addis Ababa, where substantial urbanization has occurred in recent years at
the expense of its peri-urban agrarian communities [55]. For instance, while condominium
housing occupied 11% of the city in 2016, the majority of the land was acquired from the
peri-urban areas of the Akaki-Kality sub-city [27]. According to Koroso et al. [55], the built-
up area of the sub-city increased by 115% within fifteen years (from 2004 to 2019). Several
scholarly articles have also revealed the severe impact of unplanned rapid urbanization on
land tenure security generally in Addis Ababa [8,27,53,56–58], notably in the Akaki-Kality
sub-city peri-urban areas [54,55,59].

The study specifically determined a peri-urban village in Woreda 9, locally called Feche
(Figure 2), where many condominium houses are being developed, and rapid urbanization
is still occurring. One of the researchers also has more familiarity with the area, which
might help with visual inspection and field verification of the results. Furthermore, due
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to the high rate of urbanization in the surrounding area and the perceptible variability
between the image and the reference data, it helps validate the approach for cadastral map
updating.

2.2. Data

A high-resolution (0.25 m by 0.25 m) orthophoto was used for extracting the study
area’s peri-urban parcel boundaries. The aerial photograph was acquired by the Ethiopian
Mapping Agency (EMA) (recently named the Space Science and Geospatial Institute, SSGI)
in 2016. A cadastral boundary shape file, obtained from the Akaki-Kality sub-city land
administration office, was used as reference data for the AFE result validation (Table 1). It
was produced from aerial photographs acquired in 2010 and was used as a base map for
cadastral survey work and planning purposes [35]. Both datasets were subsetted to the
identified area of interest for extraneous data removal and manageability for boundary
extraction and validation purposes.

Table 1. Description of the data for the study.

S/N Data Source Description Purpose

1 Aerial photograph of the
study area (Orthophoto)

Space Science and
Geospatial Institute

The orthophoto is produced
by SSGI from an aerial
photograph acquired in 2016

To extract parcel
boundaries automatically

2 Cadastral parcel map of the
study area (Shape file)

Akaki-Kality
sub-city land
administration office

The shape file is extracted
from an aerial photograph
acquired in 2010

To validate
automatically
extracted parcel
boundaries

2.3. AFE Implementation

This study intends to explore the outstanding role of the AFE approach for fast, inex-
pensive, and reliable cadastral mapping by validating the results with cadastral reference
data. It adopted the AFE approach developed by Crommelinck et al. [51], which involved
image segmentation, boundary classification, interactive delineation, and validation (buffer
overlay accuracy assessment). Segmentation delivers available boundary outlines from the
image. Classification helps determine conceivable cadastral boundaries from the set of ex-
tracted outlines. Interactive delineation enhances the precise delimitation of the identified
cadastral boundaries. Validation of the interactively delineated cadastral boundaries en-
sures the reliability of the result for further cadastral applications. Furthermore, combining
the automatic approach with manual interactive delineation is supposed to reduce time
and resource consumption while maintaining the desired accuracy [45].

Thus, this study proposed publicly available and ready-to-use open-source software
tools for each process pursuant to previous studies. It also outlines a workflow to apply the
proposed software solutions and demonstrates the outstanding role of the AFE approach
for fast, affordable, and reliable cadastral mapping. After open-source tools and plugin
identification, the implementation process of the AFE approach is performed sequentially,
starting with image segmentation followed by boundary classification, interactive delin-
eation, and validation of interactively extracted boundaries relative to a reference cadastre,
as depicted in Figure 3.
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Following Crommelinck et al. [51] and Crommelinck and Ivanov [60], each step is
further described below, along with the proposed open-source tools and plugins for each
process:

(i) Image segmentation: at this stage, the orthoimage pixels are grouped into segments
to deliver the outlines of the visible boundary features. This study employs the mean-
shift image segmentation algorithm implemented in Orfeo ToolBox (https://www.
orfeo-toolbox.org/, accessed on 9 January 2023) (OTB), an open-source state-of-the-
art image processing library freely available for use [61,62]. The OTB is integrated
into QGIS Version 3.16.0 for ease of use and further analysis of the extracted parcel
boundaries.

(ii) Boundary classification: this step requires training a machine-learning model with a
training dataset to enable it to predict the most probable boundary lines from the vec-
tor files obtained through image segmentation. The training and validation datasets
are extracted from the segmentation result by manually selecting and assigning 1 and
0 attribute values, respectively, to the boundary and non-boundary line features. This
study applied Random Forest (RF) machine-learning algorithms for parcel boundary
prediction. Although Crommelinck et al. [51] tested and found that Convolutional
Neural Network (CNN) machine-learning algorithms provide better precision and

https://www.orfeo-toolbox.org/
https://www.orfeo-toolbox.org/
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accuracy in boundary likelihoods, various studies have also proven that RF could
provide good accuracy in image classification [2,63,64]. Moreover, it is one of several
machine-learning models implemented in the OTB.

(iii) Interactive delineation: at this stage, the final cadastral boundaries are created by
interactively delineating the boundary outlines based on the classification result.
The line segments classified as parcel boundaries were further visually inspected
and interactively delineated using the QGIS Version 3.16.0 “BoundaryDelineation”
plugin. The plugin is developed by the Its4land (https://Its4land.com/, accessed
on 29 September 2022) initiative, a European Horizon 2020-funded project, for quick
cadastral mapping and land rights registration [65]. It is one of the six tools created by
the initiative to support Sub-Saharan African countries with innovative technologies
and consulting services in order to improve the time- and cost-consuming field
surveying procedure for cadastral mapping. The plugin is supposed to expedite the
interactive delineation process and minimize human resources and infrastructure
costs [66,67]. It is also thought to enhance cadastral mapping where visible cadastral
boundaries are predominant and fit-for-purpose land administration is favored [68].
Although it needs further investigation to refine the plugin [14,51], Crommelinck
et al. [69] have suggested applying the technology for real-world cadastral mapping
scenarios.

The “BoundaryDelineation” plugin provides six different interactive functionalities
(Table 2) that facilitate precise delineation of the parcel boundaries, as demonstrated in
Figure 3.

Table 2. Description of the “BoundaryDelineation” interactive functionalities [51,60].

Functionality Description

Connect around selection Connects lines surrounding a click or selection of lines (Figure 4a,b)

Connect lines’ end points Connects endpoints of selected lines to a polygon regardless of the segmentation
lines (Figure 4c)

Connect along optimal path Connects vertices along least-cost-path based on a selected attribute, e.g.,
Boundary likelihood (Figure 4d)

Connect manual clicks Manual delineation with the option to snap to input lines and vertices

Update edits Updates input lines based on manual edits

Polygonize results Converts created boundary lines to polygons
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2.4. Accuracy Assessment

Accuracy assessment provides confidence to apply the adopted AFE approach in a
real-world scenario for peri-urban cadastral mapping. This study employs both qualitative
(visual inspection) and quantitative (buffer overlay) assessment methods. The qualitative
assessment visually compares the interactively delineated cadastral features with ground
reality. The quantitative validation uses the buffer overlay method to compare the interac-
tively delineated boundary lines with the cadastral reference boundary. The buffer overlay
method creates a buffer around a more accurate spatial feature to assess the positional
accuracy of a less accurate test line by computing the percentage of its length that lies
within the buffer [70]. Several studies have applied the buffer overlay method to assess
classification results quantitatively [5,16,51,71].

Studies have used different radius buffer sizes for the extracted and reference boundary
lines for buffer overlay analysis. Crommelinck et al. [51] used a 30 cm buffer size for
validating automatically extracted and interactively delineated cadastral boundaries from
UAV datasets for both rural and peri-urban areas in Rwanda and Kenya. Fetai et al. [4]
performed the accuracy assessment with buffer widths of 0.25, 0.50, 1.0, and 2.0 m for
cadastral boundaries extracted from UAV images. Wassie et al. [16] used 0.5, 1.0, and
2.0 m buffer radii to validate automatically extracted boundary lines from high-resolution
satellite images for rural areas of Ethiopia. A study for the FFPLA implementation model
suggested 1 m accuracy for rural area cadastral mapping from an orthophoto of 0.3 m
resolution [72].

Considering that the test case is a peri-urban area where the urban-to-rural transition
is undetermined, this study prompts validation of the interactively delineated boundary
lines with different buffering sizes (from high to coarse). Thus, three moderate buffer radii
for the extracted (0.4, 0.5, and 1.0 m) and reference (0.6, 1.0, and 1.5 m) lines were arbitrarily
selected within the limits of the FDRE’s [73] minimum spatial accuracy for urban cadastre
(0.4 m) and the IAAO’s [74] suggested accuracy level for rural boundaries (2.4 m).

The QGIS “LineComparison” plugin developed by the Its4land project was employed
for the buffer overlay accuracy assessment of the interactive delineation result. It requires
first rasterizing and buffering the reference dataset (Figure 5, Green) and overlaying it
with the interactively delineated boundary lines (Figure 5, Red). Thus, the number of
correctly extracted (True Positive (TP)) (Figure 5a), incorrectly retrieved (False Positive (FP))
(Figure 5b), and missing (False Negative (FN)) (Figure 5c) boundary features was used to
statically compute the completeness, correctness, and quality of the interactive delineation
result.

As discussed briefly in Heipke et al. [71], Crommelinck et al. [75], and others,

• Completeness is the percentage of the reference boundary that lies within the buffered
extracted data (the reference data explained by the extracted data) and is given as

Completeness ≈ TP
TP + FN

× 100%

• Correctness refers the percentage of the extracted boundary that lies within the
buffered reference data (the extracted data explained by the reference data), and
is given as

Correctness ≈ TP
TP + FP

× 100%

• Quality is derived from the completeness and correctness of the extracted data, for
these two metrics are complimentary and computed concurrently in order to indicate
the quality or the overall accuracy of the extraction approach [76].

Qulaity ≈ TP
TP + FP + FN

× 100%
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For ease of visualization and statistical computation, the “Expected” and “Extracted”
number of pixels that belong to the TP, FP, FN, and TN categories are organized in a table
(error matrix), as shown in Table 3.

Table 3. Error matrix.

Expected

Boundary Lines (1) Non Boundary Lines (0)

Ex
tr

ac
te

d Boundary lines
(1)

True Positive (TP)
/Extracted boundaries that coincide with

the reference boundaries, Figure 5a/

False Positive (FP)
/Extracted boundaries that do not coincide
with the reference boundaries, Figure 5b/

NonBoundary lines
(0)

False Negative (FN)
/Reference boundaries that are not

extracted, Figure 5c/

True Negative (TN)
/nonBoundaries identified as

nonBoundaries/
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3. Results

The adopted methodology for the study was procedurally implemented to auto-
matically extract boundary outlines from the orthophoto and classify the segmentation
outlines into cadastral “boundary” and “non-boundary” features. The segmentation out-
lines classified as “boundary” were further delineated interactively to precisely determine
the cadastral boundaries. The interactively extracted boundary lines were validated to
confirm the adopted AFE approach’s encouraging results. In this section, the processing
outputs from image segmentation, boundary classification, interactive delineation, and
validation are presented in order.

3.1. Image Segmentation

Image segmentation is a technique for extracting significant information by grouping
image pixels with some visual characteristics in common [77]. Visible parcel boundaries
have common observable attributes and reflectance values that favor image segmentation
techniques. The OTB mean-shift segmentation algorithm was applied to extract boundary
features with a few changes to some of its default parameter values. The spatial radius,
the region size, and the object size parameters were, respectively set to 50, 1000, and 100
by repetitive trial and error to merge smaller region sizes with the neighboring closest
radiometry cluster and to disregard small areas (in pixels) during vectorization.

Executing the OTB segmentation algorithm automatically extracted 2652 polygon
features over the study area, which includes visible boundaries bounded by vegetation and
fences. Several boundary features also fall within the reference cadastral boundary buffered
by 0.4 m, the minimal spatial accuracy for the urban legal cadastre set by regulation [73].
Figure 6 shows automatically extracted outlines and boundary features (Yellow) that fall in
a 0.4 m buffer width of the reference cadastre (Green).
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The AFE approach quite precisely detected condominium buildings (Figure 7a),
ditches, and cobblestone roads (Figure 7b) in the newly built-up areas due to their different
reflectance property from the surrounding area. However, it also produced non-boundary
objects within cadastral parcels due to the spectral differences and linear artifacts (hori-
zontal and vertical straight lines) in the image areas, where there are no boundaries or
spectral differences (Figure 7c). Despite these limitations, the AFE approach generated
valuable information for detecting and mapping cadastral boundaries, including newly
built-up areas.

The polygons were checked and fixed to meet the geometry properties and converted
into lines using the QGIS “Fix Geometry” and “Polygon to Lines” built-in plugins. The
length, the azimuth, and the vertexes of each line were computed using the QGIS “Field
Calculator” built-in tool. These line features were inputs for training the RF model to
predict the boundary likelihoods of the segmentation outlines [49].
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3.2. Boundary Classification

The boundary classification approach requires a training dataset to train the classifier
for the prediction of boundary and non-boundary line features. Random field inspection
was carried out to become familiar with the surrounding parcel boundary types and identify
“boundary” and “non-boundary” segmentation lines. The datasets were thus arbitrarily
selected by visual appraisal of the segmentation lines with the features on the orthophoto
based on ground reality and the coincidence of the extracted boundaries with the reference
parcel boundary. Thus, lines ostensibly representing cadastral boundaries were randomly
selected and labeled (1) to denote “boundary”, while sample lines that do not describe
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parcel boundaries or artifacts were allocated (0), denoting “non-boundary”. Consequently,
300 lines were identified equally for “boundary” and “non-boundary” features, as proposed
in the work of Crommelinck [49].

The OTB RF model with the default parameter setting classified the overall AFE seg-
mentation outlines (2652) into “boundary” (1811) and “non-boundary” (841) line segments.
The “boundary” lines, represented by yellow, were identified as the most probable cadas-
tral feature boundary of the AFE segmentation outlines, while the “non-boundary” lines,
shown in red, encompass non-cadastral boundary features (Figure 8).
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However, while inspecting the RF results visually, it was observed that there are
instances where the classification is not as clear-cut, with some outlines exhibiting a com-
bination of both “boundary” and “non-boundary” characteristics. Further analysis and
refinement of the model may improve its performance and ensure a better classification
of the ambiguous segments. This could involve collecting more training data, adjusting
the model’s parameters, or incorporating additional features that capture the nuanced
characteristics of the segmentation outlines.

3.3. Interactive Delineation

The QGIS “BoundaryDelineation” plugin automatically generates information from
the orthophoto that helps interactively delineate cadastral boundaries [49]. It takes the study
area image/orthophoto/and the probable boundary lines (identified by the RF classifier
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in this case). The lines are simplified at an appropriate scale to eliminate unnecessary
details [78]. The interactive delineation needs careful visual inspection of the classified
segmentation outlines based on the familiarity of the delineator with the study area. This
makes it easy to use either of the “BoundaryDelineation” tool functionalities as appropriate
(Table 2) for precise delineation. Thus, the cadastral boundaries and the building footprints
are interactively delineated by snapping to the input lines and vertices, which can be
accepted as final or rejected for re-delineation (Figure 9).
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For validation and further processing, the interactively delineated boundaries were
converted to polygons and checked to address the fundamental topological concerns
using the QGIS “Topology Checker” plugin. Thus, corrections were made for topological
errors which could break the relationship between boundary features [79], especially for
overshoots, undershoots, and dangles.

3.4. Validation

The interactively delineated boundary lines were validated qualitatively by visual
inspection and quantitatively by comparison with the reference cadastre. The visual inspec-
tion of the “BoundaryDelineation” result was satisfactory, for it was possible to exhaustively
delineate cadastral boundaries and building footprints in the study area. However, dense
vegetation and footpaths were extracted as cadastral boundaries. There are also extracted
boundary lines that do not match with and deviate significantly from the reference cadastre.
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This was further quantified using the QGIS “LineComparison” plugin, which compares
the interactively delineated boundary lines to the reference cadastral dataset and computes
the error of commission (false positives) and omission (false negatives). Accordingly, the
“LineComparison” tool computed error matrices for the three buffering sizes of the input
(0.4 m, 0.5 m, and 1 m) and the reference (0.6 m, 1 m, and 1.5 m) lines and generated the
correctness, completeness, and quality of the interactively delineated boundaries for each
buffer size as shown in Table 4.

Table 4. Validation of the interactively delineated boundaries with different buffer sizes.

0.4 m by 0.6 m Buffer Size 0.5 m by 1 m Buffer Size 1 m by 1.5 m Buffer Size

Boundary (1) Non-Boundary
(0) Boundary (1) Non-Boundary

(0) Boundary (1) Non-Boundary
(0)

Boundary (1) 25,788 23,631 28,245 11,151 15,322 4124

Non-Boundary
(0) 55,955 1,625,056 58,328 1,009,960 16,810 241,980

Completeness 32% 33% 48%

Correctness 52% 72% 79%

Quality 24% 29% 42%

The validation result for the selected three buffer sizes is graphically depicted in
Figure 10.
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4. Discussion

The study explored freely available software tools and plugins for automatically ex-
tracting cadastral boundaries. An orthophoto and a reference cadastre for the case study
of a peri-urban area in Addis Ababa, Ethiopia, were used for the demonstration. The
orthophoto and the reference cadastre datasets were generated from aerial photographs
acquired in 2016 and 2010, respectively. Publicly available open-source tools and plugins
were identified and employed for image segmentation, boundary classification, interactive
delineation, and validation. The OTB mean-shift image segmentation and classification
tools were utilized to segment the image and classify cadastral and non-cadastral bound-
aries. The identified cadastral boundaries were interactively delineated and validated
using the QGIS “BoundaryDelineation” and “LineComparison” plugins. The discussion
clarifies the adopted approach and elucidates the outstanding role of the AFE approach in
extracting parcel boundaries for cadastral mapping and refresh in a fit-for-purpose manner.
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4.1. Image Segmentation and Classification Contribute to Cadastral Mapping

Image segmentation and classification are well-established techniques in remote sens-
ing application studies. Segmentation is useful for detecting objects and boundaries,
whereas classification is important to identify land cover types [80]. In recent studies [5,49],
image segmentation and further classification of the segmentation result into “boundary”
and “non-boundary” cadastral features delivered promising results for rural and peri-urban
area cadastral mapping and updating.

The OTB mean-shift segmentation algorithm automatically extracted 2652 boundary
features, including visible boundaries such as fences and vegetation (Figure 6). The number
of extracted boundary outlines (2652) is much greater than the reference cadastre (131),
partly due to new built-up areas between 2010 and 2016. There are also boundary outlines
(Figure 6a,b) that fall within a reference cadastral boundary buffered by 0.4 m, the min-
imal accuracy for urban cadastral boundaries set by the Ethiopian Council of Ministers
Regulation [73]. This could show the significant role of the AFE approach in automatically
extracting cadastral boundaries, although it may require additional manual editing. Fur-
thermore, the boundary lines of condominium buildings, cobblestone roads, and ditches
were also precisely extracted (Figure 7), which did not exist in the reference cadastre.

According to the Addis Ababa context, the condominium building footprints are
the basic spatial information for issuing condominium house ownership certificates that
mention the block, the floor, and the house number of the individual room in the building.
Thus, precise identification of the condominium building footprints aids significantly in
the cadastral mapping and refreshing the peri-urban areas cadastre where a number of
condominium houses have been and continue to be built in the past several years. In addi-
tion, the precise extraction and mapping of the outlines of condominium buildings could
help future initiatives for developing 3D cadastre, for it is becoming important to capture
the location and scope of the right of complex structures arising quickly following the
rapid urbanization and population growth [81,82]. Automatic extraction of the cobblestone
roads and ditches would also enhance the delineation of the spatial boundaries of blocks of
buildings surrounded by them.

Even though the RF model classified some “boundary” features as “non-boundary”
and vice versa (Figure 8), the classification approach minimized the number of segmen-
tation outlines by 32% for the subsequent processing. Thus, the RF classification helps
identify and exclude non-cadastral boundary features from the set of extracted boundary
outlines. Furthermore, using only the outlines classified as “boundary” would be better
than exploring the entire set of segmentation with a lot of artifacts and non-cadastral
boundary features during the interactive delineation.

Various scholars have revealed image segmentation and classification prospects for
extracting cadastral boundaries. However, the adaptations and implementations may
not be as straightforward as with the open-source tools and plugins used for this study.
For instance, Nyandwi et al. [5] used proprietary software (ENVI, eCognition) for image
pre-processing and cadastral boundary extraction and found encouraging results in rural
areas. While proprietary software may yield better results in image pre-processing and
cadastral boundary extraction, its use could come at a higher cost. Wassie et al. [16] applied
an open-source mean-shift image segmentation algorithm and automatically extracted
rural boundaries and found it encouraging, especially compared to on-screen digitization.
However, the iterative segmentation to identify the cadastral boundary from the entire set
of extracted outlines is time- and resource-intensive. Crommelinck [49] employed the MCG
method for image segmentation and a CNN algorithm for boundary classification to identify
more probable cadastral boundaries. Although the source code is publicly available on
GitHub (https://github.com/Its4land/delineation-tool/wiki/2b)-Convolutional-Neural-
Network-Classification, accessed on 15 November 2022), it demands a certain level of
technical expertise in programming for the necessary configuration and modification to
adapt the approach.

https://github.com/Its4land/delineation-tool/wiki/2b)-Convolutional-Neural-Network-Classification
https://github.com/Its4land/delineation-tool/wiki/2b)-Convolutional-Neural-Network-Classification
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4.2. Interactive Delineation Enhances the Traditional On-Screen Digitization

On-screen digitization is a traditional interactive process in geographic information
systems to generate a digital map from several image sources [83]. The advancement in
computer processing capabilities and machine-learning algorithms enhanced the tradi-
tional on-screen digitization for better and more precise identification and delineation of
cadastral boundary lines. The Its4land “BoundaryDelineation” tool is an example of such a
powerful tool that enhances the manual on-screen digitization technique. It facilitates semi-
automated boundary line delineation by generating vertices along each line that would
help interactively identify and delineate cadastral boundary lines precisely (Figure 9) with
the different options it possesses (Table 2).

Both the qualitative (visual inspection) and quantitative (buffer overlay) assessments
favor the interactive delineation approach over manual on-screen digitization. Visual
inspection validated the complete extraction of cadastral boundary lines in the research area
while excluding non-boundary outlines such as footpaths and artifacts. Dense vegetation
along parcel borders is approximated and demarcated with less departure from the probable
center. Significant cadastral changes in the study area between 2010 and 2016 are easily
detectable visually. However, it is also worth considering the possible effect of the changes
on the quantitative buffer overlay assessment results.

Nonetheless, the quantitative validation of the interactively delineated boundary
lines is also promising, especially for less accuracy-demanding rural and peri-urban areas.
Considering possible shifts both to the interactively delineated boundary lines and the
cadastral reference boundary, the buffer overlay analysis provided favorable results (Table 4,
Figure 10).

Buffering the input lines by 0.4 m and the reference boundary by 0.6 m provided 52%
correctness and 32% completeness. Increasing the buffer size of the input lines to 0.5 m
and the reference cadastre to 1 m changed the correctness and completeness percentages to
72 and 33, respectively. An additional increase in the input and reference lines to 1 m and
1.5 m increased the correctness to 72% and the completeness to 49%. The rise in correctness
and completeness percentages with increasing buffer size might indicate possible cadastral
boundary shifts due to the unplanned peri-urban expansion.

The quality of the interactively delineated boundaries needs to be improved, although
there is an increase in each scenario (24%, 29%, and 42%). Quality is derived from the
completeness and correctness of the interactively delineated boundary lines. It requires
maximizing the number of correctly extracted (TP) boundary lines and minimizing the
errors of commission (FP) and omission (FN) (Figure 5, Table 3).

Whilst the results are quite good for cadastral applications, it seems much higher
achievements, e.g., 80–90%, are still a long way off with these results. Advancements in
data capture technologies and machine-learning algorithms are said to improve spatial
accuracy, although new uncertainty sources like classification errors are introduced [82].
As noted in [82,84], various factors, such as the quality of cadastral surveys, operator
errors, the origin of maps, and the projection of cadastral maps, can affect the computation
of the area of parcels. However, despite the need for much more improvement, the
accuracy assessment result is within the allowable limits of the country’s urban cadastre
regulation [73]. The regulation permits photogrammetric and remote sensing techniques
for cadastral mapping and subsequent applications as long as the uncertainty of positional
accuracy does not exceed 40 cm at a scale of 1:2000. However, any positional discrepancy
in parcel boundaries for a specific cadastral application needs to be supplemented by a
conventional field survey, as outlined in the FFPLA guiding principles [22]. That said,
incremental improvements are visible, and the method does allow for a rough-cut cadastre.
In addition to careful visual inspection of the extracted boundary outlines, the familiarity
of the delineator with the study area is also likely to increase the quality of the interactive
delineation result [2].

Earlier works’ statistical validations demonstrated the possibility of better improve-
ments. Wassie et al. [16] attained 16.3% correctness and 54.4% completeness with the mean-
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shift image segmentation algorithm. Nyandwi et al. [5] applied OBIA and demonstrated the
potential of the AFE approach over traditional on-screen digitization, extracting 45% of the
visible boundaries in the study area and achieving 47.4% correctness. Crommelinck’s [49]
interactive delineation approach performed better, delivering 67% correctness and 37%
completeness for peri-urban areas in Rwanda.

Thus, the validation results indicated the possibility of attaining higher levels of
correctness and completeness with improvement in the AFE approach. Accordingly, im-
proving the image segmentation and classification algorithms used in this study could
enhance the efficiency of the “BoundaryDelineation” tool to correctly extract cadastral
boundaries found in the vicinity of the mapping area. Koeva et al. [2] anticipated the superi-
ority of interactive delineation over the traditional on-screen digitization approach if some
extra functionalities, such as line geometry checking and creating polygon attributes, are
incorporated. Alternative image segmentation and classification techniques may improve
the correctness of the “BoundaryDelineation” tool.

Additionally, unlike manual digitization, which visually depicts and digitizes the prob-
able boundary lines, interactive delineation is guided by the vertices generated along the
RF-classified boundary (input) lines. The interactive delineation approach can be repeatable
if revision is required, saves time to digitize (fewer clicks than manual digitization [49]), and
precisely delineates the boundaries despite some differences with the reference boundary.
Although the approach tends to improve manual digitalization-based indirect surveying,
user feedback and expertise evaluation are expected to improve it further for real-world
scenario applications.

4.3. Open-Source Software Tools and Plugins Streamlined the AFE Approach for
Cadastral Mapping

Open-source software tools and plugins provide a range of functionalities that help au-
tomate and streamline the cadastral mapping process. These made the traditional cadastral
mapping and updating process faster, more affordable, and more reliable than conventional
ground surveying. The study by Ajayi and Oruma [85] estimated the AFE approach to
be 2.5 times faster and 9 times cheaper than conventional ground surveying. There are
various proprietary and freely available open-source software solutions to implement the
AFE approach for cadastral mapping and refresh. This study explored the readily available
QGIS tools and plugins for (semi-) automatic extraction of cadastral boundary features.

The OTB mean-shift segmentation tool is used for extracting cadastral boundaries
automatically, which segments the input image and delivers the feature boundary outlines
in vector format. The “TrainVectorClassifier” and “VectorClassifier” tools are applied to
train the RF model and classify the extracted boundary outlines into “boundary” and
“non-boundary” lines. The Its4land “BoundaryDelineation” tool is employed to interac-
tively delineate cadastral boundaries and building footprints, simplifying the RF-classified
boundary lines to an appropriate scale. The “LineComparison” plugin is another tool from
It4sland that rasterizes and buffers the interactively delineated boundary lines to carry out
the validation. As shown in the methodology, the QGIS built-in plugins are utilized to
manipulate the input image and the extracted lines for further processing.

The tools from OTB and Its4land provided the intended result for cadastral mapping
and refresh. However, there were unconditional interruptions and breaks while running
the algorithms behind the tools. Future enhancements and updates to the source code
could resolve this issue; being open-source is an advantage. Nonetheless, this study
demonstrated the availability of the free and open-source tools and plugins to implement
the AFE approach for cadastral mapping and refresh.

Even though expertise and experience with geospatial technologies is necessary, the
implementations and applications of the open-source tools and plugins are not complex.
Thus, the study demonstrated the potential use of publicly available software solutions
to accelerate systematic cadastral boundary mapping, enhancing AFE applications in
compliance with the FFPLA requirement.
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5. Conclusions

This study investigated the outstanding role of the AFE approach for mapping and
updating cadastral boundaries, considering one of the vibrant peri-urban areas in Addis
Ababa as a case study. It looked into the publicly accessible and open-source QGIS Version
3.16.0 software tools and plugins for implementing the AFE approach.

Although several studies have demonstrated the potential of the AFE technique for
cadastral boundary extraction, either by using proprietary software solutions or developing
codes, the approaches seem expensive or require expertise for immediate use. This study,
therefore, streamlined publicly available and ready-to-use geospatial software solutions
and demonstrated the potential of the AFE approach for cadastral boundary extraction,
complying with FFPLA requirements.

Open source tools and plugins from OTB and Its4land are used for image segmentation
and classification. The possible boundary outlines from the mean-shift image segmentation
are further classified into “boundary” and “non-boundary” outlines to remain with the
most probable cadastral boundaries. The classification reduced the non-cadastral bound-
ary features and segmentation artifacts by about 32% and helped the identification and
interactive delineation of the cadastral boundaries. Furthermore, it is possible to repeat the
interactive delineation process with relevant accuracy if rework is required. It also saves the
time needed to extract the boundary lines compared to the manual digitization approach.

Visual inspection confirms the extraction of the most probable visible boundary lines
from the orthophoto with complete coverage of the study area, whereas the buffer over-
lay analysis provided 52% correctness and 32% completeness compared to the reference
cadastre. Precise extraction of the building footprints favors systematic updating of the
peri-urban cadastre, where multiple condominium houses have been developed in recent
years. Precisely extracted cobblestone pathways and ditches can also help to delineate the
spatial boundaries of the blocks of buildings. Despite various factors that could affect the
accuracy of achieved results, the uncertainty of the extracted parcel boundaries are within
the allowable limits of the urban cadastral surveying regulation for further application.

Nonetheless, as incremental refinements are seen in previous works, improving the im-
age segmentation and classification algorithms behind the tools could enhance the efficiency
of the approach and achieve better accuracies. Careful extraction of the training dataset and
computation of more line attributes might reduce the misclassification of “boundary” lines
into “non-boundary” features and vice versa. Additionally, the delineator’s acquaintance
with the study area and careful visual inspection of the orthophoto would help precisely
delineate cadastral boundaries.

Despite the encouraging results of utilizing free and open-source software solutions
for the AFE implementation, the challenge of determining threshold values to avoid over-
and under-segmentation needs attention. The unconditional interruptions and breakouts
while using the tools also highlight the need for future enhancements, with the open source
being a benefit.

In summary, the study is expected to contribute to the overall endeavor for cadastral
mapping and refresh in peri-urban areas in a fit-for-purpose manner: fast, cheap, and
reliable. However, the general methodological procedure and the technical approach for
the AFE implementation need users’ feedback and expertise evaluation to enhance further
and apply it to the real-world scenario.
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UAVs Unmanned Aerial Vehicles
GPS Global Positioning System
GNSS Global Navigation Satellite System
FFPLA Fit-for-purpose land administration
OBIA Object-Based Image Analysis
GIS Geographic Information System
MCG Multi-resolution Combinational Grouping
gPb globalized probability of boundary
QGIS Quantum GIS
OTB Orfeo ToolBox
RF Random Forest
CNN Convolutional Neural Network
FDRE Federal Democratic Republic of Ethiopia
IAAO International Association of Assessing Officers
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