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Abstract: Crop type maps are critical for tracking agricultural land use and estimating crop pro-
duction. Remote sensing has proven an efficient and reliable tool for creating these maps in regions
with abundant ground labels for model training, yet these labels remain difficult to obtain for many
regions and years. NASA’s Global Ecosystem Dynamics Investigation (GEDI) spaceborne LiDAR
instrument, originally designed for forest monitoring, has shown promise for distinguishing tall and
short crops. In the current study, we leverage GEDI to develop wall-to-wall maps of short vs. tall
crops on a global scale at 10 m resolution for 2019–2021. Specifically, we show that (i) GEDI returns
can reliably be classified into tall and short crops after removing shots with extreme view angles or
topographic slope, (ii) the frequency of tall crops over time can be used to identify months when tall
crops are at their peak height, and (iii) GEDI shots in these months can then be used to train random
forest models that use Sentinel-2 time series to accurately predict short vs. tall crops. Independent
reference data from around the world are then used to evaluate these GEDI-S2 maps. We find that
GEDI-S2 performed nearly as well as models trained on thousands of local reference training points,
with accuracies of at least 87% and often above 90% throughout the Americas, Europe, and East Asia.
A systematic underestimation of tall crop area was observed in regions where crops frequently exhibit
low biomass, namely Africa and South Asia, and further work is needed in these systems. Although
the GEDI-S2 approach only differentiates tall from short crops, in many landscapes this distinction is
sufficient to map individual crop types (e.g., maize vs. soy, sugarcane vs. rice). The combination of
GEDI and Sentinel-2 thus presents a very promising path towards global crop mapping with minimal
reliance on ground data.

Keywords: Google Earth Engine; cropland; agriculture; LiDAR; classification; maize

1. Introduction

Farmer livelihoods and food production are affected by myriad ongoing changes
in climate, markets, and policies. Accurate data on cropping systems are essential to
monitor and understand the effects of these changes, yet such data are often lacking. One
major aspect of cropping systems are the crops that farmers choose to plant, which typically
change from season to season as farmers rotate crops or shift into new crops [1]. Information
on crop choice is helpful for various applications, including modeling land use decisions,
mapping yield variations, and forecasting regional food production.

Given the widespread demand for crop type information, maps of crop types have been
developed from a variety of sources and at a range of spatial and temporal resolutions [2,3].
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In a small number of countries, such as the United States [4], Canada [5], and France [6],
detailed crop type maps at the field scale are publicly available for each growing season,
based either on farmer surveys or a combination of ground and satellite sources. In most
countries, however, timely data is much harder to obtain. Several gridded datasets with
global coverage have been developed, but these are often based on census data more than
a decade old [2]. Given the dynamic nature of agriculture, including evidence of rapid
cropland expansion in some regions and cropland abandonment in others [7], decades old
data are insufficient for many uses. Moreover, global products typically have a resolution
of 10 km or coarser [2], which limits their utility for applications requiring field-scale data.

As a result, there is a continued need for improved approaches to mapping crop
types [2,3]. This need is recognized, for example, by the new WorldCereal effort that
aims to create global, annual maps for wheat and maize at 10 m resolution (https://esa-
worldcereal.org/, accessed on 1 March 2023). Remote sensing offers clear advantages
for large-scale crop type mapping, with proven success in many local or national scale
studies [4,8–12]. Yet a major challenge remains that models require large amounts of
training data, and models trained in one region for a single season often do not transfer
well to other regions or seasons. One sensible way to address this challenge, as in the
WorldCereal project, is to invest in large amounts of field data collection around the world,
so that models can be locally trained anywhere. Other efforts have focused on developing
models that are better able to maintain performance in years or locations outside of their
training domain [13–15].

A third, complementary approach has been to seek training data derived without the
need for field data collection. In recent work [16], we demonstrated the promise of one
such source of data—LiDAR measurements acquired by the Global Ecosystem Dynamics
Investigation (GEDI) [17]. GEDI LiDAR returns provide information on canopy heights
with a nominal spatial resolution of 25 m and a vertical precision of roughly 50 cm [17].
Although many crops have similar heights, some of the key commodity crops grown
throughout the world, especially maize and sugarcane, are typically 1 m taller than other
common crops such as wheat, rice, or soybean (Figure 1).

Figure 1. Most commonly grown crops in the world based on FAO crop statistics for 2019, color coded
by crop heights base on U.S. National Plan Germplasm System. Crops are considered tall if most
common varieties exceed 2 m in peak height. Data source: http://www.fao.org/faostat (accessed on
1 February 2023) for global crop areas, https://npgsweb.ars-grin.gov (accessed on 1 February 2023)
for crop heights.

https://esa-worldcereal.org/
https://esa-worldcereal.org/
http://www.fao.org/faostat
https://npgsweb.ars-grin.gov
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Indeed, in many landscapes the two main crops are one tall crop and one short crop
(e.g., maize and soybean, or sugarcane and rice), such that the ability to discern tall from
short crops goes a long way toward mapping individual crops (Figure 2). For example,
roughly two-thirds of the area sown to maize in the world lies in regions where maize
is 90% or more of the area covered by tall crops.

Figure 2. Maps illustrating dominant crops based on IFPRI SPAM-2010 v2.0 [18] (using the layer
corresponding to physical area—all technologies together). In these maps, a crop is deemed dominant
in a region if it accounts for more than 90% of the tall or short crop total area. The map on the left
displays tall crops (i.e., maize, sugarcane, sunflower, and cassava), with maize dominating in 48% of
areas with tall crops. Put another way, 68% of the total global area where maize is grown consists of
regions where maize is the dominant crop; for sugarcane, this fraction is 46%. The map on the right
represents short crops. It includes all the short crops listed in the SPAM dataset (with the exception of
wheat, barley, and rapeseed grown primarily during winter). A total of 50% of the global area where
soybean is grown consists of regions where soybean is the dominant crop, while for rice this fraction
is around 20%.

GEDI alone, however, only samples a very small fraction of the landscape, so therefore
rather than use GEDI directly, Di Tommaso et al. [16] use GEDI to train a random forest
model that predicts crop height class based on Sentinel-2 (S2) optical data. This combined
GEDI-S2 approach was found to map crop types nearly as well as a model trained on
thousands of local ground training points in the US, France, and China.

Here, we develop and test an approach that combines GEDI and S2 to map tall and
short crops throughout the world for a three-year period (2019–2021). We extend the initial
insight from Di Tommaso et al. [16], namely that GEDI signals are informative in cropped
landscapes, in several important ways. These include a method to automatically identify
the most appropriate months for tall crop delineation, an investigation into the effects of
view angle and topography on GEDI signals in the context of crop discrimination, and
global scale implementation of the GEDI-S2 approach. We also conduct an evaluation of
GEDI-S2 models in a much broader set of countries and cropping systems, using various
independent datasets on crop types during the study period. Overall, we find that GEDI is
a useful resource for advancing the goal of low-cost, timely, and accurate global mapping
of crop types. At the same time, we identify some important areas for improvement to
guide future research efforts.

The following section describes the various datasets used in the study, including
any initial processing steps for the data. Section 3 then describes the methods used to
map crop height class and evaluate the predictions. Section 4 presents the main results,
while Section 5 discusses various sources of errors and potential future directions for
improvement. Finally, Section 6 briefly summarizes the main conclusions.
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2. Datasets

This study utilized five main data sources: a global cropland mask used to define
cropland areas, GEDI shot returns for cropland areas, Sentinel-2 optical imagery, reference
data on crop types from three regions used to train the GEDI classification model, and
reference data on crop types from throughout the world used to evaluate the performance
of our GEDI-S2 tall/short crop predictions. Below we describe each of these, as well as
supplementary datasets used to analyze and interpret our results, including a global map
that defines the number of growing seasons in each location, and reference crop type maps
used to analyze the relationship between peak crop biomass and model errors.

2.1. Crop Mask

To identify cropped areas we used the European Space Agency (ESA) [19] and ESRI [20]
global Sentinel-based 10 m global land cover maps available in the Google Earth Engine
(GEE) [21] official and community data catalogs, respectively [22]. Both the ESA World-
Cover 2020 product and ESRI 2020 Global Land Use Land Cover provide a global land
cover map for 2020 at 10 m resolution, the former based on Sentinel-1 and Sentinel-2 data,
and the latter based on Sentinel-2 alone. We primarily used the ESA mask, which, based
on visual inspection using Google’s high-resolution basemap, better captured cropland in
most areas where the two maps disagreed. However, for Kenya and Uganda the ESA mask
tended to greatly underestimate cropland area, and to better capture cropland for these
countries we therefore merged the two masks, defining a pixel as cropland if either of the
two classified it as cropland.

2.2. GEDI Data

GEDI is a sensor onboard the International Space Station (ISS) that acquires LiDAR
waveforms between 51.6°N and 51.6°S to observe the Earth’s surface in 3D. It is the first
spaceborne LiDAR instrument specifically optimized to measure vegetation structure [17].
It contains three lasers emitting near-infrared (1064 nm) light. Two of the lasers are full-
power lasers, with the other coverage laser split into two beams, producing a total of four
beams. Each beam is then optically dithered across-track resulting in eight ground tracks
(four full power and four cover tracks) spaced 600 m on the ground. Shots have an average
footprint of 25 m in diameter and are separated 60 m along the track.

GEDI spatial coverage changes in time. In particular, in early 2020 the ISS lifted
its orbit, causing GEDI to have “orbital resonance” which means it goes over the same
tracks repeatedly while leaving big gaps in between (Figure 3a–c). While orbital resonance
does not change the number of shots acquired in a time period, it reduced the spatial
coverage of GEDI in 2020 relative to 2019. When GEDI samples of agricultural areas are less
geographically uniform and more clustered, we expect GEDI-based crop type classification
accuracy to decrease.

Another important aspect of GEDI is that while its viewing angle is typically near-
nadir, it can be rotated by up to 6°, allowing the lasers to be pointed up to 40 km on either
side of the ISS ground track. This capability is used to sample the Earth’s land surface as
completely as possible, but can also complicate interpretation of the GEDI returns [23].
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Figure 3. Spatial locations of GEDI shots over croplands in Europe. (a–c) Show spatial distribution
for 2019–2021, respectively. Starting in 2020 higher International Space Station (ISS) altitudes caused
the clustering of GEDI observations along its orbital track (i.e., “resonance”) leaving bigger gaps
across tracks. (d) Zoom in of GEDI shots for 2019 over fields in Austria, color coded by GEDI model
predicted class, gray for short, orange for tall crop. (e) Same as (d) but also showing the fields growing
maize according to ground truth from Austria parcels dataset, illustrating that GEDI predicted class
agrees well with the ground truth.

For this study, we used the GEDI dataset Level 2A (L2A) and Level 2B (L2B) from
April 2019 to December 2021, available in GEE data catalog. Level 2 data provide infor-
mation about the vertical distribution of the canopy retrieved from the waveform return
at footprint level. The main GEDI product used is GEDI’s L2A Geolocated Elevation
and Height Metrics Product, which is primarily composed of Relative Height (RH) met-
rics, which collectively describe the waveform collected by GEDI. Relative Height (RH)
metrics give the height at which a certain percentile of energy is returned relative to the
ground. RH are reported at 1% intervals, resulting in 101 metrics. The GEDI L2A dataset
(LARSE/GEDI/GEDI02_A_002_MONTHLY) is a rasterized version of the original GEDI product,
with each GEDI shot footprint represented by a 25 m pixel [24]. This rasterization process
can introduce an additional geolocation error to the initial GEDI shot error. The raster im-
ages are organized as monthly composites of individual orbits in the corresponding month.
RH values and their associated quality flags and metadata are preserved as raster bands.

A secondary dataset L2B was used to retrieve the GEDI view angle (i.e., local beam el-
evation property). This is available in GEE as a table of points (LARSE/GEDI/GEDI02_B_002)
with a spatial resolution (average footprint) of 25 m. At the time of writing, the raster
version of the L2B dataset (LARSE/GEDI/GEDI02_B_002_MONTHLY) is only partially ingested
in GEE, and we therefore used the table.

2.3. Sentinel-2

We used S2 surface reflectance data (Level-2A) present in GEE and filtered out clouds
using the S2 Cloud Probability dataset provided by SentinelHub in GEE. The Sentinel-2A/B
satellites acquire images with a spatial resolution of 10 m (Blue, Green, Red, and NIR bands)
and 20 m (Red Edge 1, Red Edge 2, Red Edge 3, Red Edge 4, SWIR1, and SWIR2 bands),
and together they provide images at a 5-day interval.

To capture crop phenology, we extracted S2 imagery for 2019–2021 from 1 January
to 31 December for the northern hemisphere, and from 1 July of one year to 30 June of the
next for the southern hemisphere. Features were extracted from S2 time series by fitting
harmonic regressions to all cloud-free observations in cropped areas. For each spectral
band or vegetation index f (t), the harmonic regression takes the form

f (t) = c +
n

∑
k=1

[ak cos(2πωkt) + bk sin(2πωkt)]
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where ak are cosine coefficients, bk are sine coefficients, and c is the intercept term. The
independent variable t represents the time an image is taken within a year expressed as
a fraction between 0 and 1. The number of harmonic terms n and the periodicity of the
harmonic basis controlled by ω are hyperparameters of the regression.

To determine n and ω, we sampled multiple locations around the world and compared
the harmonic fit of the time series by varying the hyperparameters. We found that third
order harmonics (n = 3) with ω = 1 were a good fit for both regions with one or multiple
growing seasons.

We computed harmonic coefficients for four bands and one vegetation index: NIR,
SWIR1, SWIR2, RDED4 and GCVI. GCVI is the green chlorophyll vegetation index [25]
computed as

GCVI = NIR/Green − 1

This yields seven features per band, for a total of 35 coefficients. Previous crop type
classification studies [26,27] have reported the efficacy of using these four bands and VI,
demonstrating performance comparable to classification models using all optical bands
and a variety of other VIs.

2.4. GEDI Model Training Dataset

To train the GEDI model to distinguish tall from short crops we used high-accuracy
crop type labels from 2019 from the three regions used in prior work [16] and mapped in
red in Figure 4: Jilin province in China, Grand Est region in France, and Iowa state in USA.
These regions are major agricultural production areas containing a mix of tall and short
crops and have accurate, field-scale crop type maps that are publicly available. Although at
similar latitudes, these regions are located in three separate continents and management
practices do differ. Maize in France in particular exhibits a wide range of GCVI, and China
exhibits very small fields. Differences in agricultural practices across regions for the same
classes could translate to differences in the GEDI waveforms, helping the GEDI model to
be more flexible and adaptable in other regions as well.

Figure 4. Distribution of data used for training the GEDI model in red, and independent evaluation
of the final maps in blue. Ground-based refers to either point or polygon data collected on the
ground. Satellite-based refers to maps typically created by combining ground data with remote
sensing datasets, such as the Cropland Data Layer in the United States.
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For Jilin, China we used the 2019 crop type map produced by You et al. [9]. It maps
three major crops in the area (maize, soybean, and rice) at 10 m with an accuracy of 87%,
and F1-scores of 85% for maize. For Grand Est, France we used the Registre Parcellaire
Graphique (RPG) 2019 dataset downloaded from https://www.data.gouv.fr/ (accessed on
1 July 2021). It is a public georeferenced vector product derived via survey. For Iowa, USA
we used the U.S. Department of Agriculture’s 2019 Cropland Data Layer (CDL) at 30 m
resolution available in GEE [4]. It has an overall accuracy of 90%, and precision and recall
for maize exceed 95%.

2.5. Evaluation Datasets

To evaluate our product, we sought high-quality crop type datasets for a diverse set
of cropping systems and regions for the 2019–2021 period. We used a combination of
field data and crop type maps that were produced by combining field and satellite data.
In regions with multiple growing seasons, we filtered for crop type labels matching the
growing season that the GEDI model predicted for. A map of location and type of reference
data is shown in Figure 4 and a summary of data characteristics including sample size are
given in Table 1.

Table 1. Characteristics of the regional datasets used to evaluate GEDI-S2. For each dataset we report
the year, the type of reference data, the number of samples, the percentage of reference data labelled
as a tall crop and the main labels. Point and polygon data type refers to ground-based data, while map
refers to satellite-based maps. US ND and AL stand for North Dakota and Alabama. Brazil BA for
Bahia. India UBB for Upper Bhima Basin, TG for Telangana, and MH for Maharashtra.

Region Year Type Samples % Tall Crop Main LabelsLabels
Austria 2019 polygons 159,528 16.1 maize, pasture, wheat
Slovenia 2019 polygons 122,792 40 maize, wheat, barley
Germany 2019 map 2278 24.1 maize, wheat, barley
Germany 2020 map 2864 15.1 maize, wheat, barley

Canada (BC) 2019 points 704 31.3 mixed forage, maize
Canada (ON) 2019 points 29,960 33.9 soybean, maize, mixed forage
Canada (BC) 2020 points 871 39.6 mixed forage, maize, alfalfa
Canada (ON) 2020 points 14,960 31.2 soybean, maize, mixed forage
Canada (BC) 2021 points 15,384 31.2 mixed forage, maize, alfalfa

US (ND) 2019 map 1847 18.8 soybean, wheat, maize
US (ND) 2020 map 1860 11.4 soybean, wheat, maize
US (ND) 2021 map 1882 22.4 soybean, wheat, maize
US (AL) 2019 map 1085 24.1 cotton, maize, soybean
US (AL) 2020 map 1088 24.7 cotton, maize, soybean
US (AL) 2021 map 1078 25 cotton, maize, soybean

Brazil (BA) 2020 map 1992 0 soybean
China 2019 map 2736 56.5 maize, soybean, rice

India (U.B.B.) 2020 map 1211 50.6 sugarcane, cotton, rice
India (TG) 2020 points 4844 4.6 rice, cotton, peanut, maize
India (TG) 2021 points 28,562 4.9 rice, cotton, peanut, maize
India (MH) 2020 points 8639 27.7 cotton, maize, rice, sugarcane

Malawi 2021 polygons 719 31.4 groundnut, maize, soybean
Mali 2019 polygons 73 26 sorghum, millet, maize, rice

Kenya 2021 points 1423 58.1 maize, tea, sugarcane

2.5.1. Ground-Based Reference Data
Europe

Schneider et al. [28] contains harmonized agricultural parcels information data from
regions in Austria (2019), Denmark (2020), and Slovenia (2019). The parcel data are based
on publicly available self-declared crop reporting datasets, gathered for the purposes of

https://www.data.gouv.fr/
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subsidy payments. We focus on Austria and Slovenia, since the Denmark dataset is outside
the GEDI latitude coverage.

Canada

Agriculture and Agri-Food Canada [29] is a collection of thousands of points identify-
ing crops types and occasionally other land cover types across Canada from 2011 to 2021.
These point sources are used by Agriculture and Agri-Food Canada (AAFC) as training or
reference sites for the creation of the Annual Crop Type map.

Malawi

Field boundaries for three crops—groundnut, maize, and soybean—were collected in
five districts of Malawi (Lilongwe, Ntchisi, Kasungu, Salima, and Mzimba) for 2021 as part
of research on the groundnut value chain conducted by the AgroHitech Innovation and
Advisory Consortium for the Peanut Innovation Lab.

Mali

Field boundaries in Mali were collected by the NASA Harvest team during the 2019
growing season [30]. The crop type growing in each field was observed by a surveyor. In
total, the dataset contains 148 fields. The data were released as part of the CropHarvest
dataset and is also available on Radiant MLHub.

Kenya

The Global Agriculture Monitoring initiative of the Group on Earth Observation, called
Copernicus4GEOGLAM, collected ground reference data during field surveys in three
countries—Uganda, Tanzania, and Kenya [31]—for both the 2021 long rain and 2021–2022
short rain seasons. The georeferenced ground data were used by Copernicus4GEOGLAM
to train random forest models to map crop type using S2 imagery as input. Given the
fairly low accuracies of the resulting maps (e.g., maize F1 scores were often below 0.6), we
utilized only the field data for our evaluation. We focused on the Kenya point dataset for
the 2021–2022 short rain season, which had the greatest number of points overlapping with
the season of our GEDI-S2 predictions.

India

India crop type labels are crowdsourced from farmers via Plantix, a free Android
application created by Progressive Environmental and Agricultural Technologies (PEAT).
The Plantix app is used by farmers who submit photos of their crops seeking help to diag-
nose and treat crop diseases. As part of the disease diagnosis, PEAT uses a convolutional
neural network to assign crop labels based on the submitted photos. We used these data in
the Indian states of Maharashtra and Telangana, where the accuracy of Plantix crop type
labels exceeds 0.90 for most major crops. These data have been cleaned to remove location
inaccuracy (keeping only submissions with GPS accuracy better than 10 m), as suggested
by previous work by [32]. To match the timing of the GEDI-S2 predictions, we filtered the
Plantix data for the 2021 kharif season based on photo submission timing.

2.5.2. Satellite-Based Reference Data
United States

The Cropland Data Layer (CDL) produced by the United States Department of Agri-
culture (USDA) provides yearly crop type maps across the conterminous US at 30 m spatial
resolution [4]. Maps are based on Landsat and other satellite imagery using training data
from the Farm Service Agency (FSA). For validation we chose two states, North Dakota
and Alabama, that were far from the conditions and locations of the Iowa locations used in
the training data. Accuracy of CDL on FSA labels are available in the CDL metadata, with
precision and recall for maize for 2019–2021 higher than 81% and 85% in North Dakota and
Alabama, respectively.
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Germany

National scale crop type maps for Germany were recently produced for 2017–2019 [33]
and 2020 [34]. These maps are generated using a random forest classifier based on
Sentinel-1, Sentinel-2 and Landsat time series, with parcel data used for training. More
details about the underlying data and methods can be found in Blickensdörfer et al. [12].
Overall accuracy for 2019 is 78%, with precision and recall for the maize class of 90%
and 83%, respectively.

Brazil

Annual soybean maps were recently produced for South America at 30 m resolution
between 2000 and 2020 by combining Landsat and MODIS satellite observations and sample
field data [11]. These maps are available in GEE as (projects/glad/soy_annual_SA). For
evaluation, we focused on western Bahia in 2020, since this region grows maize and soy in
the main season and has only one primary growing season per year. We evaluated only
recall on soy, since other short crops, e.g., cotton, are also grown in the same season but
are not distinguished from other non-soy crops in their study. Accuracy for 2020 is not
reported, but for the years 2017–2019 they report overall accuracies of 96%, 94%, and 96%,
respectively, with high and balanced producer’s and user’s accuracies.

China

For China, we used the same 2019 crop type map described by You et al. [9] in
Section 2.4 used in training the GEDI model. For validation, we used a random sample
over the four northeast regions (Liaoning, Nei Mongol, Jilin, and Heilongjiang), which span
a much larger area than used in the training sample from Jilin.

India

Lee et al. [35] produced a map of sugarcane area in the Upper Bhima Basin, a major
sugarcane producing region in Maharashtra, India. Their 10 m resolution map is based
on crowdsourced Plantix data and a neural network applied to S2 data. Reported overall
accuracy for sugarcane vs. not sugarcane was 77% (85% precision and 67% recall).

2.6. Number of Growing Seasons per Year

The Anomaly hotspots of Agricultural Production (ASAP) system is an online deci-
sion support tool for early warning about production anomalies developed by the Joint
Research Center (JRC) of the European Commission. ASAP has produced several maps
including satellite-based phenology information, which are computed from the long-term
average of MODIS NDVI data at 0.01◦ resolution [36]. We downloaded the phenology
layer that defines the number of growing seasons (1 or 2 seasons) [37], and aggregated this
information at 5◦ based on the majority of the crop pixels’ seasonality.

2.7. Digital Elevation Model (DEM)

We used a DEM to investigate the effect of topography on the usability of GEDI
shots for tall crop classification. The Shuttle Radar Topography Mission SRTM V3 (SRTM
Plus) [38] digital elevation data product is provided by NASA JPL at a resolution of
1 arc-second (approximately 30 m) and is available in GEE. We calculated the slope in
degrees from the terrain DEM in GEE.

2.8. Reference Maps for Error Analysis

As described below, we hypothesize that errors in our GEDI-S2 predictions were often
related to low biomass of the tall crop. To further investigate this, we utilized two additional
crop type maps that provided wall-to-wall coverage in countries where our preferred data
for evaluation covered only a subset of fields. Widespread coverage was needed to ensure
a wide range of biomass values for pixels in the reference map that overlap with the GEDI
shot locations.
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2.8.1. Canada

The Earth Observation Team of the Science and Technology Branch at Agriculture and
Agri-Food Canada (AAFC) have created Annual Crop Inventory maps that are accessible in
GEE. These maps are generated using a combination of crop type labels from crop insurance
data and ground-truth information collected across the country to train a decision tree
model based on optical and radar satellite images. Maps have a spatial resolution of 30 m
and an accuracy of at least 85%.

2.8.2. Kenya

As described above, in addition to field data, the Copernicus4GEOGLAM produces
end-of-season crop type maps for each country and season where field data was per-
formed [31]. In our error analysis, we used the long rains map for Kenya, which possesses
the highest F1 score for maize among the various countries and seasons. For this map,
overall crop type accuracy is 80%, and F1 for maize is 0.64.

3. Methods

Here, we describe the steps taken to create and evaluate wall-to-wall maps of crop
type height, using a combination of GEDI and S2 as input. Figure 5 provide a graphical
overview of the methods presented in this paper.

Figure 5. Flowchart of the steps for creating the GEDI-S2 tall/short map for each grid-cell in each
year. The GEDI model is trained a single time using the GEDI RH metrics and corresponding crop
type maps in three training regions (see Section 3.1). The steps in the gray box are repeated for
each 5◦ × 5◦ grid cell. To create the global map for a specific year, all the individual grid cell maps
are mosaicked.

The sections below describe in detail each of the six steps in this process:

1. Train a single model, which we refer to as the GEDI model, that uses GEDI features to
classify locations as having short crops, tall crops, or trees;

2. Apply the GEDI model to GEDI shots acquired from cropland areas globally for
three years of 2019–2021;

3. Tile the globe into 5◦ × 5◦ grid cells;
4. Determine the optimal month to predict tall crops for each grid-cell;
5. Train a local GEDI-S2 model for each grid-cell based on GEDI predictions in the

3-month time window around the optimal month;
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6. Evaluate results against local reference data.

3.1. GEDI Model Training

Following Di Tommaso et al. [16], we began by defining a random forest model to
classify GEDI shots in three crop height classes: short, tall or tree. The decision to use
the random forest model was primarily motivated by its high accuracy, advantageous
computational efficiency and seamless implementation at a large scale in GEE. To train the
model we used labels from three areas with high-quality crop type maps for 2019: Jilin
in China, Grand Est in France, and Iowa in the United States (see Section 2.4). Crop type
labels were sampled at GEDI shot locations and assigned a tall label for maize class and
a short label to remaining short crops. We also defined a third tree class, for shots with
RH100 greater than 10 m. The choice of the 10 m threshold was made empirically, relying
on visual assessment of GEDI shots over trees in Google’s high-resolution basemap.

We used all GEDI shots in August 2019 over the three regions since our previous
study [16] showed August to be a good time to distinguish maize from other short crops
in these regions. This resulted in a total of approximately 253 k samples, with 47 k samples
in Jilin, 23 k in Grand Est and 183 k in Iowa.

Although we are interested in the crop height, we found that our model worked best
when multiple RHs were included to fully capture the GEDI returned waveform. To reduce
the number of features, since consecutive RH metrics are highly correlated with each other,
we sampled a metric every 5% and omitted RH in the middle of the RH profile based on
feature importance analysis. In total, 11 RH metrics were used: RH0, RH5, RH10, RH15,
RH20, RH25, RH30, RH85, RH90, RH95, and RH100.

The features and labels were used in a random forest model, implemented in GEE.
Data were split into 80% training and 20% test points. To minimize spatial correlation
across the training and test sets, we binned the shots by their lat/lon into 0.5◦ × 0.5◦ bins
and GEDI shots in each bin were placed entirely in either the training set or test set. The
overall test accuracy across the three regions was 0.885, with F1 scores for short, tall and
tree classes of 0.863, 0.898, and 1.000, respectively. The very high F1 score for the tree class
is explained by the definition of tree class, as based on GEDI RH100 metric directly and not
field labels.

3.2. GEDI Model Predictions

The random forest model described above was then applied to all GEDI shots in
cropland pixels, according to the crop mask described in Section 2.1. The predicted class
was saved along with the prediction probabilities (the fraction of trees in the random
forest model that predicted the class) as a measure of confidence. Figure 3 illustrates these
predictions for a selection of GEDI orbits, with shots colored orange for tall and gray for
short based on the GEDI model predictions.

The predicted shots were filtered to retain only high quality shots to use as labels in
subsequent steps. First, we removed shots with a quality flag value of zero in the original
GEDI returns, which indicates poor quality, as well as shots with a non-zero degrade flag,
which indicates poor geolocation. We then removed low confidence predictions (lower
than 0.8) to have more confidence in the GEDI-generated labels.

Another step that proved essential was to filter out shots with low view angle and on
high slope terrain since both factors can affect the accuracy of the GEDI model predictions.
We refer to view angle as the angle between the off-nadir beam and the ground. Prior work
has revealed that small changes in view angle can increase errors for models based on
GEDI returns [23,39]. In particular, existing analysis recommends removing observations
where the view angle was below 1.5 rad, or roughly 86◦ [39].

To explore the appropriate threshold for our application, we considered shots for the
US Corn Belt where we have confidence in the reference data from CDL, and where the
view angle property is available in GEE at the GEDI shot level. The GEDI model prediction
errors (treating CDL as truth) were evaluated for different levels of view angle, as shown
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in Figure 6a. At low view angles, errors are as high as 60%. Above the recommended
threshold of 1.5 rad, however, errors are below 10% and fairly insensitive to additional
increases in view angle. We therefore adopted a threshold of 1.51 rad for further analysis.

The GEDI view angle varies over time as shown in Figure 6b. View angles were
particularly low in June and July of 2020, causing the removal of most shots during the
peak of the growing season in many regions. Other periods of frequent observations with
low view angles include late 2019 and late 2021. Unfortunately, at the time of writing,
information on the GEDI view angle was not yet available at the shot level for all shots
globally in the GEE catalog. To create a view angle filter, we sampled orbits over a
longitudinal transect and aggregated these data, averaging the view angle for each beam
on each day. We then removed all shots from beams and days with an average view angle
above 1.51 rad. Although this was a pragmatic way to filter out data with low view angle
globally, future versions would likely benefit from accounting for view angle at the shot
level, to account for variation by latitude and over time within the day.

Figure 6. (a) Effects of GEDI view angle on the accuracy of the GEDI model predictions in the Central
United States. (b) The temporal variation of view angle over the study period, with shading showing
the min-max values. GEDI can be rotated up to 6° (0.1 rad) from nadir. In some periods, such as
summer 2020, GEDI was systematically targeting reference ground tracks that were further off nadir
than other times. Dashed line labeled “cut-off” indicates the threshold used to filter GEDI shots in
this study.

We also removed shots on high slope terrain, defined as areas with slope higher
than 5◦. GEDI metrics are dependent on topographic slope [40], and given the relatively
small height signal being used by our model to classify tall vs. short crops, the effect of
topographic slope are potentially important. Based on analysis of CDL in the United States,
similar to the view angle analysis presented in Figure 6a, a slope below 5◦ was deemed
sufficient to avoid artifacts from the terrain. As cropland is typically situated on flat or
nearly-flat land, this filter removed only a small fraction of GEDI shots.

3.3. Model Grids

The filtered GEDI model predictions provide labels with which to train a model that
takes S2 data as input. However, we did not expect a single model to be applicable globally,
since the timing of growing season and mix of crops differs across the world. Building
on prior approaches [24,41] we instead sought to develop locally-calibrated models. We
defined a grid within the GEDI coverage (between 51.6◦N and 51.6◦S) with 5◦ × 5◦ cells.
Although more localized models would potentially improve performance in some regions
and years, the choice of grid cell size was dictated by the orbital resonance of GEDI in 2020
and 2021. That is, a finer grid would often have cells that have very few GEDI observations
because of the large gaps in GEDI coverage in those years. Furthermore, moving from the
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pole towards lower latitudes, the spacing between GEDI tracks becomes more substantial.
This necessitated at lower latitude the adoption of larger grid cells in terms of real area
to ensure sufficient data coverage. By employing 5-degree grid cells, we struck a balance
between capturing the heterogeneity within each cell and ensuring an adequate sample
size of GEDI data for model training and analysis.

To reduce computation, we only processed grid cells for which more than 5% of
S2 pixels were classified as cropland, yielding 238 cells. The grid cells that we kept cover an
area that comprises 93% of the total crop area within the latitude bands of GEDI coverage.

3.4. Optimal Timing

For each grid cell, we defined the optimal month to classify tall vs. short crops as the
month in which the highest percentage of GEDI shots were predicted as tall. Specifically,
we combined the 3 years of GEDI model predictions by month, computed the percentages
of tall and short shots by grid cell and month, and then selected the month for each cell
when the percentage of tall shots was highest. We interpret this month as the period during
which tall crops have reached their peak height. Consequently, this is the time when GEDI
is most likely to detect a contrast with other crops within that particular cell.

3.5. GEDI-S2 Models

For each grid cell and for each year, we separately trained a local 2-class (tall vs. short)
S2 model using the GEDI predictions for the relevant time as labels and harmonic coeffi-
cients as features. Data were randomly split into 80% training and 20% test, to evaluate
model accuracy. We refer to these as GEDI-S2 models, with a unique model for each
grid cell and year. To account for variations in the timing of the growing season within
the 5◦ grid cells, we considered a three-month window centered on the optimal month. We
created GEDI-S2 predictions for individual months and then combined the predictions
on a pixel basis, with pixels classified as tall if the predicted class was tall in any of the
three months.

The result of this process was a wall-to-wall 10 m resolution map of tall and short
crops for all cropland pixels in the 5◦ grid cells. To reduce computation, we only applied
the GEDI-S2 models to grid cells where the percentage of tall shots is higher than 4%,
i.e., 201 grid cells per year. Since GEDI data was not always available in all the regions
in the time window of interest, the number of grid cells processed is 1562, less than the
expected 1809 = 201 (grid cells) × 3 (months) × 3 (years). This resulted into 189 unique
locations in 2019, 457 in 2020 and 201 in 2021, for a total of 590 grid cells for the 3 years.

For this local training, we omitted all shots where the GEDI model predicted the tree
class, as these were viewed as likely to be a mixture of crops and trees within the GEDI
footprint, which at 25 m diameter is more than four times larger than the 10 m S2 pixel.
Thus, predictions of tree were viewed as unreliable labels for a 2-class model focused on
S2 pixels classified as cropland.

To minimize spatial artifacts when mosaicking adjacent cells, we created predictions
for pixels in a 0.5◦ buffer around each cell and mosaicked the overlapping predictions
taking the predictions in the cell with higher GEDI-S2 accuracy.

3.6. Evaluation of GEDI-S2 Predictions

The first evaluation of GEDI-S2 predictions is against reference data from around the
globe (Table 1). All reference data were ingested in GEE for comparison with GEDI-S2
predictions. For regions with ground-based point or polygon data, we used all fields for
evaluation. In the case of polygons, the centroid of the polygon was used to define the
relevant pixel from the GEDI-S2 predictions for comparison. For regions where crop type
maps were used, we randomly sampled the maps using 2000 to 4000 points and removed
the ones without a specific crop type label to create a reference dataset.
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Because some datasets contain as many as 100 crop types, for each reference dataset
we selected the 10 most common crops for evaluation, which typically represents more
than 90% of the crop areas in the reference regions evaluated. From specific crop type
labels, we generated a binary tall/short classification, with maize and sugarcane defined
as tall and all other crops defined as short (none of our evaluation data had sunflower or
cassava among the 10 most common crops). For each evaluation dataset, we report the
accuracy, precision, recall, F1 and Kappa scores, using the following equations [42]:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 score =
2 × Precision × Recall

Precision + Recall

Kappa score =
Po − Pe

1 − Pe

where

• True Positive, TP, is the number of samples labelled as positive by the model that are
actually positive

• False Positive, FP, is the number of samples labelled as positive by the model that are
actually negative

• True Negative, TN, is the number of samples labelled as negative by the model that
are actually negative

• False Negative, FN, is the number of samples labelled as negative by the model that
are actually positive

• Po is the proportion of observed agreement, i.e., the accuracy achieved by the model
• Pe is the proportion of agreements expected by chance

Our second evaluation compares GEDI-S2 predictions against an S2 model trained
locally within each reference region. These S2-Local models provide benchmarks that repre-
sent how well a model trained on local field data would perform. To conduct this analysis,
we exported S2 harmonic features at the same reference field locations and trained a local
S2 model based on binarized tall/short field labels. We used the RandomForestClassfier
implemented in Python’s scikit-learn package, setting similar hyperparameters to the
GEDI-S2 random forest models implemented in GEE. Reference data were binned by
their lat/lon into 0.5◦ × 0.5◦ bins, and data in each bin were placed entirely in either the
training set or test set using a 80%/20% train/test split. We ran the S2 classifier multiple
times using each time a different train/test split and reported the average S2-Local model
performance metrics.

4. Results
4.1. GEDI Predictions during Optimal Months

The fraction of GEDI shots classified as a tall crop generally reaches its peak during
the latter months of the growing season, such as August, throughout much of the Northern
Hemisphere (Figure 7a). This period coincides with the grain filling stage after flowering,
when maize has reached its peak height, but before fall months when harvesting begins.
We refer to this month of peak tall crop percentage as the optimal month for using GEDI
to distinguish tall and short crops. In most regions, the optimal month is stable across
space, with most neighboring cells differing by no more than one month. Exceptions to this
pattern are evident in cases where tall crops are a very small percentage of the total crop
area (e.g., western Canada) or where two or more growing seasons occur throughout the



Remote Sens. 2023, 15, 4123 15 of 24

year (e.g., Brazil and India) (Figure 7b). In both cases, this can lead to two or more months
having very similar tall percentages, making the optimal month less stable.

The fraction of GEDI shots from croplands classified as tall crops during these peak
months exhibits large spatial variation, with a pattern that coincides closely with known
areas of maize production (e.g., eastern United States, eastern China, Brazil). The fraction
reaches as high as 75% in eastern China and parts of Central America, where maize
dominates the summer growing seasons (Figure 7c). Beyond these regions, shots classified
as short crops are generally the dominant class, although a sizable fraction of shots in Africa
and Asia were classified as trees (i.e., RH100 > 10 m) (Figure 7d). The presence of trees in
areas classified as cropland likely reflects both a higher proportion of trees in crop fields in
these regions, as well as a lower precision of the ESA cropland map in smallholder systems
common in these regions.

Figure 7. Characteristics of 5◦times 5◦grid cells where GEDI-S2 was applied. (a) The optimal month
to identify tall crops, defined as the month with the greatest proportion of shots classified as tall,
(b) the number of growing seasons per year based on the Anomaly hotspots of Agricultural Pro-
duction (ASAP) phenology information dataset [37], (c) the percentage of shots classified as tall,
and (d) the percentage of shots within the cropland classified as trees.

4.2. GEDI-S2 Model Training

When using the GEDI predicted class (i.e., tall vs. short crop) as labels to train a model
based on S2 harmonics, we find that the S2 models are generally able to explain a very high
fraction of variability in the GEDI class. In 95% of grid cells (1488 out of 1562 total grid
cells), the test accuracy for the model on GEDI shots held out of training was over 0.85. This
indicates that tall crops in a region (e.g., maize or sugarcane) are typically distinct enough
from other crops in the feature space of the S2 harmonics. In a small number of locations
(21 out of 590 cells over the 3 years), the GEDI-S2 training was relatively poor with a test
accuracy averaged across all months of less than 0.85. These cells typically occur in regions
with high topographic variation, a factor that is known to affect GEDI returns and reduce
the accuracy of tree height models based on GEDI [40]. Fortunately, the small number of
locations with poor GEDI-S2 training performance indicates that, for most agricultural
settings, topographic variation or other sources of error are not a major impediment to
using GEDI to identify tall crops. We emphasize that this statement only applies to GEDI
shots that have first been filtered for view angle, as including shots with high view angles
leads to substantial degradation of performance.
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4.3. GEDI-S2 Model Evaluation

The predicted crop class from the GEDI-S2 model is able to closely reproduce reference
maps of tall crops in many (but not all) cases (Table 2, Figure 8). Performance was similar for
both reference data from ground-based measurements (either as points or field polygons)
or from raster maps of crop type developed through a combination of ground and satellite
data. In both cases, we compare the GEDI-S2 model performance to the performance
of a model trained on the local reference data with the same S2 features as used in the
GEDI-S2 model (S2-Local). This comparison identifies the impact of substituting GEDI
measurements for ground observations.

Given the large number of validation regions, we discuss the results in terms of
clusters of similar behavior rather than discussing each region in detail. The first cluster
includes regions where both the local S2 and GEDI-S2 models show high performance,
with accuracies typically above 0.9 and F1 scores for both short and tall crops that typically
exceed 0.8. Among the regions in this category are North America, Europe, and China
(Figure 9a,d). Visual inspection of maps generated by training on ground data vs. GEDI
corroborate the strong performance of GEDI (Figure 8). Performance in Brazil appears
similarly strong (Figure 8), although because the reference map only identified soybean
locations, we cannot calculate total accuracy or F1 scores but only recall for the short
crop class.

Table 2. Summary statistics of performance of the GEDI-S2 map. For each dataset we report the
S2-Local model and GEDI-S2 model performance in terms of accuracy, precision, recall, F1 and Kappa
scores. Precision, recall and F1 scores are presented as (short, tall) pairs. Canada BC and ON stand
for British Columbia and Ontario, respectively. US ND and AL stand for North Dakota and Alabama.
Brazil BA for Bahia. India UBB for Upper Bhima Basin, TG for Telangana, and MH for Maharashtra.

Region Year S2 Local GEDI-S2
Accuracy F1 Precision Recall K-Score Accuracy F1 Precision Recall K-Score

Austria 2019 0.96 0.97, 0.90 0.97, 0.89 0.97, 0.91 0.87 0.94 0.96, 0.86 0.95, 0.89 0.97, 0.83 0.82
Slovenia 2019 0.9 0.92, 0.87 0.93, 0.87 0.91, 0.88 0.79 0.88 0.90, 0.83 0.88, 0.86 0.91, 0.80 0.73
Germany 2019 0.97 0.98, 0.94 0.98, 0.92 0.97, 0.95 0.92 0.96 0.97, 0.92 0.97, 0.95 0.98, 0.89 0.89
Germany 2020 0.96 0.97, 0.85 0.97, 0.88 0.98, 0.81 0.82 0.94 0.96, 0.83 0.99, 0.74 0.94, 0.94 0.79

Canada (BC) 2019 0.97 0.98, 0.94 0.97, 0.96 0.99, 0.92 0.92 0.97 0.98, 0.92 0.96, 0.98 0.99, 0.88 0.9
Canada (ON) 2019 0.94 0.96, 0.90 0.94, 0.95 0.98, 0.86 0.86 0.93 0.95, 0.89 0.93, 0.95 0.98, 0.84 0.84
Canada (BC) 2020 0.93 0.92, 0.88 0.90, 0.88 0.94, 0.89 0.8 0.9 0.88, 0.85 0.83, 0.95 0.98, 0.78 0.75
Canada (ON) 2020 0.92 0.94, 0.85 0.93, 0.88 0.95, 0.83 0.8 0.88 0.92, 0.80 0.91, 0.81 0.92, 0.79 0.71
Canada (BC) 2021 0.94 0.96, 0.90 0.94, 0.93 0.97, 0.87 0.86 0.94 0.95, 0.90 0.96, 0.88 0.94, 0.92 0.85

US (ND) 2019 0.94 0.96, 0.81 0.94, 0.93 0.99, 0.73 0.78 0.96 0.97, 0.87 0.96, 0.94 0.99, 0.81 0.84
US (ND) 2020 0.95 0.97, 0.65 0.95, 0.91 0.99, 0.52 0.63 0.95 0.97, 0.70 0.97, 0.73 0.97, 0.68 0.68
US (ND) 2021 0.9 0.94, 0.70 0.90, 0.88 0.98, 0.58 0.64 0.91 0.94, 0.75 0.92, 0.86 0.97, 0.66 0.69
US (AL) 2019 0.93 0.95, 0.85 0.94, 0.91 0.97, 0.80 0.81 0.94 0.96, 0.86 0.94, 0.95 0.99, 0.80 0.83
US (AL) 2020 0.95 0.97, 0.89 0.96, 0.92 0.98, 0.86 0.85 0.87 0.91, 0.76 0.96, 0.68 0.86, 0.88 0.68
US (AL) 2021 0.94 0.96, 0.88 0.95, 0.92 0.97, 0.85 0.84 0.94 0.96, 0.88 0.94, 0.96 0.99, 0.82 0.85

Brazil (BA) 2020 0.97
China 2019 0.91 0.89, 0.92 0.88, 0.92 0.90, 0.91 0.81 0.92 0.91, 0.93 0.90, 0.94 0.92, 0.93 0.84

India (U.B.B.) 2020 0.87 0.85, 0.87 0.84, 0.88 0.87, 0.87 0.73 0.7 0.74, 0.63 0.62, 0.87 0.92, 0.50 0.41
India (TG) 2020 0.96 0.98, 0.16 0.96, 0.38 0.99, 0.10 0.15 0.93 0.96, 0.01 0.96, 0.01 0.97, 0.01 −0.02
India (TG) 2021 0.94 0.97, 0.19 0.94, 0.69 0.99, 0.11 0.18 0.82 0.90, 0.03 0.93, 0.02 0.87, 0.04 −0.06
India (MH) 2020 0.84 0.89, 0.68 0.87, 0.71 0.90, 0.65 0.57 0.6 0.74, 0.15 0.70, 0.19 0.77, 0.13 −0.1

Malawi 2021 0.72 0.82, 0.43 0.76, 0.59 0.89, 0.36 0.27 0.7 0.78, 0.46 0.77, 0.53 0.81, 0.43 0.26
Mali 2019 0.74 0.83, 0.31 0.78, 0.30 0.91, 0.36 0.23 0.73 0.84, 0.07 0.73, 0.18 0.99, 0.05 0.04

Kenya 2021 0.62 0.40, 0.71 0.51, 0.65 0.35, 0.80 0.15 0.42 0.50, 0.30 0.39, 0.55 0.74, 0.21 −0.04

In a second set of regions, the performance of S2-Local and GEDI-S2 models were
lower, but were similar to each other (Figure 9b,e). This situation, which occurs in parts of
India and Africa, indicate where both approaches struggle to accurately map crop classes,
particularly the tall class. One plausible reason for this is that the phenological and spectral
differences between different crops are smaller in these regions, so that harmonics-based
features are less informative. More sophisticated features, such as based on convolutional
neural networks, could help to improve both models but are beyond the scope of the study.

A third and final category of performance includes regions where GEDI-S2 performs
notably worse than S2-Local models (Figure 9c,f). In these cases, which we observe pri-
marily in India, the use of labels from GEDI rather than local ground data incurs a loss of
accuracy. Here, the problem is unlikely to be either uninformative harmonic features or
noisy reference data, both of which would also affect the local S2 model. Instead, our GEDI
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model appears to be mislabeling many points, with a tendency in particular to overstate the
percentage of short crops. We further analyze the sources of these errors in the discussion
Section 5.1.

Figure 8. Visual comparison of reference maps (left) and predicted crop classes from the GEDI-S2
model (right). The accuracy and F1 scores in top-right of each row refer to the entire region, not just
the small areas displayed in the figure. F1 scores are presented as [F1-short, F1-tall]. In Brazil, only
recall for short crops is reported since the reference map contained only soybean locations.
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Figure 9. Comparison of GEDI-S2 model performance in terms of accuracy (a–c) and F1 scores
(d–f) with the S2-Local model (i.e., a Sentinel 2 model trained on the local reference labels). In most
regions, the performance of GEDI-S2 was very close to and occasionally even exceeded that of the
S2-Local model (a,d). In some areas, both approaches struggled with tall crops (b,e), while in others
GEDI-S2 performed worse than the S2-Local model (c,f).

4.4. The Global Distribution of Tall Crops

The overall pattern of tall crop area estimated by our model is shown for each year
in Figure 10. In general, this map corresponds to known areas of maize production, as
expected because maize is the most widespread tall crop in the world (Figure 1). However,
it also indicates areas with significant sugarcane area (e.g., western Uttar Pradesh in
India, the eastern coast of South Africa, and the Philippines) as well as sunflower area
(e.g., Romania and Ukraine).

Figure 10. GEDI-S2 global maps gridded at 10 km resolution. For the individual years, cropped
areas with peak GCVI above 4 are mapped using the color scale shown, while those with peak GCVI
below 4 are mapped with a lighter shade of gray. Low peak GCVI is used as an indicator of where
GEDI-S2 is prone to underestimating tall crop area.
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5. Discussion
5.1. Sources of Error

Despite the overall encouraging performance of the GEDI-S2 approach, some regions
show a clear underestimation of tall crop area. Visual inspection of the GEDI estimates used
to train the GEDI-S2 models in these regions indicates that several of the training points are
incorrectly labeled as short crops. An example for Canada illustrates this phenomenon well
(Figure 11). One likely cause of GEDI falsely predicting a short crop is that the biomass
of the tall crop (in this case maize) is significantly less than the typical biomass in regions
used to train the GEDI crop height model. This lower biomass results in a greater fraction
of photon returns within the 25 m GEDI footprint coming from close to the ground rather
than the top of the canopy. One might argue that these maize fields should not, in fact, be
considered a tall crop because they have insufficient biomass above the height of typical
small crops. However, as the goal of this work is to reliably map crop types regardless of
their biomass, it is important that all fields with maize be included in the same class.

Figure 11. An example of GEDI-S2 errors in low biomass maize fields in Canada. Ground truth
(top left) represents the Canada AAFC 2019 map. The corresponding GEDI-S2 2019 predictions
(top right) miss several tall fields. S2 peak GCVI in the 2019 growing season (bottom left) indicates
that omitted fields often have a peak GCVI below 4 (yellow to light green). A zoom into three
examples (panels A, B and C) (lower right) shows the individual GEDI shots and the predicted class
(orange = tall, gray = short). Circles indicate examples where the shots were classified as short over
low GCVI areas. Since the GEDI-S2 model is then trained on the predicted classes for these shots, it
also incorrectly classifies some tall crop area as short.

To further explore the hypothesis that GEDI struggles are related to low biomass
of the tall crop, we consider three regions for which maize spans a range of low to high
biomass—Kenya, Malawi, and Canada. For each region, we take all GEDI shots that fall
onto pixels predicted to be maize by either the local reference data (in the case of Kenya
and Canada) or the S2-Local model (in the case of Malawi), and then split these GEDI shots
into four groups based on the peak GCVI of the S2 pixel that overlaps the GEDI shot. Peak
GCVI is used as a proxy for biomass, given that GCVI has been widely shown to correlate
well with maize biomass [25]. We then calculate the fraction of maize GEDI shots predicted
to be a tall crop. Consistent with our hypothesis, we find that the GEDI recall is much
higher for fields with higher peak GCVI (Figure 12). Recall increases monotonically as
the GCVI increases, and recall for pixels with a peak above 4 is at least double that for
pixels with a peak VI below 3. Based on this analysis, we consider pixels with peak GCVI
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below 4 to be less reliable for GEDI-S2 predictions, and therefore provide a quality flag for
these pixels in our final estimates.
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Figure 12. The effect of peak GCVI on GEDI model recall for maize. Peak GCVI, a proxy for
biomass, is computed from S2 time series as the maximum GCVI in the optimal month: July for
Kenya, February for Malawi and August for Canada. Maize fields in the three regions are defined
by their respective reference maps: JRC 2021 Long Rains crop type map for Kenya, 2019 AAFC for
Canada, and 2021 S2-Local map for Malawi. Recall is much higher on fields with peak GCVI above 4.
In Kenya and Malawi, more than 75% of fields have peak GCVI below 4 in these years.

In general, the regions performing poorly in both the field-level and global evaluation
are those for which peak VI is frequently below 4 (Figures 11 and 12). A region such
as Canada still performs well overall because the frequency of fields with peak GCVI
below 4 is very low (Figure 12). In contrast, more than half of maize fields in Kenya,
Malawi, India, and many other regions have peak GCVI below this value, resulting in poor
overall performance.

5.2. Future Improvements

The strong agreement with independent reference data in many regions (Table 2,
Figure 8) indicates that the GEDI-S2 approach is a promising tool for global crop type
mapping. Fully realizing its potential will require progress on several fronts, all of which
are beyond the scope of the current paper but for which we anticipate progress is likely.
First and foremost is the need to improve performance in areas with lower crop biomass,
where the distinction between tall and short crops is reduced. One approach could be
to retrain a separate GEDI model for these regions if enough high-quality reference data
are available, although the small disparities between tall and short crop returns in these
settings make that unlikely to work. Another approach could be to use semi-supervised
methods where the GEDI shots predicted for high GCVI fields within low biomass regions
are used as high quality labels for fine tuning [43,44]. These semi-supervised approaches
may also benefit from using S2 features that are less sensitive to peak biomass [14,45].

A second area for future work is to extend the GEDI-S2 approach to map multiple
seasons in regions where more than one crop per year is typically grown. In the current
work we focused only on the season with the highest proportion of tall crops, but many
areas have two seasons that each have a significant fraction of tall crops (e.g., Eastern
Africa, Northern India). Performing the GEDI-S2 training for multiple seasons would be a
straightforward extension of the current work, with the main requirement likely being a
shift in the window over which the S2 harmonic features are calculated.
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A third extension could be to further discriminate among crops beyond the two
categories of tall and short. With additional training data, it may be possible for GEDI
returns to distinguish very short crops, such as legumes, from slightly taller crops such
as rapeseed or cotton. For example, many areas in India are dominated in the monsoon
season by rice, cotton, and sugarcane [32], each of which would fall into separate height
classes. Even if the GEDI predictions from this approach are noisy, they could be effective
labels for training a GEDI-S2 model.

Alternatively, refining the crop classification could utilize complementary features
that are unrelated to height. For example, distinguishing short winter or spring crops
such as winter and barley from short summer crops is fairly simple based on phenological
differences in optical or radar data [12,46], and rice can be accurately distinguished from
other crops based on flooding patterns detected in radar imagery [47,48]. Many agricultural
landscapes will possess only one other main crop beyond wheat, maize, and rice, and so
the ability to map these three could effectively map all major crop types (if the fourth crop
is estimated as fields not in one of these three crops). In much of North and South America,
for example, maize and soybeans are by far the most common summer crops, and so a
large fraction of non-maize area is in soybean (Figure 2). Further work is needed to test
how far the tall vs. short crop distinction can help to solve the more general problem of
mapping crop species.

Finally, we note that the recent incorporation of additional GEDI data in GEE should
improve performance, in at least two ways. The most recent GEDI data from after 2021
is not affected by the orbit resonance problem, which provides an opportunity to reduce
grid cell size below the 5 degree spacing used here. By doing so, one could train more
localized models. In addition, view angle information is now available globally at the
level of individual shots, allowing one to implement a more precise filter for shots with a
low view angle.

6. Conclusions

In this study we sought to test the general applicability of an approach that uses GEDI
returns to train local crop type mapping models that use S2 data as input. Our general
conclusion is that the approach exhibits considerable promise for advancing crop mapping.
Tall and short crops were mapped with high accuracy in the majority of maize production
systems, including most of the Americas, Europe, and East Asia. Specifically, we showed
that GEDI returns can first be classified into tall and short crops, that the frequency of
tall crops over time can be used to identify the appropriate months for S2 training (when
tall crops are at their peak height), and that S2 models trained on these GEDI shots can
accurately predict the GEDI crop height class in nearly all regions. Only in rare cases, such
as areas with high topographic variation, did S2 features fail to predict the GEDI crop
height class. We then showed that the predictions from the GEDI-S2 agree remarkably well
with independent reference data at the field scale.

At the same time, we uncovered cases where the current implementation of GEDI-S2
is problematic. The most common cause for low accuracy appears to be low biomass of
tall crops, which occurs frequently in Africa and South Asia. In these regions, the GEDI
classification model consistently underestimated the frequency of tall crops. S2 models
trained on these shots then inherit this under-prediction of tall crop area. Although this is a
notable limitation of the current approach—particularly because these regions are among
those with the most limited ground data, and thus where an approach that relied on GEDI
for training would be most valuable—we anticipate that future work can greatly improve
the performance in low biomass regions. Progress seems most likely for semi-supervised
methods that can leverage the fact that even low biomass areas typically have a significant
number of fields with high biomass that are accurately captured by GEDI.
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