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Abstract: Deep-learning-based SAR ship classification has become a research hotspot in the military
and civilian fields and achieved remarkable performance. However, the volume of available SAR
ship classification data is relatively small, meaning that previous deep-learning-based methods
have usually struggled with overfitting problems. Moreover, due to the limitation of the SAR
imaging mechanism, the large intraclass diversity and small interclass similarity further degrade the
classification performance. To address these issues, we propose a label smoothing auxiliary classifier
generative adversarial network with triplet loss (LST-ACGAN) for SAR ship classification. In our
method, an ACGAN is introduced to generate SAR ship samples with category labels. To address
the model collapse problem in the ACGAN, the smooth category labels are assigned to generated
samples. Moreover, triplet loss is integrated into the ACGAN for discriminative feature learning
to enhance the margin of different classes. Extensive experiments on the OpenSARShip dataset
demonstrate the superior performance of our method compared to the previous methods.

Keywords: SAR ship classification; generative adversarial networks; label smoothing;
deep metric learning

1. Introduction

Ship classification plays an important role in various maritime activities, such as
defense intelligence, fisheries monitoring, and maritime search [1]. SAR, due to its char-
acteristics of all-day and all-weather working, has gradually become a critical device for
ship monitoring. With the launch of the new generation of SAR satellites, a large number
of mid- and high-resolution SAR images have gradually become easier to access, making it
possible to identify ship types.

Generally, traditional SAR ship classification methods usually extract low-level features,
such as geometric features [2–5], scattering features [2–4,6,7], and statistical features [8] by
manual methods, then classify ships using traditional machine learning algorithms. For
example, Margarit et al. [2] proposed a fuzzy logic model by utilizing the mean radar cross-
section (RCS) features and geometric features. Ji et al. [3] proposed a classifier combination
model using geometric features and the local RCS features. Lang et al. [4] designed a model
that can jointly select features and classifiers by searching the best triplet of the feature scal-
ing classifier from 21 candidate low-level features and 5 candidate classifiers. Jiang et al. [6]
proposed an SVM model using the superstructure scattering features. Lang et al. [5] pro-
posed a multiple kernel learning model using the naive geometric features derived from the
length and width of ships. Zhu et al. [7] proposed a template matching model using the
improved shape contexts features that simultaneously consider the topology and intensity
of ship scattering points. Lin et al. [8] designed a task-driven dictionary learning model by
integrating structured incoherent constraints using the manifold learning SAR-HOG feature.
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In brief, these handcrafted features can barely represent ship targets comprehensively, and
are limited in some complex scenarios, especially in mid-resolution SAR images [9].

Recently, DL-based SAR ship classification methods have drawn increasing atten-
tion and become a research hotspot. For example, ref [10] proposed a polarization fusion
network with geometric feature embedding to fuse the polarization from input data, the
feature level, and the decision level. Li et al. [11] designed a dense residual network with
resampling, and integrated cost-sensitive learning for the class imbalance problem in ship
classification. Dechesne et al. [12] designed a multi-task structure to simultaneously imple-
ment the detection and classification as well as length estimation tasks. Firoozy et al. [13]
utilized adversarial training to generate samples for the minority classes to balance the
training dataset. Zhang et al. [14] designed a meta-learning approach to achieve cross-task
and cross-domain SAR target classification. He et al. [9] proposed a densely connected
triplet CNN with a Fisher regularization term for the mid-resolution SAR image ship classi-
fication task. Zhao et al. [15] proposed the learning of discriminant features for SAR image
classification by designing a deep belief network with ensemble learning. Zeng et al. [16]
proposed to jointly use the information contained in the polarized channels (VV and VH) by
designing a hybrid channel feature loss for dual-polarized SAR ship-grained classification.
Zhang et al. [17] designed a lightweight CNNs classification model combining DML with
gradually balanced sampling to decrease the computational complexity and address the
class imbalance in high-resolution SAR images. Dong et al. [18] proposed a hierarchical
receptive network to eliminate the influence of speckles for ship recognition in SAR images.
In brief, DL-based methods can extract high-level features directly from large-scale data
and perform end-to-end training, showing great potential for practical applications.

These previous methods have obtained remarkable performance for SAR ship clas-
sification tasks by training models with large-scale datasets. However, despite the great
quantity of SAR images, the volume of available SAR ship classification data is relatively
small, especially for some maritime military targets such as destroyers and aircraft carriers,
while the manual labeling cost is expensive. DL-based models trained on small-scale
datasets usually suffer from the overfitting problem, thus reducing the generalization
ability. Furthermore, different from optical images, the information on SAR images is
limited because of the shortcoming of the SAR imaging mechanism. Some examples are
shown in Figure 1 where we can see that the appearance of different types of ships has
subtle differences, while the appearance of the same type of ship has distinct changes. This
problem is called intraclass diversity and interclass similarity, and further degrades the
classification performance.

Figure 1. Optical images and corresponding SAR of cargo ship (first line), container ship (second
line), bulk carrier (third line), and tanker (fourth line).
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To address these problems, this article proposes an LST-ACGAN for SAR ship clas-
sification by introducing an ACGAN [19] to generate new samples, assigning smooth
labels [20] to generated samples, and integrating the triplet loss [21] into the ACGAN.
An ACGAN is one of the GAN’s variants [19,22,23]. By adding category information to
the generator and an auxiliary classifier to the discriminator, the ACGAN can generate
samples with category labels and also has classification capacity. Due to the excellent
characteristics of the ACGAN, this article introduces its architecture to alleviate the data
insufficiency problem by generating ship samples with category labels while classifying
ships. However, the training of an ACGAN typically requires plenty of data to learn the
distribution of real images. Otherwise, it is hard to generate samples with precise categories
and prone to model collapse during training. To address this problem, this article assigns
smooth labels to generated samples rather than hard labels to prevent the model from
being overconfident in generated images during training, and the CE loss is replaced with
smooth label SL-CE loss for the classification of generated images. By assigning smooth
labels, the training procedure is made more stable, and generated samples can also play
the role of regularization.

Furthermore, in the SAR image dataset, targets belonging to the same class usually
have high intraclass diversity, while targets belonging to different classes usually have high
interclass similarity. To address this problem, triplet loss [21] is integrated into the ACGAN.
Different from traditional CNNs with CE loss, the triplet loss can enhance the classification
margin by pulling the intraclass samples closer and pushing the interclass samples farther
in the embedding space. During training, triplets are built by sampling anchor images,
positive images that belong to the same classes, and negative images that belong to other
classes, and then the triplet loss is jointly optimized with the multi-task loss. By integrating
these modules, the proposed method can learn better classification margins and obtain
higher performance.

Our contribution can be summarized as follows:

(1) An ACGAN is introduced to generate images for the small-scale SAR ship classifi-
cation task to alleviate the overfitting problem. To prevent the model from mode
collapse, smooth labels are assigned to generated images to avoid the model being
overconfident in the generated images.

(2) Triplet loss is integrated into the ACGAN to learn discriminative features by pulling
the intraclass samples closer and pushing the interclass samples farther.

(3) Extensive experiments in three aspects on the OpenSARShip [24] dataset demonstrate
the superior performance of our method over the previous methods.

The article is organized into five sections. Section 2 introduces the ACGAN and
triplet loss that are relevant to our method. Section 3 presents the proposed LST-ACGAN
method in detail. Section 4 describes the experimental settings and results. Section 5 is the
conclusion.

2. Related Works

This section introduces some preliminary knowledge of the ACGAN and triplet loss.

2.1. ACGAN

Different from the traditional GAN shown in Figure 2a, an ACGAN integrates category
information into the input of the generator (G) for the generated images, and an auxiliary
classification network to the discriminator (D). Figure 2b explains the network architecture
of an ACGAN. The D aims to distinguish between real and generated images and classifies
them. Its optimization objective can be represented as:

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1− D(G(z | yfake )))]

+ Ex∼pdata(x)[log p(y | x)] + Ez∼pz(z)[log p(yfake | G(z | yfake ))]
(1)
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where x ∼ pdata(x), y, and z ∼ pz(z) represent the distribution of real images, the label
of real images, and the distribution of noises, respectively. yfake and G(z|yfake) represent
the category label of the generated image and the generated image, respectively. D(x) and
D(G(z|yfake)) represent the correct and wrong discrimination probability of the D, respec-
tively, and p(y|x) and p(yfake|G(z|yfake)) represent the correct classification probability for
real and generated images, respectively. The G is trained to generate more realistic images
with category labels, and its optimization objective can be represented as:

min
G

V(D, G) =Ez∼Pz(z)[log(1− D(G(z | yfake ))]−

Ez∼Pz(z)[log p(yfake | G(z | yfake ))]
(2)

The joint optimization objective of an ACGAN can be represented as:

min
G

max
D

V(D, G) = Ex∼pdata [log D(x)] + Ez∼pz(z)[log(1− D(G(z | y)))]

+ Ex∼pdata [log p(c | x)]± Ez∼pz(z)[log p(c | G(z | y))]
(3)

By the adversarial training procedure, the abilities of the G and D can be improved
simultaneously and eventually balanced.

Figure 2. Network architecture of GAN and ACGAN. (a) GAN; (b) ACGAN.

2.2. Triplet Loss

DML combines deep learning and distance metric learning to learn nonlinear features
and similarities between data. Triplet loss and contrastive loss [25] have been commonly
used in DML paradigms. Compared to contrastive loss, triplet loss can obtain better
performance by pulling intraclass samples closer as well as pushing the interclass samples
farther, and has been broadly applied in retrieval tasks [26,27]. The optimization process
for triplet loss is shown in Figure 3, and the loss function can be represented as:

ltriplet = max(d( f (xa), f (xp))− d( f (xa), f (xn)) + α, 0) (4)

where xa represents the anchor image, and xp and xn represent the positive and negative
image, respectively. α is a margin between positive and negative pairs, and d(·) represents
the distance function, usually the Euclidean distance. Statistically, by optimizing the triplet
loss in Formula (4), the model can learn to close the distance between the anchor and the
positive sample while pushing the distance between the anchor and the negative sample
away. After training, the model can map the same class samples into one cluster and keep
the distance between clusters larger than α.



Remote Sens. 2023, 15, 4058 5 of 16

Figure 3. Triplet loss optimization process. Triplet loss aims at minimizing the distance between
the anchor (blue) and a positive (green) sample that have the same class labels, and maximizing the
distance between the anchor and a negative (red) sample that have different class labels.

3. Proposed Method

This section firstly explains the overall structure of the LST-ACGAN method, secondly
introduces the network architecture of the G and the D, thirdly explains label smoothing
for generated images, then presents discriminative feature learning via triplet loss, and
finally gives the multi-task learning loss function.

3.1. Overall Structure of LST-ACGAN

DL-based SAR ship classification has achieved remarkable performance with large-
scale training samples. However, when the training data are insufficient, these methods
can barely learn the distribution of data and are prone to overfitting. To address this issue,
we present a GAN-based algorithm, named LST-ACGAN, to generate images and classify
samples simultaneously. As shown in Figure 4, the overall model of the LST-ACGAN
includes a generator G and a discriminator D. The G can generate images with category
labels, while the discriminator can validate whether an input image is real and, meanwhile,
classify it. Moreover, smooth labels are assigned to generated images and SL-CE loss is
proposed as classification loss for generated images to avoid model collapse as well as reg-
ularize the model during training. Furthermore, triplet loss is integrated into the network
to learn discriminative deep features. During training, triplets are built by sampling anchor,
positive, and negative images from real images, and fed into the discriminator together
with generated images. Multi-task learning losses are jointly optimized for classification,
validation, and discriminative deep feature embeddings.

Figure 4. Overall structure of the LST-ACGAN. The blue line represents the testing phase and only
utilizes the D to obtain the confusion metric.
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3.2. Network Architecture
3.2.1. The Generator

As shown in Figure 4, for a given noise vector z and label yfake, the LST-ACGAN first
embeds yfake, and assigns category information to z by element-wise multiplying z and
embedded yfake:

z′ = embedding (yfake ) ◦ z (5)

where embedding(·) represents the embedding layer, which embeds label yfake to the latent
space; ◦ represents element-wise multiplication. Thus, the category information is fully
fused with the noise vector. Then, taking z′ as the input, the generator generates images
via DCNNs. The generator includes a transformation layer, 2 UC layers, and a generation
layer (see Table 1). For the input vector z′, the transformation layer transforms it from
a one-dimensional vector to a three-dimensional feature map by a fully connected (FC)
layer, reshape operation layer, and batch normalization (BN) [28] layer. Then, the UC layer,
taking UC1 as an example, upsamples the input feature map by upsampling the operation
followed by a convolution layer, a BN layer, and a Leaky ReLU layer [29]. Finally, the
generation layer reduces the channels of the feature map via a 3 × 3 convolution layer with
a channel size of one, and constrains the output into (−1, 1) by the tanh function.

Table 1. Network architecture of the generator. There are five stages in this network. Specifically, for
the convolution layer, the parameters c, k, s, and p represent the channel size, kernel size, stride, and
padding size, respectively. For the leaky ReLU layer, α represents the negative slope. The generated
image is resized to 1 × H ×W, and is set to 1 × 64 × 64 in this article.

Stage Layers Settings Outputs

Transformation
FC 128×H/4× W/4 128×H/4× W/4

Reshape (128, H/4, W/4) 128×H/4×W/4
BN - 128×H/4×W/4

UC1

Upsampling 2× 128×H/2×W/2
Convolution c = 128, k = 3, s = 1, p = 1 128×H/2×W/2

BN - 128×H/2×W/2
Leaky ReLU α = 0.2 128×H/2×W/2

UC2

Upsampling 2× 128×H×W
Convolution c = 64, k = 3, s = 1, p = 1 64×H×W

BN - 64×H×W
Leaky ReLU α = 0.2 64×H×W

Generation Convolution c = 1, k = 3, s = 1, p = 1 1×H×W
Tanh - 1×H×W

3.2.2. Discriminator

The discriminator of the LST-ACGAN adopts a multi-task learning architecture for
classification, validation, and deep feature embedding learning. The network architecture
of the discriminator is shown in Figure 5. The discriminator mainly includes the feature
extraction network and three multi-task learning subnetworks. In this article, the pretrained
ResNet18 [30] with the FC layer removed is adopted as the feature extraction network.
For input images, deep feature maps are extracted by the feature extraction network and
converted into vectors by the global average pooling (GAP) and reshape operations. Then,
the vectors are normalized with L2 normalization to stabilize the learning process. Finally,
the discriminator outputs the embeddings, classification results, and validation results
by the embedding subnetwork, classification subnetwork, and validation subnetwork,
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respectively. Specifically, the classification subnetwork classifies the input image via the
softmax function:

qi =
exp(pi)

∑C
j=1 exp

(
pj
) (6)

where C represents the number of categories, pi , (i = 1, 2, . . . , C) represents the classification
vector, and qi represents the probability that the image belongs to the i-th category. For
the validation subnetwork, the outputs are constrained to (0, 1) by the sigmoid activation
function:

p(v) =
1

1 + exp(−v))
(7)

where v represents the binary classification vector, and p(v) represents the probability that
the input image belongs to the real class.

Figure 5. Network details of the discriminator. The discriminator mainly consists of the feature
extraction network and three multi-task learning subnetworks, which are optimized with the triplet
loss, multi-class classification loss, and binary-class classification loss, respectively. Symbols b, N,
and C represent the batch size, embedding size, and the number of categories, respectively.

3.3. Label Smoothing for Generated Images

In the multi-class classification task, the input image is usually assigned hard labels,
which can be represented as:

yi =

{
1 i = true
0 otherwise

(8)

where yi (i = 1, 2, . . . , C) represents a one-hot vector, yi = 1, when the image belongs
to the to i-th category. The classification network outputs the probability that the input



Remote Sens. 2023, 15, 4058 8 of 16

image belongs to each category via the softmax function, and the CE loss serves as the
classification loss:

lCE = −
C

∑
i=1

yi log qi

= − log qtrue

(9)

Generally, the generated images of a GAN are not perfect, especially for an ACGAN
with category labels. When the training data are insufficient, it is more difficult for an
ACGAN to generate images with accurate category labels. However, a hard label with CE
loss encourages the model to output predicted labels equal to 1 or 0 for target or nontarget
categories. In the logit classification vector, the value of the target category pi will tend to
infinity, making the model too confident for its prediction. Thus, generated images by an
ACGAN with the hard labels are prone to model collapse during training if the training
samples are insufficient. To address this problem, we assign smooth labels to the generated
images rather than hard labels, which can be represented as:

y∗i =

{
1− ε i = true

ε
N−1 otherwise

(10)

where ε is a hyperparameter. The classification loss for generated images is replaced by
SL-CE loss, which can be represented as:

lLS-CE = −
N

∑
i=1

y∗i log qi

= −
[
(1− ε) log qtrue +

ε

N − 1 ∑
i 6= true

log qi

] (11)

In this way, by adding noise to the generated image, this avoids the model over-
confidence in the target category, making the prediction difference between the target
category and the nontarget category not so large, thus avoiding model collapse during
training and, meanwhile, regularizing the model.

3.4. Discriminative Feature Learning via Triplet Loss

The triplet loss is integrated into the ACGAN for discriminative deep feature learning
to address the high intraclass diversity and interclass similarity issues. The key ideas of
triplet loss are mentioned in Section 2.2; in this section, we explain the integration of triplet
loss in detail.

As mentioned in Section 3.3, we assign smooth labels to generated images since the
generator cannot generate images with precise category labels. The triplet loss, which aims
to learn discriminative deep features by pulling the intraclass samples closer and pushing
the interclass samples farther, conflicts with the label smoothing for generated images.
Therefore, triplet loss is only performed on real images. Specifically, selecting appropriate
triplets is important for training the network. There are two triplet sampling paradigms:
offline and online. Since the offline methods are not efficient for sampling triplets across
the whole dataset, we adopt the online method following [21]. All the triplets that violate
the following distance constraint in the embedding space are selected:

d( f (xa), f (xp)) + α < d( f (xa), f (xn)) (12)

where d(·) represents the Euclidean distance; the margin α is set to 0.2 for all experiments.

3.5. Multi-Task Learning Loss Function

The generator G and discriminator D networks are alternately optimized during the
training phase. Based on the validation results and classification results of the discriminator,
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the generator is optimized by the validation loss and classification loss. Specifically, the
binary cross-entropy (BCE) loss is employed as the validation loss, which can be represented
as:

lBCE = −
(
yv
∗ log(p(v)) + (1− yv)

∗ log(1− p(v))
)

(13)

where yv represents the binary label. The classification loss of the generator is SL-CE loss,
and the total loss of the generator is formulated as follows:

LG = λ1lBCE(xfake , 1) + λ2lLS−CE(xfake, y∗fake ) (14)

where xfake and yfake represent the generated image and the smooth label of the generated
image, respectively, “1” represents the validation label of the generated image, and λ1 and
λ2 represent the trade-off parameters. The discriminator aims to distinguish between real
and generated images, classify them, and learn the deep feature embedding of real images
and is optimized by the validation loss, classification loss, and triplet loss. Specifically, the
discriminator assigns 0 and 1 to the generated image and real image for validation, and
the BCE loss serves as the validation loss. The CE loss is used as the classification loss for
real images, while the SL-CE loss is used for generated images. The overall loss of the D is
formulated as follows:

LD = λ3lBCE(xreal , 1) + λ4lBCE(xfake , 0) + λ5lLS−CE(xfake , y∗fake )

+ λ6lCE(xreal, yreal) + λ7ltriplets (xa, xp, xn)
(15)

where yreal represents the hard label for the real image, and λi (i = 3, 4, . . . , 7) represent
the trade-off parameters. In this article, λi (i = 1, 2, . . . , 7) are set to 1 by default for all
experiments.

4. Experimental Settings and Result Analysis

In this part, we first introduce the dataset and training settings, then analyze the
stability of the LST-ACGAN algorithm with different parameter settings, and then conduct
the ablation study to analyze the performance of different loss function combinations. After
that, we visualize and analyze the generated images of the LST-ACGAN, and finally, we
compare with previous methods to demonstrate the effectiveness of the LST-ACGAN.

4.1. Datasets

The OpenSARShip[24] dataset was established for the Sentinel-1 ship classification
task. It includes two product types: single look complex (SLC) and ground range detected
(GRD). Considering that bulk carriers, container ships, and tankers cover around 80% of
the international shipping market [6,31], in this paper, we obtained five common merchant
vessels, including a bulk carrier, a cargo ship, a container ship, a general cargo ship, and a
tanker from the open data sharing platform of OpenSARShip (https://Opensar.Sjtu.Edu.
Cn/Project.html) (accessed on 9 July 2023) (see Table 2).

Table 2. Number of each ship type.

Ship Type Number

Bulk Carrier 1624

Cargo 2228

Container Ship 426

General Cargo 236

Tanker 352

As shown in Table 3, based on these ship types, we reconstructed two subdatasets.
First, 100 samples for each ship type were randomly selected as standard testing set T. Then,

https://Opensar.Sjtu.Edu.Cn/Project.html
https://Opensar.Sjtu.Edu.Cn/Project.html
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according to the class with the least number of samples, we reconstructed a class-balanced
three-class training set D1 and a class-balanced five-class training set D2.

Table 3. Reconstructed subdatasets from OpenSARShip.

Ship Type D1 D2 T

Bulk Carrier 252 136 100

Cargo - 136 100

Container Ship 252 136 100

General Cargo 136 100

Tanker 252 136 100

4.2. Training Details

A computer with the Intel i7-8700 CPU and NVIDIA GTX1080Ti GPU was utilized to
conduct all experiments, and all codes were implemented by PyTorch. The structures of
the model are shown in Table 1 and Figure 5.

To ensure the fairness of comparison, for all experiments, input images were resized
to 64 × 64 pixels. Adam [32] was used as the optimizer with the learning rate set to 0.0002.
The training batch size m was set to 128, and the total training epoch was 200. In each epoch,
the samples were first reordered randomly, then input into the model batch-by-batch. The
training procedure of the proposed model is shown in Algorithm 1. Specifically, none of
the experiments in this article adopted any data augmentation methods.

Algorithm 1 Training procedure of the proposed algorithm.

Initialize the models G and D, number of epochs(nb_epoch = 200), batch_size m = 128
for epoch = 1:nb_epoch

for i = 1:nb_batch
Sample m vector randomly, calculate smoothing labels and generate corresponding

fake images by G;
Sample m real images and randomly mix them with fake images;
Input mixed samples into the D, calculate the validation and classification losses,

then update the weights of D and G;
Combine triplet samples and calculate the triplet loss, update the weights of D and G;

end
end
Obtain model D;
Input a testing sample into D, and obtain the prediction class.

The overall accuracy (OA) and confusion matrix (CM) are adopted as the evaluation
indices. The OA indicates the whole classification accuracy and is defined as:

OA =
tp + tn

tp + tn + f p + f n
× 100% (16)

where tp, tn, f n, and tn represent the true positives, false positives, false negatives, and
true negatives, respectively. CM is the matrix in which the diagonal elements are the
classification accuracy for each ship type.

4.3. Stability Analysis

The sensitivity analyses on the parameter ε in (10) and the embedding length are
shown as follows.

4.3.1. Label Smoothing Parameter

To explore the effectiveness of the label smoothing, we conducted experiments on
D1 with different ε selected from the set of {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. As shown in
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Table 4, we can observe that the performance is relatively stable with different ε. The best
performance is 88.33% with setting ε = 0.4. Therefore, ε was fixed to 0.4 for all of the
following experiments.

Table 4. OA (%) on D1 using different label smoothing parameters.

ε 0.1 0.2 0.3 0.4 0.5 0.6

OA 84.33 84.67 84.67 88.33 86.33 87.00

4.3.2. Embedding Dimensionality

The dimensional value of the embedding was set to 64, 128, 256, and 512, respectively.
From Table 5, we can observe that the accuracy drops if the embedding dimensionality
is too small or too large. This might be because the representational ability is weak if the
embedding is small, while the model will overfit to the limited data if the embedding is too
large. Thus, all the embedding lengths were fixed to 128 for the following experiments.

Table 5. OA (%) on D1 with different embedding lengths.

Dim. 64 128 256 512

OA 85.66 88.33 84.66 85.33

4.4. Ablation Study

The ablation study results with different loss function combinations are shown in
Table 6, where “CE loss” and “SL-CE loss” represent the classification loss for generated
images with hard label and smooth labels, respectively, and “Triplet loss” represents
the loss for deep feature embedding learning. We can observe that compared with the
baseline network optimized by CE loss, the integration of SL-CE loss and triplet loss obtains
better results. Specifically, the “SL-CE loss + Triplet loss” combination obtains the best
performance of 88.33%, which is 13% higher than the baseline (75.33%). Therefore, the
integration of the smooth label and the triplet loss is crucial for better ship classification
performance.

Table 6. OA (%) on D1 with different loss combinations.

Objective Function Combinations OA

CE loss 75.33
CE loss + Triplet loss 85.66

SL-CE loss 83.33
SL-CE loss + Triplet loss 88.33

4.5. Visualization of Generated Images

The generated images are shown in Figure 6. Each row represents a method with a
different loss function, while each column represents the result after training 50, 100, 150,
and 200 epochs. We can observe that, generally, the quality of our method is better than
the ACGAN (first row). Visually, the LST-ACGAN with CE loss (second row) obtains the
optimal quality generated images; this might be because the CE loss forces the model to
generate images that certainly belong to given classes. However, generated high-quality
images do not necessarily mean better classification results because these samples are
difficult to extend to the distribution of original samples and have a larger distance to the
classification margin, making them less useful for improving the classification performance.
The image quality of SL-CE loss + triplet loss is better than only using SL-CE loss; this
might be because the triplet loss can force the model to generate images that have a closer
distance to the given class.
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Figure 6. Generated images when training after 50, 100, 150, 200 epochs of LST-ACGAN with different
losses in the ablation study.

4.6. Extensive Comparisons

The proposed method was also compared with previous DCNN methods, including
the ACGAN [19], ResNet18 [30], and DenseNet121 [33], to demonstrate its effectiveness.

4.6.1. Three-Class Classification Task

The three-class classification results of different models are shown in Table 7. The
proposed LST-ACGAN obtains the best OA of 88.33%, which is 24.66% high than the
ACGAN (63.67%), 9.66% higher than ResNet18 (78.67%), 5.33% higher than DenseNet121
(83.00%), and 7% higher than Xception (81.33%). Furthermore, by combining the proposed
method with DenseNet121 and Xception, there are improvements of 4.33% and 2.67%,
respectively, compared to the original OA.

Table 7. OA (%) on D1 using different network architectures.

Network OA

ACGAN 63.67
ResNet18 78.67

DenseNet121 83.00
Xception 81.33

LST-ACGAN 88.33
LST-ACGAN + DenseNet121 87.33

LST-ACGAN + Xception 84.00
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The CMs of different models are shown in Figure 7. We can observe that compared to
the ACGAN, ResNet, DenseNet121, and Xception obtain higher performances, showing
that the complex models can learn more discriminative features. The classification accuracy
of the LST-ACGAN on these three ship types is better than most of the previous methods.
In particular, the proposed method is 6% higher than DenseNet121 and Xception in the
Bulk Carrier class, and 11% higher than DenseNet121 in the Container class. This result
shows that by adding the triplet loss and label smoothing methods, the proposed method
can extract more discriminative deep features.

Figure 7. Confusion metrics of different network architectures for three-class classification tasks.
(a) ACGAN; (b) ResNet18; (c) DenseNet121; (d) Xception; (e) LST-ACGAN.

4.6.2. Five-Class Classification Task

The five-class classification results of different models are shown in Table 8. The
proposed LST-ACGAN obtains the best OA of 56.40%, which is 15% high than the ACGAN
41.40%), 2.4% higher than ResNet18 (54.00%), 5.1% higher than DenseNet121 (51.30%), and
6.32% higher than Xception (50.08%). Furthermore, by combining the proposed method
with DenseNet121 and Xception, there are improvements of 0.8% and 0.6%, respectively,
compared to the original OA.

Table 8. OA (%) on D2 using different network architectures.

Network OA

ACGAN 41.40
ResNet18 54.00

DenseNet121 53.80
Xception 51.40

LST-ACGAN 56.40
LST-ACGAN + DenseNet121 54.60

LST-ACGAN + Xception 52.00

The CMs of different models are shown in Figure 8. We find that the ship types of
Cargo and General Cargo are difficult to distinguish due to their apparent similarity; thus,
the classification accuracies of these two classes’ samples are relatively low. The accuracy
of our method on the Cargo class is the highest among all methods, while the accuracy of
the General Cargo class is relatively low. This might be because the features of the General
Cargo class are more complex and have varied distribution compared to the Cargo class,
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making it hard for the model to distinguish them. Moreover, the classification accuracy of
the LST-ACGAN on these five ship types is better than the majority of previous methods.

Figure 8. Confusion metrics of different network architectures for five-class classification tasks.
(a) ACGAN; (b) ResNet18; (c) DenseNet121; (d) Xception; (e) LST-ACGAN.

5. Conclusions

This article proposes a GAN-based method for the SAR ship classification task. The
proposed method explores a novel way for small-scale sample classification of SAR images.
By combining and jointly optimizing the data generation and classification modules, the
proposed model can generate new samples to improve the generalization ability as well
as classify samples into corresponding classes. By incorporating the label smoothing
method and triplet loss, the model can learn more distinguishable features for different
class samples. Experiments on the three- and five-class classification tasks demonstrate
that the proposed LST-ACGAN method performs better than the compared models.
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