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Abstract: Sparse unmixing plays a crucial role in the field of hyperspectral image unmixing technol-
ogy, leveraging the availability of pre-existing endmember spectral libraries. In recent years, there
has been a growing trend in incorporating spatial information from hyperspectral images into sparse
unmixing models. There is a strong spatial correlation between pixels in hyperspectral images (that is,
the spatial information is very rich), and many sparse unmixing algorithms take advantage of this to
improve the sparse unmixing effect. Since hyperspectral images are susceptible to noise, the feature
separability of ground objects is reduced, which makes most sparse unmixing methods and models
face the risk of degradation or even failure. To address this challenge, a novel robust dual spatial
weighted sparse unmixing algorithm (RDSWSU) has been proposed for hyperspectral image unmix-
ing. This algorithm effectively utilizes the spatial information present in the hyperspectral images to
mitigate the impact of noise during the unmixing process. For the proposed RDSWSU algorithm,
which is based on `1 sparse unmixing framework, a pre-calculated superpixel spatial weighting
factor is used to smooth the noise, so as to maintain the original spatial structure of hyperspectral
images. The RDSWSU algorithm, which builds upon the `1 sparse unmixing framework, employs a
pre-calculated spatial weighting factor at the superpixel level. This factor aids in noise smoothing
and helps preserve the inherent spatial structure of hyperspectral images throughout the unmixing
process. Additionally, another spatial weighting factor is utilized in the RDSWSU algorithm to
capture the local smoothness of abundance maps at the sub-region level. This factor helps enhance
the representation of piecewise smooth variations within different regions of the hyperspectral image.
Specifically, the combination of these two spatial weighting factors in the RDSWSU algorithm results
in an enhanced sparsity of the abundance matrix. The RDSWSU algorithm, which is a sparse unmix-
ing model, offers an effective solution using the alternating direction method of multiplier (ADMM)
with reduced requirements for tuning the regularization parameter. The proposed RDSWSU method
outperforms other advanced sparse unmixing algorithms in terms of unmixing performance, as
demonstrated by the experimental results on synthetic and real hyperspectral datasets.

Keywords: sparse hyperspectral unmixing; superpixel segmentation; spatial information; double
spatial weights

1. Introduction

Hyperspectral imaging spectrometers have the ability to capture images of specific
regions in the electromagnetic spectrum, enabling the detection of objects that are unidenti-
fiable in wide-band imaging remote sensing [1]. The use of hyperspectral remote sensing
images enables the acquisition of data containing abundant information about the Earth
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surface, thereby providing the potential for achieving quantitative and refined ground
observation [2]. Hyperspectral remote sensing imagery has been widely utilized in di-
verse fields, encompassing marine exploration [3], environmental monitoring [4], forestry
monitoring [5], geological exploration [6], modern military affairs [7], and precision agri-
culture [4]. Owing to the limited spatial resolution of imaging sensors and the intricate
variability of ground features, hyperspectral remote sensing images often exhibit mixed pix-
els. This phenomenon poses challenges in accurately interpreting the information related
to ground objects. This seriously restricts the development and application of quantitative
analysis in hyperspectral remote sensing [8]. To cope with the problem of mixed pixels,
spectral unmixing [9] techniques have been introduced to effectively identify the spectral
characteristics of different ground features in each pixel, called endmembers, and estimate
their corresponding percentages, called abundance. This is a key method for analyzing
hyperspectral images.

The linear mixture model (LMM) becomes an active research line in hyperspectral
imaging analysis owing to its simplicity and mathematical tractability [10]. LMM assumes
that the spectral signature of a mixed pixel can be represented as a linear combination of
the spectra of multiple endmembers. Building upon LMM, various unsupervised spectral
unmixing methods have been developed, including geometry-based approaches [11–13]
and statistics-based approaches [14,15]. However, most of these methods require extracting
endmembers directly from the given scene, which can lead to obtaining virtual endmembers
that have no physical meaning from mixed hyperspectral images [16]. Sparse unmixing
methods have emerged as a solution to tackle this issue [17–19]. These methods adopt a
semi-supervised approach, aiming to identify the optimal subset of entries from a known
endmember spectral library that effectively represents the mixed pixels in a hyperspectral
image. By leveraging sparsity constraints, they seek to achieve a sparse representation of
the mixed pixels using a reduced set of endmembers [20,21].

In the context of sparse unmixing, the abundance vector associated with a mixed pixel
is characterized by containing far fewer elements than the total number of spectral signa-
tures present in a given spectral library. As a result, the abundance vector exhibits sparsity
as a prominent feature [22]. To enhance the sparsity of solutions, several typical methods
have been proposed. For example, the renowned SUnSAL [17] algorithm utilizes the `1
regularizer to promote sparsity in the fractional abundances, yielding promising outcomes.
Moreover, the collaborative SUnSAL algorithm, known as CLSUnSAL [23], incorporates
the `2,1 regularizer to leverage collaborative row sparsity across all pixels. In order to
further punish the abundance coefficient, some studies introduce the weight factor into the
sparse unmixing models [24–26]. The DRSU [27] algorithm employs dual weight factors
to efficiently boost the sparsity of the fractional abundance. While the aforementioned
sparse unmixing algorithms demonstrate promising potential, they primarily emphasize
the utilization of spectral information from hyperspectral images while overlooking the
incorporation of spatial information, which impacts the accuracy of unmixing.

Spatial-contextual information is a valuable resource that can be harnessed to enhance
the effectiveness of unmixing techniques in practical applications [28]. The incorporation
of spatial information into sparse unmixing models has become a prominent approach,
leading to the development of numerous sparse unmixing algorithms that leverage spatial
information. For example, the SUnSAL-TV [29] algorithm utilizes anisotropic total varia-
tion regularization to encourage the smoothing of spatial neighborhoods in images. The
NLSU [30] algorithm utilizes a non-local spatial regularization technique to identify and
capture resemblances in patterns and structures present in the abundance map. Further-
more, a S2WSU method is introduced, incorporating spectral and spatial weight factors
to enhance the sparsity of solutions within the `1 sparse regularization framework. The
proposed DRSU-TV [31] method is developed, which utilizes a combination of double
weighted factors and TV regularization to improve the sparsity of solutions while simul-
taneously achieving smoothness in the abundance map. A novel approach, based on
superpixels and graph regularization, has been proposed for sparse unmixing [32]. This



Remote Sens. 2023, 15, 4056 3 of 24

method leverages spectral weighting factors to encourage sparsity in the solutions, while
utilizing a graph regularization term to enhance the spatial correlation of the resulting
images. These methods can enhance the accuracy of abundance estimation to a certain
degree. Nevertheless, in scenarios where hyperspectral images are heavily corrupted by
high levels of noise, these methods often struggle and achieving satisfactory accuracy in
unmixing becomes challenging. For this problem, a self-supervised robust deep unmixing
model (SSRDMF) is presented [33], which decreases the influence of Gaussian noise and
sparse noise through the deep autoencoder, thereby enhancing unmixing capabilities. The
spectral-spatial robust NMF unmixing model (SSRNMF) is introduced [34], leveraging dou-
ble regularization norms to attain noise robustness, resulting in favorable outcomes. The
SSNPNMF unmixing model [35] is presented, building a graph based on spatial-spectral
information to modify the reconstruction weight values of pixels and neighboring pixels,
mitigating noise effects.

In recent years, superpixel segmentation technology has gained widespread adoption
in the field of hyperspectral image processing due to its effectiveness in enhancing data
interpretation performance [36], such as hyperspectral image classification [37,38], spectral
unmixing [39], denoising [40], fusion [41] and other fields. For example, a superpixel-based
weighting method was proposed in [42] to exploit the spatial correlation of images. In [43],
a sparse unmixing model incorporating superpixel reweighted low-rank constraint and TV
regularization is introduced, aiming to promote the smoothness of the image.

In order to effectively deal with spectral unmixing task under low signal-to-noise
ratio (SNR) [44], in view of the advantages of superpixel segmentation strategy, a novel
robust dual spatial weighted sparse unmixing (RDSWSU) algorithm is proposed in this
paper. The main objective of the proposed RDSWSU algorithm is to acquire more precise
spatial context information in order to mitigate the adverse impact of noise on the unmixing
process. Specifically, for the proposed RDSWSU algorithm, which is based on the `1 sparse
regularization framework, on the one hand, the pre-calculated spatial weighting factor
based on superpixel is used to smooth the noise. On the other hand, the utilization of a
spatial weighting factor enhances the spatial coherence of the abundance map.

The efficient solution to the optimization problem of the proposed RDSWSU algorithm
can be achieved by leveraging the ADMM technique [45]. To sum up, we can summarize the
contribution of this paper. For the newly proposed RDSWSU method, based on the `1 sparse
unmixing framework, it introduced two key enhancements: the utilization of pre-calculated
superpixel spatial weighting factor and spatial neighborhood weighting factor. These
improvements aimed to reduce the impact of noise on unmixing and capture the localized
smoothness characteristics of the abundance map, respectively. The RDSWSU unmixing
model, as proposed, demonstrates a notable enhancement in its ability to handle high levels
of noise in challenging scenes. Furthermore, it effectively preserves the precise spatial
information of images, thereby leading to improved accuracy in the unmixing process.
Moreover, our proposed model has a simple formulation with only one regularization
parameter, which makes it easy to tune.

The remaining sections of the paper are outlined as follows. Section 2 is dedicated to
the introduction of the linear spectral unmixing model. In Section 3, a detailed description
of our proposed robust dual spatial weighted sparse unmixing model is provided. Section 4
specifically presents the experimental results using synthetic hyperspectral data, whereas
Section 5 focuses on showcasing experimental results using actual hyperspectral data.
Finally, Section 6 concludes the paper by providing a summary, remarks, and suggestions
for future research topics.

2. Linear Spectral Unmixing

Suppose we have an observed hyperspectral image denoted by Y ∈ RL×n, where n
represents the total number of pixel vectors and L represents the number of spectral bands.
Let A ∈ RL×m be a comprehensive spectral library comprising m spectral signatures. The
aim of sparse unmixing is to identify the most suitable subset of endmembers from the
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spectral library A in order to represent mixed pixels in a hyperspectral image. To sum up,
the LMM can be represented by the following equation:

Y = AX + N s.t.: X ≥ 0, (1)

where X ∈ Rm×n denotes the fractional abundance matrix, and N ∈ RL×n denotes the noise
or the model error. The abundance nonnegativity constraint (ANC) states that X must be
greater than or equal to zero (i.e., X ≥ 0), while the abundance sum-to-one constraint (ASC)
requires that the sum of the elements in each column of X equals one (i.e., 1Tx = 1). In
principle, the abundance matrix X should satisfy these two physical constraints. However,
it should be noted that, for some reasons regarding ASC in [17], the ASC constraint is not
explicitly enforced here, only ANC constraint is enforced. In practical applications, the
number of endmembers constituting mixed pixels is usually much less than that of the
large spectral library A, which means that the abundance matrix X contains many zero
values [46].

In practical scenarios, the number of endmembers present in mixed pixels is often
significantly smaller compared to the size of the extensive spectral library A. As a conse-
quence, the abundance matrix X tends to have numerous zero values (i.e., the abundance
matrix X exhibits sparsity.) [46]. Taking these factors into account, the problem of sparse
unmixing can be formulated as follows.

min
X

1
2
||AX− Y||2F + λ||X||0 s.t.: X ≥ 0, (2)

where ‖ · ‖F represents the Frobenius norm, and λ ≥ 0 serves as a regularization parameter
in the equation. The minimization of the `0 norm in objective function (2) is a computa-
tionally difficult problem, known to be NP-hard [47]. However, an alternative approach is
possible by leveraging the Restricted Isometric Property (RIP) [48,49], which allows us to
relax the problem and approximate it using the `1 norm instead. The formal expression for
this approximation is as follows.

min
X

1
2
||AX− Y||2F + λ||X||1,1 s.t.: X ≥ 0, (3)

where ||X||1,1 = ∑n
j=1 ||Xj||1, the jth column of the fractional abundance matrix X is repre-

sented by Xj. Then the optimization problem in (3) can be solved efficiently by the SUnSAL
algorithm under the ADMM.

Earlier approaches to sparse unmixing typically emphasized the examination of spec-
tral information while neglecting the integration of spatial information within the image.
To achieve greater consistency in abundance estimation, a Total Variation (TV) regularizer is
utilized to encourage the piecewise smoothness of fractional abundance. The optimization
problem is expressed in an alternative formulation.

min
X

1
2
||AX− Y||2F + λ||X||1,1 + λTVTV(X) s.t.: X ≥ 0. (4)

where λTV > 0 denotes the regularization parameter. TV(X) ≡ ∑{p,q}∈φ ||xp − xq||1
represents an extended version of nonisotropic TV [29], where xp refers to the vector of
abundances for pixel p, and xq denotes the vector of abundances for pixel q. φ represents
the collection of neighboring pixels in the abundance map, including both horizontal and
vertical directions. TV regularization can smooth the abundance map in some regions, but it
usually leads to oversmoothing and boundary blurring in the abundance maps. Moreover,
the estimation results of SUnSAL-TV rely on the selection of two regularization parameters.
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3. The Robust Dual Spatial Weighted Sparse Unmixing Model
3.1. Proposed RDSWSU Method

Drawing on the achievements of the sparse unmixing technique utilizing reweighted
`1-norm, it can effectively impose a penalty on the abundance coefficients. This paper
presents a novel approach called the robust dual spatial weighted sparse unmixing algo-
rithm (RDSWSU) to address the challenges of noise reduction in unmixing and improve
the spatial smoothness of abundance mapping. The flowchart of the proposed RDSWSU
method is shown in Figure 1.

Figure 1. The flowchart of RDSWSU method.

To enhance the robustness of the unmixing algorithm against noise, the superpixel
spatial weight H1 is constructed based on a coarse hyperspectral image, serving as a
guidance for abundance estimation. It should be noted that the coarse hyperspectral image
is reconstructed by a superpixel segmentation algorithm, which considered the similarity
of pixels in terms of both spatial location and spectral characteristics. This reconstruction
process resembles a mean filter and effectively suppresses noise in the image. Subsequently,
a coarse-scale weight guide matrix is established predictively using the reconstructed
hyperspectral image. H1 is then calculated row by row from the coarse-scale weight guide
matrix, making it insensitive to noise. Overall, the RDSWSU algorithm does not involve
any denoising process. Instead, it mitigates the impact of noise on unmixing by performing
superpixel segmentation on the original hyperspectral image and constructing superpixel
spatial weights based on the segmented image. The optimization objective of the proposed
RDSWSU algorithm can be defined as follows.

min
X

1
2
||AX− Y||2F + λ‖(H1H2)� X‖1,1 s.t.: X ≥ 0. (5)

where the operator � represents the elementwise multiplication of two variables. It should
be noted that H1 ∈ Rm×m is the pre-calculated superpixel spatial weighting matrix, and
H2 ∈ Rm×n is the spatial neighborhood weighting matrix.

As stated earlier, superpixel segmentation technology [43,50] refers to a method uti-
lized for extracting spatial information from hyperspectral images. This technique allows
for the analysis and characterization of the spatial structure within the image.

The superpixel spatial weighting matrix H1 is designed to preserve the original spatial
contextual information of hyperspectral images, particularly in scenarios with high levels
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of noise. Its purpose is to ensure that the spatial details in the image are accurately
represented, even under challenging conditions with significant noise interference. To
obtain the superpixel spatial weighting matrix H1, the initial hyperspectral image Y ∈ RL×n

is segmented into g superpixel blocks using the SLIC algorithm [36,51]. Importantly, the
SLIC algorithm is fast, simple to implement, and produces superpixels of good quality. It
balances segmentation performance against computational complexity, serving as a useful
and efficient image oversegmentation approach. This segmentation process divides the
image into compact and homogeneous regions, each referred to as a superpixel block.
By utilizing the SLIC algorithm, the hyperspectral image is effectively partitioned into g
coherent and visually meaningful superpixels. Let Yt ∈ RL×nt(t = 1, . . . , g, ∑

g
t=1 nt = n)

represent the t-th superpixel block, which consists of nt pixels. Within this block, we can
refer to any pixel (column) as yk ∈ RL×1(k = 1, . . . , nt). This notation allows us to refer to
and manipulate individual pixels within specific superpixel blocks for further analysis or
computations. Then, based on the segmentation result, the pixels within each superpixel
block are averaged to obtain the coarse image Ỹ ∈ RL×n. The statement is reformulated
as follows.

ỹk =
1
nt

nt

∑
k=1

yk (6)

In the given context, when referring to ỹk, it represents a column from the coarse image
Ỹt that corresponds to a superpixel block in Yt. It is important to note that all elements
within a single superpixel block possess identical values.

The SUnSAL method [17] is utilized to derive the coarse fractional abundance matrix
X̃. The corresponding optimization model is expressed as follows.

min
X̃

1
2
||AX̃− Ỹ||2F + λ||X̃||1,1, s.t.: X̃ ≥ 0. (7)

where the low-resolution fractional abundance matrix X̃ can keep the spatial information
among the pixels. Finally, the superpixel-based weighting factor H1 can be calculated
as follows:

H1,ij =
1

||X̃(i, :)||2 + ε
, i = 1, . . . , m, j = 1, . . . , n

where ε > 0 represents a small constant. The ith row vector of the abundance matrix X̃
is represented as X̃(i, :), where (i = 1, . . . , m). H1 is influenced by the coarse abundance
matrix X̃ and can increase the sparsity of the row in the fractional abundance matrix.

Moreover, all the entries in each homogeneous region are averaged by the coarse
hyperspectral image, so the impact of noise can be mitigated effectively. Therefore, the
superpixel-based weighting matrix H1 is not sensitive to noise.

To enhance the smoothness of abundance maps, the spatial weighting matrix H2 takes
into account the correlation between neighboring regions, following a similar approach as
described in [52]. Let ht+1

2,ij represent the entry in the t + 1 iteration of the weight matrix H2

at the ith row and jth column. The spatial weighting factor H2 can be iteratively updated
as follows:

h(t+1)
2,ij =

1

fN (xij)
(x(t)ij ) + ε

(8)

where N (xij) is the adjacent set for elements xij, f (·) is a function that calculates the
fractional abundance of pixels using a neighborhood system, with the goal of utilizing
spatial correlations in images.

In this work, a new value of a pixel can be calculated by using the values of its 8-
neighboring pixels and their importance (i.e., Euclidean distance). The function f (·) can be
defined as follows:

fN (xij)
(xij) =

∑xa∈N8(xij)
Λaxa

∑xa∈N8(xij)
Λa

(9)



Remote Sens. 2023, 15, 4056 7 of 24

where N8(xij) represents adjacent elements (xa) of the central pixel xij. Λ = 1
im(xa ,xij)

represents the neighboring importance. Where the function im(·) represents the importance
of the elements xa and xij. Considering the European distance, Λa is written as follows:
Λa = 1/((u−m)2 + (v− n)2)1/2, where (u, v) and (m, n) represent the spatial coordinates
of xa and xij, respectively.

3.2. Optimization Model with the ADMM

In order to address the optimization difficulties of model (5), we adopt the ADMM
technique as a solution method. The central concept of the ADMM method involves
introducing a set of additional variables and subsequently transforming it into a sequence
of more manageable sub-problems derived from the original problem. The optimization
problem expressed as Equation (5) can be reformulated in the following manner.

min
X,V1,V2,V3

1
2
‖V1 − Y‖2

F + λ‖(H1H2)�V2‖1,1 + ιR+(V3)

s.t.: V1 = AX, V2 = X, V3 = X (10)

the equation states that ιR+(X) = ∑n
i=1 ιR+(xi) is an indicator function, and ιR+(xi) = 0 if

xi belongs to the nonnegative orthant and ιR+(xi) = +∞ otherwise.
Define V ≡ (V1, V2, V3)T, G = [A, I, I]T and B = diag(−I), where I is the identity

matrix, and

g(V) ≡1
2
‖V1 − Y‖2

F + λ‖(H1H2)�V2‖1,1 + ιR+(V3) (11)

We can express Equation (10) in a condensed form as follows.

min
X,V

g(V) subject to GX + BV = 0, (12)

We can denote the augmented Lagrangian function as given below.

L(X, V, D) ≡ g(V) +
µ

2
‖GX + BV−D‖2

F (13)

where µ > 0 represents a positive constant, and D = (D1, D2, D3)T is the Lagrange
multiplier related to the constraint GX + BV = 0. Subsequently, we can minimize the aug-
mented Lagrangian function L(X, V, D) to obtain the values for X and V. Simultaneously,
we update D according to the following procedure.

X(k+1) = arg min
X

L(X, V(k), D(k))

V(k+1) = arg min
V

L(X(k+1), V, D(k))

D(k+1) = D(k) −GX(k+1) − BV(k+1)

Afterwards, we can utilize the aforementioned framework to calculate the X and
V-problems. First, the equivalent solution of the X subproblem is as follows.

min
X

µ

2
‖AX−V(k)

1 −D(k)
1 ‖

2
F +

µ

2
‖X−V(k)

2 −D(k)
2 ‖

2
F +

µ

2
‖X−V(k)

3 −D(k)
3 ‖

2
F (14)

The solution for X is denoted as

X(k+1) = (ATA + 2I)−1(ATξ1 + ξ2 + ξ3) (15)

where AT denotes the transpose of matrix A, and ξ1 = V(k)
1 + D(k)

1 , ξ2 = V(k)
2 + D(k)

2 ,

ξ3 = V(k)
3 + D(k)

3 .
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The subproblem of V decouples into three subparts about V1, V2, and V3. V1 is
calculated as follows:

min
V1

1
2
‖V1 − Y‖2

F +
µ

2
‖AX(k+1) −V1 −D(k)

1 ‖
2
F (16)

It clearly follows that

V(k+1)
1 =

1
1 + µ

(
Y + µ(AX(k+1) −D(k)

1 )
)

(17)

V2 is obtained by solving the problem using the following method.

min
V2

λ‖(H1H2)�V2‖1,1 +
µ

2
‖X(k+1) −V2 −D(k)

2 ‖
2
F (18)

The solution is

V(k+1)
2 = soft(X(k+1) −D(k)

2 ,
λ

µ
H1H2) (19)

the function soft(·, τ) represents a soft-threshold function, which is defined as soft(y, τ) =
sign(y)max{|y| − τ, 0}.

For the V3 , it can be obtained by solving as

min
V3

ιR+(V3) +
µ

2
‖X(k+1) −V3 −D(k)

3 ‖
2
F (20)

The solution is

V(k+1)
3 = max(X(k+1) −D(k)

3 , 0) (21)

Lastly, the Lagrange multipliers are updated in the following manner.
D(k+1)

1 = D(k)
1 −AX(k+1) + V(k+1)

1

D(k+1)
2 = D(k)

2 − X(k+1) + V(k+1)
2

D(k+1)
3 = D(k)

3 − X(k+1) + V(k+1)
3

To summarize, Algorithm 1 outlines the use of the ADMM method to solve the
optimization problem in the RDSWSU model. The RDSWSU algorithm, suggested in the
study, is composed of an inner loop and an outer loop. In the inner loop, the Lagrange
multipliers in the ADMM method are updated. On the other hand, the weight coefficients
are updated in the outer loop. The maximum number of iterations in the inner loop is set to
5, while the number of iterations in the outer loop is set to 120. The iterative optimization of
the model is similar to the well-known SUnSAL method in complexity due to the simplicity
of the model.

Proving formal convergence for Algorithm 1 is difficult, however empirically the
residual of the original problem is seen to decrease with more iterations. As illustrated
in Figure 2, the residual ‖GX(t) + BV(t)‖F ≤ 1× 10−5 as a function of outer loop counts
reaches a stable near-zero level after only 40 iterations. The dual loop structure exhibits
good empirical convergence and speed overall. The full algorithm halts when hitting the
maximum iterations or once the residual satisfies a tolerance threshold.
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Algorithm 1 : The pseudocode representation for RDSWSU
1:Input: Y, A, and parameters of the SLIC algorithm
2:Perform:
3: Use the SLIC algorithm to segment image Y.
4: Compute Equation (6) to reconstruct the Ỹ
5: X̃ obtained by solving the optimization problem (7)
6: H1,ij ← 1

||X̃(i,:)||2+ε

7: Initialization:
8: set k, t = 0, choose λ, µ, ε > 0, X(0), V(0)

1 , V(0)
2 , V(0)

3 , D(0)
1 , D(0)

2 , D(0)
3

9: Repeat:

10: H(t+1)
2 ←


h(t)2,11 · · · h(t)2,1n

... h(t)2,ij
...

h(t)2,m1 · · · h(t)2,mn

,

11: where h(t+1)
2,ij = 1

fN (xij)
(x(t)ij −d2,ij

(t))+ε
, xij and d2,ij are respectively the elements

in the ith row and jth column of X and D2.
12: Repeat:
13: X(k+1) ← (ATA + 2I)−1

(
AT(V(k)

1 + D(k)
1 ) + V(k)

2 + D(k)
2 + V(k)

3 + D(k)
3

)
14: V(k+1)

1 ← 1
1+µ

(
Y + µ(AX(k+1) −D(k)

1 )
)

15: V(k+1)
2 ← soft(X(k+1) −D(k)

2 , λ
µ H1H(t)

2 )

16: V(k+1)
3 ← max(X(k+1) −D(k)

3 , 0)
17: Revise the Lagrange multipliers:
18: D(k+1)

1 ← D(k)
1 −AX(k+1) + V(k+1)

1

19: D(k+1)
2 ← D(k)

2 − X(k+1) + V(k+1)
2

20: D(k+1)
3 ← D(k)

3 − X(k+1) + V(k+1)
3

21: Refresh the iteration: k← k + 1
22: X(t+1) ← X(k)

23: D(t+1)
2 ← D(k)

2
24: Refresh the iteration: t← t + 1
25: until certain stopping criteria are satisfied.
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Figure 2. Residual ‖GU(t) + BV(t)‖F as a function of outer loop iteration count.
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4. Experiments with Synthetic Data

In these experiments, we will showcase the performance of the proposed RDSWSU
method by conducting two simulated hyperspectral datasets. In our experiments, we will
conduct a comparison between the proposed RDSWSU method and five other advanced
sparse unmixing methods: SUnSAL [17], SUnSAL-TV [29], DRSU [27], DRSU-TV [31] and
S2WSU [52]. It is worth mentioning that the last three algorithms utilize weighted sparse
regression techniques.

Furthermore, two commonly utilized quality metrics are employed to assess the
efficacy of sparse unmixing. The signal reconstruction error ratio (SRE), measured in
decibels (dB), is a commonly used metric in quantitative analysis. It serves as an indicator
to evaluate the accuracy of unmixing and gauge the performance of various unmixing
algorithms. The calculation formula of SRE (dB) is:

SRE(dB) = 10 · log10
E(||x||22)

E(||x− x̂||22)
(22)

where x̂ denotes the estimated fractional abundance, x denotes the true fractional abun-
dance, and E(·) indicates the expected function. The greater the value of SRE (dB), the
higher the quality of unmixing achieved by this method.

In addition, we also adopt another measure, that is, the probability of success ps. It
represents an estimation of the likelihood that the relative error in power is below a cer-
tain threshold. The ps can be obtained by formally calculating as follows:
ps ≡ P(‖x̂− x‖2/‖x‖2 ≤ threshold). In previous studies [17], it has been shown that the
abundance estimation is deemed successful when ‖x̂− x‖2/‖x‖2 ≤ 3.16 (5 dB). The unmix-
ing performance improves as the ps value increases.

4.1. Simulated Data Sets

In this paper, we utilized two spectral libraries in the synthetic data analysis, both
of which were extracted from the mineral dictionary of the US Geological Survey (USGS)
spectral library (Available online at http://speclab.cr.usgs.gov/spectral.lib06 (accessed on
21 June 2023)). The spectral library A1 ∈ R224×240 comprises m = 240 spectral signatures
with reflectance values across L = 224 spectral bands, evenly distributed within the
wavelength range of 0.4–2.5 µm. Similar to A1, the spectral library A2 ∈ R221×222 consists of
m = 222 spectral signatures with L = 221 spectral bands. According to LMM, two distinct
simulated datasets were generated from spectral libraries A1 and A2. The fractional
abundances were enforced with ANC and ASC constraints. Subsequently, a detailed
description of the two simulated datasets will be provided.

• Simulated Data Cube 1 (DC1): DC1 comprises 100× 100 pixels, with each pixel con-
taining 224 spectral bands. DC1 was generated by randomly selecting nine spectral
signatures from spectral library A1. Figure 3 illustrates the actual abundance maps
associated with the nine endmembers. The simulated hyperspectral data generation
process involved the introduction of independent and identically distributed (i.i.d.)
Gaussian noise at five different SNR levels: 10 dB, 20 dB, 30 dB, 40 dB, and 50 dB.

• Simulated Data Cube 2 (DC2): DC2 has 100× 100 pixels, with each pixel containing
221 spectral bands. Simulated data DC2 was generated by randomly selecting nine
spectral signatures from spectral library A2, as detailed in [53,54]. Figure 4 displays the
genuine abundance maps corresponding to the nine endmembers. In the experiments,
similar to DC1, the simulated data for DC2 was also subjected to independent and
i.i.d. Gaussian noise at five different SNR levels: 10 dB, 20 dB, 30 dB, 40 dB, and 50 dB.

http://speclab.cr.usgs.gov/spectral.lib06
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. The actual score abundance of the endmembers in DC1. (a–i) Endmember # 1–# 9.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. The actual fractional abundances of the endmembers in DC2. (a) Sphene HS189.3B.
(b) Kaolinite KGa-1. (c) Dumortierite HS190.3B. (d) Halloysite NMNH106236. (e) Alunite GDS83
Na63. (f) Pyrophyllite PYS1A fine g. (g) Halloysite NMNH106236. (h) Muscovite GDS108. (i) Kaolin-
ite CM9.

4.2. Results and Discussion

In this section, we use two simulated datasets to test the proposed unmixing per-
formance based on a dual spatial weighting strategy. For the parameter settings in the
experiments, each method was tested with different combinations of parameter settings to
ensure the optimal results. Tables 1 and 2 exhibit the SRE (dB) and ps values obtained by
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each tested unmixing method on the two simulated datasets at different SNR levels. The
tables show the optimal values obtained within the specified parameter range.

Table 1. The SRE (dB) values achieved by various unmixing algorithms on DC1 and DC2 are as
follows, with the optimal parameters indicated in parentheses.

Date Cube SNR SUnSAL SUnSAL-TV DRSU DRSU-TV S2WSU RDSWSU

10 1.6582 3.9092 2.1998 4.3212 3.4088 5.6387
(λ = 2) (λ = 4 · 10−1; (λ = 6 · 10−1) (λ = 1 · 10−1; (λ = 2 · 10−1) (λ = 1 · 10−1)

λTV = 6 · 10−1) λTV = 8 · 10−3)
20 4.1966 5.3175 4.5620 8.4389 7.8752 14.2101

(λ = 2 · 10−1) (λ = 1 · 10−1; (λ = 1 · 10−1) (λ = 2 · 10−2; (λ = 9 · 10−3) (λ = 3 · 10−2)
λTV = 2 · 10−2) λTV = 3 · 10−2)

DC1 30 8.5108 11.9497 15.2985 18.9425 21.8718 22.6783
(λ = 2 · 10−2) (λ = 1 · 10−2; (λ = 6 · 10−4) (λ = 2 · 10−3; (λ = 4 · 10−3) (λ = 6 · 10−3)

λTV = 4 · 10−3) λTV = 2 · 10−3)
40 15.2388 17.8119 29.5464 31.0163 32.1470 32.3118

(λ = 5 · 10−3) (λ = 5 · 10−3; (λ = 1 · 10−3) (λ = 3 · 10−3; (λ = 2 · 10−3) (λ = 1 · 10−3)
λTV = 1 · 10−3) λTV = 1 · 10−3)

50 23.1066 26.0519 41.2077 40.8223 41.5089 41.9386
(λ = 1 · 10−3) (λ = 2 · 10−3; (λ = 3 · 10−3) (λ = 6 · 10−4; (λ = 4 · 10−4) (λ = 2 · 10−4)

λTV = 2 · 10−4) λTV = 1 · 10−4)

10 0.6993 2.4822 0.9698 2.6009 1.9869 6.1135
(λ = 1) (λ = 1 · 10−1; (λ = 6 · 10−1) (λ = 6 · 10−2; (λ = 2 · 10−1) (λ = 1 · 10−1)

λTV = 4 · 10−1) λTV = 1 · 10−1)
20 2.6569 4.9553 2.7730 7.6542 4.5408 11.9055

(λ = 2 · 10−1) (λ = 2 · 10−2; (λ = 7 · 10−2) (λ = 1 · 10−2; (λ = 9 · 10−3) (λ = 8 · 10−3)
λTV = 2 · 10−2) λTV = 4 · 10−2)

DC2 30 5.9799 9.5503 15.6040 18.8693 19.8190 20.1171
(λ = 8 · 10−3) (λ = 4 · 10−3; (λ = 2 · 10−3) (λ = 2 · 10−3; (λ = 5 · 10−3) (λ = 2 · 10−3)

λTV = 2 · 10−3) λTV = 2 · 10−3)
40 11.8340 15.2535 26.9881 28.2618 28.6033 28.6337

(λ = 2 · 10−3) (λ = 6 · 10−5; (λ = 6 · 10−4) (λ = 9 · 10−4; (λ = 7 · 10−4) (λ = 5 · 10−4)
λTV = 9 · 10−4) λTV = 4 · 10−4)

50 18.7115 24.6150 35.3070 36.5517 36.7807 37.0450
(λ = 3 · 10−4) (λ = 5 · 10−5; (λ = 1 · 10−4) (λ = 2 · 10−4; (λ = 5 · 10−5) (λ = 2 · 10−5)

λTV = 9 · 10−5) λTV = 9 · 10−5)

Table 2. The ps values achieved by various unmixing algorithms on DC1 and DC2 are as follows,
with the optimal parameters indicated in parentheses.

Date Cube SNR SUnSAL SUnSAL-TV DRSU DRSU-TV S2WSU RDSWSU

10 0.2933 0.5206 0.3777 0.5899 0.5058 0.6810
(λ = 2) (λ = 4 · 10−1; (λ = 6 · 10−1) (λ = 1 · 10−1; (λ = 2 · 10−1) (λ = 1 · 10−1)

λTV = 6 · 10−1) λTV = 8 · 10−3)
20 0.5594 0.6406 0.6185 0.8387 0.8005 0.9716

(λ = 2 · 10−1) (λ = 1 · 10−1; (λ = 1 · 10−1) (λ = 2 · 10−2; (λ = 9 · 10−3) (λ = 3 · 10−2)
λTV = 2 · 10−2) λTV = 3 · 10−2)

DC1 30 0.7992 0.9492 0.9782 0.9994 1 1
(λ = 2 · 10−2) (λ = 1 · 10−2; (λ = 6 · 10−4) (λ = 2 · 10−3; (λ = 4 · 10−3) (λ = 6 · 10−3)

λTV = 4 · 10−3) λTV = 2 · 10−3)
40 0.9902 0.9996 1.0000 1.0000 1.0000 1

(λ = 5 · 10−3) (λ = 5 · 10−3; (λ = 1 · 10−3) (λ = 3 · 10−3; (λ = 2 · 10−3) (λ = 1 · 10−3)
λTV = 1 · 10−3) λTV = 1 · 10−3)

50 1 1 1 1 1 1
(λ = 1 · 10−3) (λ = 2 · 10−3; (λ = 3 · 10−3) (λ = 6 · 10−4; (λ = 4 · 10−4) (λ = 2 · 10−4)

λTV = 2 · 10−4) λTV = 1 · 10−4)

10 0.1812 0.3029 0.1903 0.4015 0.3451 0.6368
(λ = 1) (λ = 1 · 10−1; (λ = 6 · 10−1) (λ = 6 · 10−2; (λ = 2 · 10−1) (λ = 1 · 10−1)

λTV = 4 · 10−1) λTV = 1 · 10−1)
20 0.3766 0.5031 0.4359 0.7186 0.6013 0.9076

(λ = 2 · 10−1) (λ = 2 · 10−2; (λ = 7 · 10−2) (λ = 1 · 10−2; (λ = 9 · 10−3) (λ = 8 · 10−3)
λTV = 2 · 10−2) λTV = 4 · 10−2)

DC2 30 0.5900 0.8023 0.9795 0.9976 1 1
(λ = 8 · 10−3) (λ = 4 · 10−3; (λ = 2 · 10−3) (λ = 2 · 10−3; (λ = 5 · 10−3) (λ = 2 · 10−3)

λTV = 2 · 10−3) λTV = 2 · 10−3)
40 0.9193 0.9884 1.0000 1.0000 1.0000 1

(λ = 2 · 10−3) (λ = 6 · 10−5; (λ = 6 · 10−4) (λ = 9 · 10−4; (λ = 7 · 10−4) (λ = 5 · 10−4)
λTV = 9 · 10−4) λTV = 4 · 10−4)

50 0.9999 1 1 1 1 1
(λ = 3 · 10−4) (λ = 5 · 10−5; (λ = 1 · 10−4) (λ = 2 · 10−4; (λ = 5 · 10−5) (λ = 2 · 10−5)

λTV = 9 · 10−5) λTV = 9 · 10−5)
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Tables 1 and 2 demonstrate a trend where the performance of the listed algorithms
for unmixing worsens as the noise level increases. Compared with other methods, the
RDSWSU method achieves the highest SRE (dB) values across all noise levels. It is note-
worthy that the proposed algorithm exhibits a significant advantage in low signal-to-noise
ratio situations, and can achieve more accurate separation performance. For example, in
DC1 and DC2, when the SNR is 10 dB (i.e., in high noise conditions), our method has
increased the SRE (dB) by more than 2 dB compared to other methods, indicating that the
RDSWSU method has stronger noise resistance. Furthermore, compared with several other
algorithms, the algorithm presented in this paper also achieves superior results in terms of
ps value, especially in low SNR conditions, which validates the high robustness of the dual-
spatial weighting strategy. In summary, based on the dual-spatial weighting strategy, it has
provided a good prospect for improving the unmixing accuracy in two different scenes.

To facilitate a direct comparison between different unmixing algorithms, we select DC1
and DC2 as examples at an SNR of 20 dB. This selection aims to demonstrate the improved
sparsity of the solution achieved by the proposed RDSWSU algorithm. Figures 5 and 6
demonstrate the corresponding fractional abundances estimated by each unmixing algo-
rithm and the ground-truth abundances. It should be noted that each line represents a
nonzero vector of the abundance matrix (with 100 randomly selected pixels shown here for
display). It is evident that both the SUnSAL and SUnSAL-TV algorithms produce inaccurate
estimations of the number of recovered endmembers. In contrast, the RDSWSU algorithm
exhibits a remarkable ability to accurately estimate the number of endmembers, surpassing
the performance of the DRSU, DRSU-TV, and S2WSU algorithms in this regard. Therefore,
compared with SUnSAL-TV, DRSU, DRSU-TV, and S2WSU, the proposed RDSWSU algo-
rithm can accurately identify the optimal subset of endmembers from the spectral library.
Compared with other unmixing methods, the RDSWSU algorithm improved the ability
to identify endmembers from a spectral library while also enhancing the sparsity of the
abundance matrix.
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Figure 5. The actual abundance values present in the ground and the estimated abundances acquired
for 100 selected pixels in DC1 under an SNR of 20 dB.
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Figure 6. The actual abundance values present in the ground and the estimated abundances acquired
for 100 selected pixels in DC2 under an SNR of 20 dB.

Figures 7 and 8 present the abundance maps of the first endmember achieved using
various unmixing algorithms in DC1 and DC2 when the SNR is set to 20 dB. For a more
intuitive comparison, the difference maps, which are generated by subtracting the estimated
abundances from the ground truth abundances, are also shown in the figures. From
Figures 7 and 8, it can be observed that the abundance maps derived from SUnSAL and
SUnSAL-TV lack accuracy. The abundance maps generated by the SUnSAL algorithm
exhibit noticeable noise, indicating a relatively high level of noise present in the results.
The SUnSAL-TV algorithm, on the one hand, enhances the quality of abundance estimation
to some extent by incorporating spatial information. On the other hand, the abundance
maps produced by the SUnSAL-TV algorithm appear over-smoothness phenomenon and
blurred in their visual representation. The unmixing outcomes achieved by RDSWSU
exhibit a remarkable resemblance to the true abundance maps, distinguishing it from
other algorithms. Additionally, its abundance maps demonstrate a greater amount of
spatial detail information across various homogeneous regions. In Figures 7 and 8, it
is evident that the abundance map obtained by the RDSWSU algorithm is smoother at
the boundary compared to the results of the SUnSAL, DRSU, and S2WSU algorithms.
However, it does not exhibit over-smoothing like the SUnSAL-TV and DRSU-TV algorithms.
The RDSWSU algorithm integrates the dual spatial weighting factor with the estimated
abundance through element-wise multiplication, and minimizes the `1 norm of their
product. Thereinto, the superpixel spatial weighting factor is established at the scale of
superpixels, where each superpixel corresponds to a homogeneous region in the image.
During the unmixing process, the pixels within the same superpixel block are assigned
identical weights, while the weights for pixels in different superpixel blocks differ. In a
sense, the superpixel spatial weighting factor helps to preserve the spatial heterogeneity
of the image. Furthermore, even within a superpixel, the final weight of each pixel can
vary because there is another spatial neighborhood weighting factor that affects the final
weight. The spatial neighborhood weighting factor is determined by the abundance vectors
of its neighboring pixels within an 8-neighborhood. Each pixel is assigned a unique
weight and dynamically changes with iterations. Unlike the TV regularization that directly
constrains the differences in the abundance vectors of each pixel in the horizontal and
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vertical directions, the spatial neighborhood weighting factor induces the pixel with lower
neighboring abundance to have an even lower abundance, rather than forcing its abundance
to be equal to that of the neighboring pixels. As a result, the dual spatial weighting
factor effectively utilizes the spatial correlation between pixels while also maintaining the
heterogeneity of different homogeneous regions and promoting sparsity of abundance, thus
avoiding excessive smoothing. It is proved that the weight factors based on superpixels
and spatial neighborhood can significantly improve the effect of sparse unmixing.
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Figure 7. Abundance mapping results for endmember 1 in DC1, obtained using the SUnSAL,
SUnSAL-TV, DRSU, DRSU-TV, S2WSU, and RDSWSU algorithms under an SNR of 20 dB. Here
are the comparison maps depicting the disparities between the true abundance values and the
estimates obtained from (a) SUnSAL, (b) SUnSAL-TV, (c) DRSU, (d) DRSU-TV, (e) S2WSU, and
(f) RDSWSU algorithms.

Table 3 shows the computational time taken by different algorithms to process DC1
at SNR = 20 dB. All algorithms were coded using MATLAB (R2018b) and tested in a
standardized computing environment. The testing was conducted on a desktop computer
equipped with an Intel Core i7 dual-core processor running at 3.6 GHz and 16 GB of RAM.

Table 3. Computation times of different algorithms on processing DC1 with SNR = 20 dB.

Algorithm SUnSAL SUnSAL-TV DRSU DRSU-TV S2WSU RDSWSU

Time(s) 23.29 231.13 72.45 250.00 79.53 80.84
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Figure 8. Abundance mapping results for endmember 1 in DC2, obtained using the SUnSAL,
SUnSAL-TV, DRSU, DRSU-TV, S2WSU, and RDSWSU algorithms under an SNR of 20 dB. Here
are the comparison maps depicting the disparities between the true abundance values and the
estimates obtained from (a) SUnSAL, (b) SUnSAL-TV, (c) DRSU, (d) DRSU-TV, (e) S2WSU, and
(f) RDSWSU algorithms.

It is noteworthy that the RDSWSU method did not include the time for superpixel
segmentation and spatial weighting computation in its computational time, as both of these
steps were preprocessed and the generated weight values were introduced as constants.
Consequently, there is no necessity to recompute or make adjustments to the superpixel
segmentation and spatial weighting while performing the unmixing procedure. By referring
to Table 3, it can be noted that the SUnSAL algorithm exhibits the shortest processing
time. On the other hand, the remaining algorithms are comparatively slower as they are
derived from the SUnSAL algorithm. The SUnSAL-TV and DRSU-TV methods, which
employ TV regularization, exhibit longer processing times due to the high computational
cost associated with solving the TV spatial regularization term. This results in a longer
duration compared to other algorithms. The processing times of the three algorithms
without TV regularization are nearly identical, indicating that the proposed RDSWSU
algorithm achieves superior unmixing performance in comparison to other algorithms
without introducing additional computational complexity.

Furthermore, we examined the effects of varying the two ADMM parameters—regularization
λ and Lagrangian multiplier µ- on unmixing performance. Using the DC1 dataset at 30 dB
SNR as an example, Figure 9a shows our proposed RDSWSU algorithm can readily achieve
suboptimal tuning by first fixing µ randomly, then selecting λ from a set. As Figure 9b
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demonstrates, µ selection is robust over a wide range, producing minimal variability in
the results.
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Figure 9. Algorithm parameter analysis on DC1 with SRE = 30 dB.

5. Experiments with Real Hyperspectral Data

We employ two real hyperspectral data sets in this section—the Cuprite data and
Houston data—to assess the performance of the various algorithms.

5.1. Experiment on Cuprite Data

The performance of the proposed method was evaluated using the well-known Cuprite
dataset from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The Cuprite
site holds significant recognition in the field of mineralogy. The scene has been extensively
utilized as a benchmark for validating the effectiveness of unmixing algorithms due to
several exposed minerals. The experimental part focuses on a subset of the scene that
measures 350× 350 pixels. This subset includes 224 spectral bands with wavelengths
spanning from 0.4 to 2.5 µm, and each band has a spectral resolution of 10 nm. Before
conducting the analysis, certain bands were excluded due to their low water absorption
and inadequate SNR. Specifically, bands 1–2, 105–115, 150–170, and 223–224 were removed
from consideration. As a result, there were 188 spectral bands remaining for the analysis
after the exclusion of the aforementioned bands. More specifically, the spectral library
utilized in this experiment is equivalent to the spectral library A1 that was employed in
our simulation experiments. In addition, bands with a low SNR and those exhibiting
low water absorption were also excluded from A1. Furthermore, Tricorder software was
utilized to generate classification maps depicting the distribution of these minerals. Unfor-
tunately, the classification map was producted in 1995, and the publicly accessible Cuprite
data was collected in 1997, a direct comparison between the classification map and the
AVIRIS Cuprite data is not feasible. Therefore, the classification accuracy is not provided.
Nonetheless, the classification map proves to be a valuable tool for qualitatively assessing
the fractional abundance maps generated by the unmixing algorithms. Figure 10 illustrates
a mineral map drawn by the USGS utilizing Tricorder 3.3 software [55] to represent the
spatial distribution of various minerals within the Cuprite mining area.

Figure 11 presents a visual comparison of the classification maps produced by the
USGS Tricorder algorithm in real hyperspectral scenes, along with three distinct mineral
abundance maps (Alunite, Buddingtonite, and Chalcedony) generated by the SUnSAL,
SUnSAL-TV, DRSU, DRSU-TV, S2WSU, and RDSWSU algorithms. In this experiment, the
regularization parameters were set as λ = 0.001, λ = 0.0001, λ = 0.002, and λ = 0.003 for
SUnSAL, DRSU, S2WSU, and RDSWSU, respectively. For SUnSAL-TV and DRSU-TV, the
regularization parameters were set to λ = 0.001, λTV = 0.001 and λ = 0.002, λTV = 0.0001,
respectively. The reasonable unmixing results achieved by all methods in Figure 11 demon-
strate the effectiveness of sparse unmixing algorithms in interpreting the considered real
hyperspectral datasets. As shown in Figure 11, the abundance maps (such as Buddingtonite)
produced by SUnSAL and SUnSAL-TV algorithms displayed many noisy points. The re-
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sults obtained using the SUnSAL-TV algorithm display an over-smoothness phenomenon,
particularly noticeable in the estimation of Alunite and Buddingtonite. Additionally, the
abundance map generated by DRSU algorithm has a mediocre performance in terms of
spatial consistency (e.g., Chalcedony). We can observe that compared to the DRSU-TV and
S2WSU algorithms, the abundance map generated by RDSWSU algorithm (such as Bud-
dingtonite) is more similar to the reference image and shows smaller noise, demonstrating
good spatial detail information. Considering qualitative criteria, it can be inferred that the
proposed RDSWSU method outperforms other methods in terms of interpretability for the
given real hyperspectral scene. To quantitatively assess the unmixing results in the real
hyperspectral data experiment, we introduce a new evaluation metric, known as sparsity.
This metric quantifies the ratio of elements in the estimated abundance that exceed 0.005 to
the total number of elements. A lower sparsity value indicates a more sparse unmixing
outcome, aligning with the expectations of sparse regression-based unmixing algorithms.
The sparsity achieved by SUnSAL, SUnSAL-TV, DRSU, DRSU-TV, S2WSU and RDSWSU
is 0.0682, 0.0743, 0.0428, 0.0422, 0.0421, and 0.0408 respectively. From these minor differ-
ences, we can infer that the proposed method represents the data with fewer components,
improving sparsity. This qualitative analysis indicates the potential of the newly proposed
RDSWSU algorithm to boost unmixing capabilities in real-world applications.

Figure 10. A mineral map provided by the USGS displays the distribution of various minerals within
the Cuprite mining district situated in Nevada.
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Figure 11. Abundance maps for the AVIRIS Cuprite scene estimated using different algorithms,
namely SUnSAL, SUnSAL-TV, DRSU, DRSU-TV, S2WSU, and RDSWSU.

5.2. Experiment on Houston Data

In addition, we have introduced another commonly used benchmark dataset, the
Houston dataset [56], for real hyperspectral data experiments to further demonstrate the
superiority of the proposed RDSWSU algorithm. The Houston dataset was acquired by
the ITRES CASI-1500 sensor over the University of Houston campus in June 2012 (Avail-
able online at http://hyperspectral.ee.uh.edu (accessed on 21 June 2023)). It comprises
170× 170 pixels, with 144 spectral bands spanning 364 nm to 1046 nm. Four endmem-
bers are present in the data: Running track, Parking lot1, Parking lot2 and Grass healthy.
Figure 12 shows the Houston data along with the real abundance maps and spectral signa-

http://hyperspectral.ee.uh.edu
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tures of the four endmembers. Notably, the endmember spectral library A3 ∈ R144×4 used
here only contains the actual spectral signatures of the four endmembers.
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Figure 12. The real abundance maps in the ground and spectra of the four endmembers.

Figure 13 presents the abundance maps estimated by the six unmixing methods
for the four endmembers. The obtained SRE (dB) values are 20.5499, 21.5405, 20.5757,
21.5473, 21.5537, and 21.5805 for SUnSAL, SUnSAL-TV, DRSU, DRSU-TV, S2WSU and
RDSWSU, respectively. The quantitative results demonstrate our proposed method achieves
comparable or slightly better performance versus other approaches. Notably, the differences
are marginal, largely owing to the endmember spectral library containing only the four
actual spectral signatures, which limits the full potential of weighted sparse unmixing
algorithms. Still, the stable results from our method signify its merits.
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Figure 13. Cont.
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Figure 13. Abundance maps for the Houston scene estimated using different algorithms.

6. Conclusions

This paper introduces a novel algorithm called robust dual spatial weighted sparse
unmixing (RDSWSU) to enhance the outcomes of sparse unmixing. The RDSWSU algo-
rithm presented in this study leverages superpixel-based spatial weighting and spatial
neighborhood weighting factors for effectively utilizing the spatial information embedded
in hyperspectral images. This can achieve accurate and stable unmixing results in high-
noise environments. Additionally, this method utilizes an inner and outer loop strategy
aimed at accelerating the convergence speed of the iterative optimization process of the
model. The experimental results obtained from simulated and real hyperspectral datasets
have showcased the remarkable capabilities of the proposed RDSWSU method. It exhibits
substantial potential in enhancing unmixing performance, particularly in high-noise sce-
narios. While the experimental results obtained in this study are highly promising, it is
important to acknowledge the need for conducting experiments on additional datasets in
order to comprehensively assess the effectiveness of the proposed algorithm. In future
endeavors, novel techniques such as low-rank prior [57] and deep learning [58] will be
employed to effectively leverage the intrinsic feature information in images. This approach
aims to enhance data interpretability and extract more valuable insights from the data.
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