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Abstract: This work evaluated the ability of UAVs to detect field heterogeneity and their influences
on vineyard development in Yepes (Spain). Under deficit irrigation, vine growth and yield variability
are influenced by soil characteristics such as water holding capacity (WHC). Over two irrigation
seasons (2021–2022), several vegetation indices (VIs) and parameters of vegetative growth and yield
were evaluated in two field zones. Multispectral and thermal information was obtained from bare
soils. The water availability showed annual differences; it was reduced by 49% in 2022 compared
to 2021, suggesting that no significant differences were found for the parameters studied. The zone
with higher WHC also had the higher vegetative growth and yield in 2021. This agreed with the
significant differences among the VIs evaluated, especially the ratio vegetation index (RVI). Soil
multispectral and thermal bands showed significant differences between zones in both years. This
indicated that the soil spectral and thermal characteristics could provide more reliable information
for zoning than vine vegetation itself, as they were less influenced by climatic conditions between
years. Consequently, UAVs proved to be valuable for assessing spatial and temporal heterogeneity
in the monitoring of vineyards. Soil spectral and thermal information will be essential for zoning
applications due to its consistency across different years, enhancing vineyard management practices.

Keywords: unmanned aerial vehicle (UAV); vineyards; VIs; spatial variability; zoning

1. Introduction

Viticulture increasingly requires information to optimise agricultural activities based
on the variability of vineyards. Variations in environmental factors, topography, and
characteristics of soils influence vine development [1]. Knowledge of this variability is
necessary to manage each homogeneous unit independently, providing optimal inputs to
each one. In this way, the highest grape production and quality at the lowest cost can be
obtained [2].

Soil properties are one of the most critical parameters that determine vineyard devel-
opment variability. The soil provides the vine with structural support, nutrients, and water.
Some crucial aspects of vine development depend on the capacity of the soil to provide
them, affecting physiology, production, and grape ripening dynamics [3].

In the central region of Spain, where irrigation limitations can be an issue, soil proper-
ties are the primary source from which grapevines extract water. Soil texture influences
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soil water holding capacity (WHC) and, consequently, the progressive water release for
vine root uptake [4]. This influence is even more decisive under deficit irrigation, a practice
commonly applied in the study area. In soils characterised by low WHC, irrigation is a
crucial element in mitigating the adverse effects of climate change [5].

Correct soil zoning is essential to manage a crop according to its corresponding
zone’s productive capacity and limitations [6]. In this way, growers can apply site-specific
management strategies instead of implementing the same management practice throughout
a whole vineyard, especially for irrigation management [7].

Sensors onboard drones (UAVs) are one solution to assess spatial and temporal hetero-
geneity in the development of woody crops. In these cases, vegetation does not entirely
cover the surface of the soil, and the resolution provided by satellites is currently not
less than 1 m. Higher resolution is necessary for trellis crops such as vineyards [8]. The
variability of the vines can be observed through multispectral images, which have shown
a correlation with several plant biophysical parameters [9]. Vegetation indices (VIs) can
enhance vegetation cover based on its spectral response through algebraic operations of
spectral bands [10–12].

At the same time, multispectral information with high resolution allows soil character-
isation. Soil, like vegetation, has a spectral signature. Several studies have evaluated the
usefulness of land surface spectral variation for the spatial prediction of soil attributes at a
regional scale [13,14]. Remotely sensed soil data using spectral and colour photographs
have been helpful for creating different field-extent soil property maps using different pre-
diction models [15]. Knowledge of the soil and its relationship with vine growth and vigour
is crucial for crop management [16,17]. However, to obtain conventional soil mapping,
it is necessary for an expert surveyor to conduct fieldwork using aerial photo interpreta-
tion, topography, and vegetation maps [18]. Information on the soil and vegetation from
high-resolution images makes it possible to generate maps that can be used for crop zoning
based on the performance of crops [15,19], and to determine homogeneous management
zones in vineyards.

Previous research has explored the generation of soil map zoning in vineyards using
various approaches. Most studies have considered multi-temporal contexts and pheno-
logical stages of grapevines [20]. In contrast, others have used NDVI maps [21] and
advanced algorithms to extract pure canopy multispectral information using sensor on-
board UAVs [22] or aerial platforms [23] to generate vigour maps. Certain studies have
also examined the use of soil physical properties to identify zones with similar plant yields
based on vegetation indices (VIs) and vine water status [4]. Other studies have combined
field-scale apparent soil electrical conductivity (ECap) and NDVI maps to select different
fertility zones within vineyards [24,25].

Although these studies have commonly relied on multispectral data from plants to
create homogeneous management zones, some have incorporated information on soil
properties through field samples or nearby sensors. However, the potential utility of
thermal and multispectral data from soils in determining differentiated zones within the
vineyard has not yet been fully explored.

This study aimed to evaluate the potential of UAV sensors for detecting spatial and
temporal heterogeneity in vineyards. This research assessed vine development in soils
with varying hydraulic characteristics under the same management practices by comparing
data collected from an UAV and conventional field techniques over different climatic years.
Understanding the capabilities of UAVs to distinguish vine responses and soil types could
provide valuable insights for creating zoning maps and improving vineyard management
practices.

2. Materials and Methods

The flowchart in Figure 1 shows the organisation of the data obtained in this study.
The data collected from soil and vines in the field were compared to the data obtained from
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an UAV. The objective was to evaluate the UAV’s sensitivity to soil heterogeneity and vine
response.
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Figure 1. Flowchart of the different sources of information used to describe the spatial and temporal
heterogeneity in a commercial vineyard in Yepes-Toledo.

2.1. Site and Vineyards Description

The commercial vineyards were in Yepes, Toledo (Spain), located at 39◦56′25.8′′ N
3◦43′22.4′′ W (WGS84, UTM zone 30 N), at an altitude of 570 masl, with an extension of
around 40 ha. An experimental zone of 13,900 m2 was selected for this study.

Twenty-year-old Merlot grapevines (Vitis vinifera L.), grafted on SO4 (Selection Op-
penheim 4) rootstock, are grown in the selected area. Vine rows are oriented northeast and
arranged on a trellis, with a plantation frame of 2.60 × 1.10 m. The study was conducted
during the 2021 and 2022 irrigation seasons.

A weather station in Magán provided temperature, rainfall, and ETo data (Toledo,
505 masl, latitude 40◦2′5.81′′ N and longitude 3◦20′3.49′′ W, Huso UTM30 Coord) (Figure 2).
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Figure 2. Monthly rainfall, reference evapotranspiration, and minimum and maximum temperatures
from October 2020 until September 2022 located in the experimental vineyard (Toledo, Spain).

The site’s climate is Mediterranean, with warm, dry summers and mild winters. The
average daily temperature is 15.3 ◦C. The area is characterised by low average rainfall
(338.4 mm) and high evaporative demand (1350 mm).
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Irrigation was applied with one drip emitter for each meter with an application rate
of 2l h−1. It was scheduled according to the standard practices followed by the Bodegas
Casa del Valle, i.e., with limited time intervals. The irrigation started on 17 May 2021 and
finished on 27 August 2021. In 2022, the irrigation started on 23 June 2022 and finished on
01 September 2022. The amounts of water applied during the irrigation season was 131
and 79 mm in 2021 and 2022, respectively.

2.2. Preliminary Zoning Map and Soil Properties

A photo interpretation was applied based on historical vineyard maps over 30 years
of evolution of the National Aerial Orthophotography Plan. Different homogeneous zones
were identified.

The zoning was carried out by considering two criteria: (i) the soil colour difference
and (ii) the zones with different colours having a representative area (higher than 100 m2).
The criteria both ensured adequate simplicity and representativeness of the area (Figure 3a).
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Figure 3. (a) Aerial photograph of the experimental vineyard. Lines indicate the preliminary soil
zoning of the commercial vineyard, the red rectangle indicates the experimental zone, the locations of
the two soil trenches (ST1 and ST2) are indicated with red points; (b) soil map details corresponding
to the experimental zone’s final zoning in the vineyard (Toledo, Spain).

The final soil map of the vineyard plots was obtained following the standards of Order
1 of Soil Surveys included in the USDA Soil Survey Manual [26], with 0.5 soil observations
per hectare among soil trench and manual auger probes. Soil map units were delineated by
aerial photo interpretation of aerial photograms and orthophotos. The spatial resolution
was 0.25 metres/pixel using geomorphological criteria, mainly relief and lithology, accord-
ing to photographic patterns associated with defined textures and tones. Soil boundary
lines were fitted using remote sensing data and the digital terrain model (2 m pixel size).
Once the zones were delimited (black box) (Figure 3b), in a 13,900 m2 experimental zone,
two soil trenches (ST1 and ST2) were dug at representative points.

Properties of the horizons of two different soils in one trench each (ST1 and ST2) were
described following soil surveys included in the USDA Soil Survey Manual [25], which
allowed the soil to be classified [27]. Several soil properties for each horizon were analysed:
texture, depth, organic matter (OM), electrical conductivity from the saturated paste extracts
(1:2.5 ratio) (ECe), pH, active limestone, and total nitrogen. For these measurements, three
repetitions of each sample were analysed. The available water (AW, mm) and soil WHC
(mm) were calculated as follows:

AW =Hd×(aw/100)× BD× 1000 (1)

WHC = AW× ((100−GV)/100) (2)
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where aw is the available water (% weight) obtained as differences between water content
at −0.33 bar (field capacity) and −15 bar (wilting point), BD is the bulk density (t/m3), Hd
is the horizons depth (m), and GV is the gravel (particle size greater than 2 mm) (% vol).

2.3. Physiological and Agronomical Parameters

The main phenological stages (budburst, flowering, veraison, and harvest-ripe stages)
were defined using the phenological scale of Eichhorn and Lorenz (1977), modified by
Coombe (1995) [28]. The physiological and agronomical parameters were measured in
12 experimental vines established in the study soils (ST1 and ST2), with six plants per soil
trench.

Physiological parameters such as the stem water potential (SWP) and chlorophyll
content (Chl) were measured in the 12 experimental vines at 9 and 12 h solar time for
9 days (25 June 2021, 5 July 2021, 20 July 2021, 30 July 2021, 18 August 2021, 30 June 2022,
15 July 2022, 5 August 2022, and 12 August 2022). SWP was assessed in healthy mature
shaded leaves enclosed for 1 h in aluminium foil bags to reach the water status equilibrium
between leaf and stem. SWP was measured using a Scholander pressure chamber (Soil
Moisture Equipment Corp., Santa Barbara, CA, USA).

Chl was simultaneously measured in three leaves per each experimental vine using an
Apogee MC-100 instrument (Apogee Instruments, Inc., Logan, UT, USA) on the same days
and times as the SWP assessment.

The canopy was described for 12 experimental vines on 28 June 2021 and 20 June 2022.
A flexible tape measured the total canopy contour at three different points of each vine: the
trunk and 40 cm apart to both sides. The positions of the highest and lowest leaves were
noted at the same points. The canopy width was measured at each point at three different
heights (80, 110, and 120 cm). These data were used to calculate the external surface area
(ESA) and canopy volume. Leaf density was estimated as a canopy gap. A vine canopy
photo of each experimental vine with a red blanket in the back was taken to delimit it
(Figure 4). Using ImageJ software (Wayne Rasband., Bethesda, MD, USA), the photos were
binarized to calculate the gaps in the canopy.
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The experimental vines were harvested on 20 August 2021 and 16 August 2022, pro-
duction was weighed, and bunches were counted. One hundred berries per experimental
vine were sampled at harvest. Samples were put into tagged plastic bags, placed in a
portable cooler with ice, and taken to the laboratory. They were immediately weighed
and processed to determine total soluble solids (◦Brix) using an Atago refractometer Brix
digital (ATAGO CO., LTD., Tokyo, Japan) and total acidity using an automatic neutraliser
702 SM Titrino (Metrohm AG, Herisau, Switzerland) and a pH meter Hach sensION (Hach
company, Loveland, CO, USA), according to Glories (2001) method. Therefore, the final
values corresponded to the harvest date of each year.
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2.4. UAV Images

The eBee SenseFly fixed-wing UAV platform (AgEagle Aerial Systems Inc. Wichita,
Kansas), equipped with a Parrot Sequoia multispectral sensor (Parrot© SA, 2017, Paris,
France) and a Duet-T sensor (AgEagle Aerial Systems Inc., Wichita, Kansas), was used
to collect multispectral and thermal data. The UAV surveys were conducted by flying
120 m above ground level at 12 solar time to avoid the shadow effect. An average 0.148 m
multispectral and 0.16 m thermic pixel−1 ground image resolution was obtained.

UAV flight parameters were as follows: speed of 50 km/h; overlap Duet-T sensor,
lateral overlap of 80% and longitudinal overlap of 80%; overlap Multispectral sensor, lateral
overlap of 70% and longitudinal overlap of 70%.

The multispectral sensor had four bands: green (530–570 nm), red (640–680 nm),
red edge (730–740 nm), and near-infrared (NIR) (770–810 nm) bands. Before the flight,
a dedicated Sequoia equipment calibration plate was recorded with the Parrot Sequoia
camera to normalise the local lighting. The thermal sensor included a high-resolution
thermal infrared camera and a senseFly SODA RGB camera. The images were recorded
during clear sky conditions.

The multispectral sensor was used to obtain soil information on 17 May 2021 and
19 May in 2022. The thermal sensor was used to obtain soil information on 15 May and
20 July in 2021 and on 17 May and 15 July in 2022. The multispectral sensor was used to
obtain canopy information on 25 June, 5 July, 20 July, 30 July, and 18 August in 2021 and
30 June, 15 July, 05 August, and 12 August in 2022.

The experimental vines were identified using QGIS 3.4 software (QGIS, Free Software
Foundation, Boston, MA, USA). Each canopy vine was delimited, and 12 squares (one
square for each plant) of 0.30 × 0.30 m were extracted (Figure 5a), avoiding the effects
of shadows and soil components. The number of pixels obtained with the multispectral
camera was 4–6 pixels/vine.
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The soil near the experimental vines was delimited in three rectangles of 0.19 × 15 m
per ST (Figure 5b). The total number of pixels per soil was 520–530 pixels/ST for the
multispectral sensor and 340–350 pixels/ST for the thermal sensor.

Vegetation Indices

The following VIs were calculated for the vine canopy and soil (NDVI, GNDVI, and
RVI, calculated for the soil).

The normalised difference vegetation index (NDVI) is an index that quantifies the
amount of vegetation in an area and its health [29]. It relates the reflected radiation in
the red and near-infrared (NIR) bands of the electromagnetic spectrum. Its expression is
as follows:

NDVI = (NIR − Red)/(NIR + Red) (3)

Among the many available VIs, the NDVI is the most widely used [30].
The green normalized difference vegetation index (GNDVI) is computed similarly to

the NDVI. The green band is used instead of the red band [31]. It is related to the proportion
of photosynthetically absorbed radiation, and is linearly correlated with the leaf area index
(LAI) and biomass [30]. Thus, the GNDVI is more sensitive to the chlorophyll concentration
than the NDVI, and ranges from 0 to 1.0 [32]:

GNDVI = (NIR × Green)/(NIR + Green) (4)

The ratio vegetation index (RVI) indicates plant canopy vigour [33], based on the princi-
ple that leaves absorb relatively redder than infrared light, and is expressed
as follows:

RVI = NIR/Red (5)

The NDVI is not always the most accurate choice for detecting crop anomalies. This
index does not consider the red edge band. This zone marks the limit between absorption
by chlorophyll in the red band and scattering due to internal leaf structure in the NIR
band [34]. The red edge position is susceptible to changes in vegetation properties, which
researchers can easily exploit [30]. Similar to the NDVI, the normalised difference red edge
(NDRE) is defined as:

NDRE = (NIR − RedEdge)/(NIR + RedEdge) (6)

The optimised soil-adjusted vegetation index (OSAVI) uses a soil adjustment coefficient
(0.16) as the optimal value to minimise variation with the soil background [35]. In terms
of performance, it is similar to other indices of the SAVI class, and its chief advantages
are its simplified formulation and the lack of a requirement for a priori knowledge of the
soil type. The residual variation in the OSAVI is due to the soil being evenly spread across
the full range (0–1) of the crop ground cover, making this index particularly suitable for
agricultural applications [36]. It is expressed as:

OSAVI = (NIR − Red)/(NIR + Red + 0.16) (7)

Thermal and multispectral data were subjected to analysis of variance (ANOVA) using
Infostat version 1.5 (National University, Córdoba, Argentina). The means were separated
using the LSD test (<0.05) for statistical differences. A Wilcoxon non-parametric test was
used to assess differences between the mean physiological and agronomical data, using the
R studio statistical software (RStudio Inc., Boston, MA, USA).

3. Results
3.1. Environmental Conditions

The years2021 and 2022 were both characteristic of the Mediterranean area (Figure 2).
August was the hottest month in 2021 (Tmean 27.5 ◦C), and July was the hottest month
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in 2022 (Tmean 29.8 ◦C). January was the coldest (Tmean 2.3 and 4.7 ◦C in 2021 and 2022,
respectively). The highest temperature (44 ◦C) was recorded on 14 August 2021, and the
lowest temperature (−15 ◦C) was recorded on 12 January 2021.

Annual rainfall was similar between years (Figure 2). It rained 348.7 and 348.3 mm
in 2021 and 2022, respectively. Rainfall occurred mainly in April, September, and October
2021. However, in 2022, most of the precipitation occurred in March and April. The 2022
autumn season was drier compared with the previous year. During the experimental period
(May–August), the conditions were highly evaporative with high cumulative ETo (1284 and
1395 mm in 2021 and 2022, respectively), and available water was scarce (rain + irrigation
were 175 and 89 mm in 2021 and 2022, respectively). The irrigation was applied from
17 May 2021 to 27 August 2021 and from 23 June 2022 to 1 September 2022. The amounts of
water used during the irrigation season were 131 and 78 mm in 2021 and 2022, respectively.
In 2022, there were 40 and 49% reductions in irrigation and rain + irrigation, respectively,
compared to 2021, due to low water availability during this year. In both years, water
provided by irrigation was insufficient to cover the high evaporative demands, and deficit
irrigation was used.

3.2. Soil Zone Mapping

In the preliminary soil zoning performed in the commercial vineyard using photo
interpretation, seven different soil types were observed in the experimental plot. This is
delimited by the red box (Figure 3a). The information obtained from two soil trenches
through the observation and analysis of samples from the different layers of the profiles
(Figure 6) reduced the zoning classification to two monotaxic soil map units. Figure 3b
shows the experimental zone plot with the final zoning lines. Soils in “A” correspond to
coarse-loamy, gypsic, mesic Typic Calcixerepts, and soils in “B” correspond to coarse-loamy,
mixed, active, mesic Calcic Haploxeralfs. The area of zone “A” was 7315 m2 and the area of
zone “B” was 6535 m2.
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3.3. Soil Characteristics

The soil trenches, ST1 and ST2, both showed differences in essential parameters such
as lithology, geomorphology, orientation, and slope (Table 1). The slope of both soils was
similar (5.6%) and considered to be steep and slightly steep by FAO (2009). ST2 was in a
concave position located 2.5 m higher than ST1. ST1 was in a convex position. The ST1
stoniness was higher than in ST2. The parental material in ST1 was detrital and carboned
plasters. In ST2, it was sand and silt.

Table 1. Macromorphological characteristic of the horizons of two soil trenches (ST1 and ST2) located
in the experimental vineyard (Toledo, Spain).

Soil Trench Altitude Parent Material Geoform Position Orientation Slope
(%) Stoniness

ST1 569.3
a.m.s.l

Detrital and
carbonated plasters

Ridged
relief

Average slope
(Convex − ∩) E (79, 8◦) 5.6 10%, irregular

limestone, 2–12 cm Ø

ST2 571.8
a.m.s.l Sands and silts Glacis Low slope

(Concave − ∪) NE (41, 9◦) 5.6 8%, irregular
limestone,2–8 cm Ø

Visual observation of both soil profiles (Figure 6) showed the differences in colour,
horizon depth, and texture between ST1 and ST2 (Table 2). The first horizons in ST1 were a
light yellowish brown, corresponding to Jaroisita soils.

Table 2. Physical properties of the horizons of two soil trenches (ST1 and ST2) located in the
experimental vineyard (Toledo, Spain). Three repetitions of each sample.

Soil Trench
Texture

(%) Texture
Class

Diagnostic
Horizon Colour

Clay Silt Sand

ST1

Ap (0–25 cm) 20.7 30.9 48.4 Loam Ochric 2.5Y6/3 wet and 2.5Y8/2 dry
Bw1 (25–50 cm) 13.8 24.4 61.8 Sandy loam Cambic 7.5YR6/4 wet and 7.5YR7/3 dry
Bw2 (50–70 cm) - - - - Cambic 5Y6/4 wet and 5Y7/3 dry
Ck (70–130 cm) 11.4 28.3 60.3 Sandy loam Calcic 5Y5/4 wet and 5Y6/3 dry

ST2

Ap (0–25 cm) 14.0 21.9 64.1 Sandy loam Ochric 10YR4/4 wet and 10YR5.5/4 dry
A12 (25–70 cm) 14.2 16.3 69.5 Sandy loam Ochric 10YR3.5/3 wet and 10YR5/4 dry
Bt (70–95 cm) 17.8 8.8 73.4 Sandy loam Argillic 10YR6/6 wet and 10YR7/3 dry

Ck (95–125 cm) - - - Sandy loam Calcic 7.5YR6/8 wet and 7.5YR7/4 dry

The first horizon in ST2 (Ap) showed a reddish matrix proper for soils with ferric
properties. The A12 horizon was darker than Ap (between brown and black).

The first horizon of ST1 was an ochric diagnostic horizon (Ap). The following two
horizons (Bw1 and Bw2) were cambic. ST2 was observed in two first horizon ochric (Ap and
A12), and the third horizon was Cambic. The soils both presented a Ck horizon considered
to be diagnostic horizon calcic.

The texture observed in the profile of both soils differed in the first horizon. Clay and
silt in ST1 were 18 and 31% higher than in ST2, respectively (Table 2). Sand in ST2 was 21%
higher than in ST1. The other horizons in both soils were a sandy loam texture.

The differences in texture and depth of the horizons determined the WHC (Table 3).
The WHC values were 175 and 122 mm in ST1 and ST2, respectively. The WHC of ST1 was
43% higher than ST2. Moreover, the soil’s average available water (AW) of the horizons
were 12.3 and 7.3%, respectively. ST1 showed 74% higher gravel than ST2. The average
bulk density and soil depth in both soil horizons were similar.
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Table 3. Properties of the horizons and calculation of available water and water retention of two
soil trenches (ST1 and ST2) in the experimental vineyard (Toledo, Spain). Three repetitions of
each sample.

Horizons Depth (m)
Bulk

Density
(t/m3)

Available
Water

(% w/w)

Gravel
(%vol) Available Water (mm) Water Retention(WHC)

(mm)

ST1
Ap 0.25 1.42 8 27.8 28.4 20.5
Bw1 0.25 1.45 11 38.1 39.9 24.7
Bw2 0.15 1.45 13 19.5 37.7 30.4
Ck 0.50 1.45 17 19.5 123.3 99.2
Total 1.15 174.8

ST2
Ap 0.25 1.45 9 11.1 31.3 27.8
A12 0.45 1.45 8 9.9 52.2 47.0
Bt 0.26 1.45 6 3.2 22.6 21.9
Ck 0.30 1.45 6 3.2 26.1 25.3
Total 1.25 122.0

The soil pH was basic in both soils (>8.5) (Table 4). The saturated soil paste’s elec-
trical conductivity (ECe) in ST1 was 63% higher than in ST2. The Ck horizon in ST1
was 1.10 dS/m, classifying it as a saline horizon. The other horizons had EC values
below 0.35 dS/m, which qualified them as non-saline. A saline horizon in ST1 did not
affect vine production in this soil. The average organic matter (OM) contents in the horizons
were 0.95 and 0.79 (g/100 g) in ST1 and ST2, respectively. The horizons’ average of active
limestone and cation exchange capacity (CEC) in ST1 were 42 and 63% higher than in ST2.
The higher CEC values in the first horizon of ST1 were related to a higher percentage of
clay, organic matter, and nitrogen. The mean concentrations of nitrogen of the horizons
were 0.08 and 0.07 (g/100 g) for ST1 and ST2, respectively. The Ap horizon in ST1 had a
higher N value (0.120 g/100 g).

Table 4. Chemical properties of horizons of two soil trenches (ST1 and ST2) located in the experimental
vineyard (Toledo, Spain). Three repetitions of each sample.

Soil Trench Active Limestone
(g/100 g)

CE.
(ext. 1:5 dS/m)

CEC
(cmol(+)/kg)

pH
(ext. 1:2.5 H2O)

O.M.
(g/100 g)

N Total
(g/100 g)

ST1

Ap (0–25 cm) 11 0.21 13.4 8.6 2.15 0.120
Bw1 (25–50 cm) 13 0.19 5.3 8.8 0.54 0.044
Bw2 (50–70 cm) - - - - - -
Ck (70–130 cm) 7 1.10 20.7 8.1 0.15 0.058

ST2

Ap (0–25 cm) 5 0.15 10.3 8.5 1.45 0.087
A12 (25–70 cm) 5 0.18 10.4 8.6 0.72 0.058
Bt (70–95 cm) 8 0.22 4.8 8.6 0.20 0.037

Ck (95–125 cm) - - - - - -

In summary, the differences between soils were related to water retention. The WHC
of ST1 was 43% higher than ST2 due to the fine texture (clay and silt) and higher content
in OM.

3.4. Physiological and Agronomical Parameters

The phenological evolution was different between years. Budburst occurred on
25 March 2021 and 10 April 2022, flowering on 6 May 2021 and 15 May 2022, veraison on
30 July 2021 and 21 July 2022, and harvest-ripe on 20 August 2021 and 16 August 2022.
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The canopy development was different in both years (Table 5). In 2021, the ST1 vine
profile was 22% higher than that of the ST2 vines. In 2022, no differences were observed.

Table 5. Plant vegetative growth: canopy profile, width, height, ESA, volume, gaps (%), and pruning
wood of vines (PW) in two soil trenches (ST1 and ST2) located in the experimental vineyard (Toledo,
Spain). Each value represents an average of six vines per soil type. SD, standard deviation.

ST1 ST2 ST1 ST2

2021 2022

Profile (m) 2.3 1.8 * 1.72 1.82 ns
SD 0.21 0.11 0.24 0.09

Width (cm) 61.1 66.1 ns 95 79 ns
SD 9.47 8.51 15.47 3.12

Height (cm) 93 92 ns 94 86 ns
SD 14.8 9.24 2.89 12.81

ESA (m2) 2.5 2.4 ns 3.1 2.7 ns
SD 0.18 0.24 0.35 0.13

Volume (m3) 0.69 0.67 ns 0.99 0.75 ns
SD 0.10 0.12 0.17 0.10

Gaps (%) 15 39 ** 29.7 36.5 ns
SD 3.11 5.22 5.11 5.05

PW (kg/vines) 0.18 0.18 ns 0.14 0.19 ns
SD 0.03 0.10 0.04 0.10

Levels of statistical significance (Sig.): ns, non-significant; * p < 0.05; ** p < 0.01.

In 2021, the gaps in the ST2 vines were 160% higher than in the ST1 vines. In 2022,
these differences were not significant. However, gaps in the ST1 vines increased by 98%
from the previous year. Gaps in the ST2 vines were similar in both years (39 and 36.5% for
2021 and 2022, respectively). The evolution of the canopy development was evaluated in
2022 (20 June 2022). No significant differences were noted between ST1 and ST2 in canopy
width, height, ESA, and volume. However, for these parameters, the ST1 vines had values
slightly higher than those of the ST2 vines.

No significant differences between ST1 and ST2 were observed in pruning wood (PW)
weight any year. However, in 2022, the PW weight was reduced by 22 and 11% compared
to 2021 in ST1 and ST2, respectively.

The SWP values at 9:00 solar time for the ST1 and ST2 vines significantly differed
on 30 July 2021 and 18 August 21. In 2022, they differed only on 15 July 2022 (Table 6).
On 30 July 2021, the ST1 vines had 34% higher values than the ST2 vines. Meanwhile, on
15 July 2022, the ST1 vines were 23% lower than the ST2 vines. The annual average of
the ST1 vines showed a higher value in 2021 (−0.67 MPa) compared to the ST2 vines
(−0.77 MPa). Thus, in 2022, the annual average of the ST1 vines was lower than that of the
ST2 vines (−1.31 MPa and −1.25 MPa, respectively), but was not significantly different.

No significant differences were observed in the SWP readings obtained at 12:00 solar
time in 2021. The annual averages of the ST1 and ST2 vines were −0.99 and −1.04 MPa,
respectively. In 2022, there were significant differences on the first day of the irrigation
season (30 June 2022), but not in the other measurements or the average. In 2022, the mean
SWP was lower than in 2021 for both measurement hours.

At 9:00 hours in 2021, differences in chlorophyll between vines were observed on
18 August 2021, but not in the mean value (Table 7). However, in 2022, the ST2 vines’ values
were significantly higher than the values of the ST1 vines on 15 July 22 and 12 August 22.
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Table 6. Stem water potential (MPa) measured at 9 and 12 h (solar time) on the days of the UAV flight
of vines of the two soil trenches (ST1 and ST2) located in the experimental vineyard (Toledo, Spain).
Each value represents an average of six vines per soil type. SD, standard deviation.

Dates
SWP (MPa)

(9 h)
SWP (MPa)

(12 h)
ST1 ST2 ST1 ST2

25 June 2021 −0.53 −0.57 ns −0.88 −0.84 ns
SD 0.07 0.13 0.07 0.08

5 July 2021 −0.86 −0.88 ns −0.84 −0.94 ns
SD 0.23 0.22 0.10 0.14

20 July 2021 −0.59 −0.64 ns −0.99 −0.98 ns
SD 0.03 0.03 0.03 0.02

30 July 2021 −0.65 −0.87 ** −1.01 −1.01 ns
SD 0.04 0.03 0.09 0.04

19 August 2021 −0.73 −0.90 ** −1.3 −1.5 ns
SD 0.03 0.04 0.19 0.03

Average 2021 −0.67 −0.77 ** −0.99 −1.04 ns

30 June 2022 −1.07 −0.9 ns −1.0 −1.2 *
SD 0.103 0.16 0.11 0.14

15 July 2022 −1.17 −0.92 * −1.14 −1.10 ns
SD 0.16 0.09 0.14 0.14

5 August 2022 −1.42 −1.41 ns −1.53 −1.47 ns
SD 0.13 0.12 0.10 0.23

12 August 2022 −1.47 −1.59 ns −1.58 −1.68 ns
SD 0.09 0.11 0.18 0.21

Average 2022 −1.31 −1.25 ns −1.43 −1.47 ns
Levels of statistical significance (Sig.): ns, non-significant; * p < 0.05; ** p < 0.01.

Table 7. Leaf chlorophyll content (micromol/m2 foliar surface), measured at 9 and 12 h (solar
time) on the days of the UAV flight, of vines of the two soil trenches (ST1 and ST2) located in the
experimental vineyard (Toledo, Spain). Each value represents an average of six vines per soil type.
SD: Standard Deviation.

Dates
Chl (Micromol/m2)

(9 h)
Chl (Micromol/m2)

(12 h)
ST1 ST2 ST1 ST2

25 June 2021 17.1 17.6 ns 14.90 ns 15.40 ns
SD 3.43 2.56 2.64 4.07

5 July 2021 16.1 19.9 ns 17.53 17.25 ns
SD 4.29 1.87 2.15 6.62

20 July 2021 17.6 20.0 ns 19.73 21.38 ns
SD 1.52 2.11 2.80 2.69

30 July 2021 17.9 19.3 ns 19.88 20.43 ns
SD 0.67 4.37 2.68 3.99

19 August 2021 16.2 20.5 * 21.00 20.80 ns
SD 1.96 2.75 2.89 3.02

Average 2021 18.63 19.08 ns 16.98 19.45 ns

30 June 2022 13.29 15.64 ns 13.50 16.53 *
SD 1.71 2.75 1.12 1.39
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Table 7. Cont.

Dates
Chl (Micromol/m2)

(9 h)
Chl (Micromol/m2)

(12 h)
ST1 ST2 ST1 ST2

15 July 2022 14.71 17.63 ** 14.20 17.75 **
SD 1.02 1.32 1.26 1.20

5 August 2022 15.96 18.02 ns 16.47 18.46 ns
SD 1.78 1.95 1.56 1.12

12 August 2022 13.87 17.18 * 14.95 17.11 ns
SD 1.16 3.05 1.51 2.65

Average 2022 14.76 17.30 ** 15.03 17.83 **
Levels of statistical significance (Sig.): ns, non-significant; * p < 0.05; ** p < 0.01.

The chlorophyll values at 12 h were increased in all vines compared with the 9 h
measurements. In 2021, no significant differences were observed between ST1 and ST2. In
2022, SWP readings in the ST2 vines were 19% higher than in the ST1 vines.

At both hours of measurement, chlorophyll was lower in 2022 compared to 2021.
In 2021, the ST1 vines produced a significantly higher number of bunches (72%), and

yield was three times higher than in ST2 (Table 8), but not in 2022. Concerning quality,
significant differences were only observed in total acidity in 2021. Vines in ST1 presented
17% higher acidity than those in ST2.

Table 8. Yield parameters and maturity parameters. Bunches, number of bunches per vine. Yield
(kg/vine). SC, soluble solids content (◦Brix); pH; TA, total acidity (g of tartaric·L-1) of vines of the
two soil trenches (ST1 and ST2) located in the experimental vineyard (Toledo, Spain). Each value
represents an average of six vines per soil type. SD, standard deviation.

ST1 ST2 ST1 ST2

2021 2022

Bunches (#) 71 20 ** 63 56 ns
SD 12.3 19.6 18.7 19.7

Yield (kg/vines) 3.56 1.22 * 1.54 2.10 ns
SD 0.75 1.04 0.68 0.79

SST (◦Brix) 26.7 29.3 ns 26.6 27.0 ns
SD 0.76 2.04 0.3 1.6

pH 3.37 3.48 ns 3.43 3.41 ns
SD 0.05 0.08 0.38 0.09

TA 6.34 5.26 ** 5.24 5.33 ns
SD 0.44 0.22 0.35 0.18

Levels of statistical significance (Sig.): ns, non-significant; * p < 0.05; ** p < 0.01.

3.5. Soil Thermal and Spectral Characteristics

Soil temperature measured with the thermal camera significantly differed between
soils (Table 9). The average temperature difference between the two soil trenches for both
years was 1.8 ◦C. ST1 presented lower temperatures than ST2 in both seasons. The most
significant differences were observed on 20 July 2021 between soils (ST1 = 53 ◦C and
ST2 = 56 ◦C). The maximum value was observed on 20 July 2021, with 3 ◦C difference. The
mean temperature of ST2 was 2.5 ◦C higher than that of ST1.
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Table 9. The soil surface temperature of nearby experimental vines (ST1 and ST2) in the vine-
yard (Toledo, Spain). Each value represents an average of 300 pixels for each soil type. SD,
standard deviation.

Soil
Temperature

17 May 2021 20 July 2021 19 May 2022 15 July 2022

ST1 43.4 52.9 51.1 59.3
SD 0.76 2.04 1.04 1.27

ST2 45.2 55.9 51.4 61.6
SD 0.75 1.43 1.17 1.43

Sig ** ** * **
Levels of statistical significance (Sig.): ns, non-significant; * p < 0.05; ** p < 0.01.

The multispectral response differed between soils (Figure 7). The distribution of the
pixel histogram in the red edge, NIR, and green bands showed a clear separation between
soils in both years. In 2021, no significant differences were observed in the red band, while
in 2022, differences did appear.
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correspond to 2021 (−21), and the rest correspond to 2022 (−22). The bands are red edge (a,e); red
(b,f); NIR (c,g); and green (d,h).

Band reflectance values for the ST1 soil were significantly higher compared to ST2.
The NIR, green, and red edge reflectance of ST1 were 18, 16, and 16% higher than those of
the ST2 vines, respectively. The maximum difference values were observed in the red edge
band (ST1 = 0.42 and ST2 = 0.35) in 2021.



Remote Sens. 2023, 15, 4024 15 of 22

In 2022, the red, NIR, green, and red edge bands of ST1 were 20, 20, 29, and 22% higher
than those of the ST2 vines. The most significant differences between vines were observed
on the green band (ST1 = 0.20 and ST2 = 0.14). The green and red edge bands showed the
highest differences between soils in both years.

The green band showed these differences with some overlap between soil pixels, but
the soils were still significantly different in 2021. The NDVI, RVI, and GNDVI values
showed significant differences between soils in 2021 (Figure 8). In ST1, they were 34, 18,
and 59% higher than in ST2. In 2022, only the GNDVI value showed significant differences.
ST1 was 85% higher than ST2. No significant differences were observed in the NDVI and
RVI values.
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Figure 8. Vegetation indices of two soil trenches (ST1 and ST2) located near the experimental vines
(Toledo, Spain). The first row corresponds to 2021, and the second row corresponds to 2022. The
indices are NDVI (a,d); RVI (b,e); and GNDVI (c,f). Levels of statistical significance (Sig.): ns,
non-significant; * p < 0.05; ** p < 0.01. Statistics are based on 500 pixels for each soil trench (ST1
and ST2).

In summary, the differences in soil spectra images did not depend on the year. The
green, red edge, and NIR bands differentiated the two soil types. The largest VI differences
between soils were observed in the GNDVI.

3.6. Vegetation Spectral Characteristics

The VI values obtained from the multispectral images of vine canopies differed within
the vines in ST1 and ST2 soils (Table 10). In 2021, all VI values of the ST1 vines were
significantly higher than those of the ST2 vines. The maximum values of four of the
VIs calculated were found on 20 July 2021 in the ST1 vines (NDVI = 0.83, RVI = 10.48,
OSAVI = 0.74, and GNDVI = 0.76).

The RVI, NDVI, and OSAVI values of the ST1 vines were 55, 10, and 11% higher than
those in the ST2 vines. The lowest values of the VIs occurred in the S2 vines (NDVI = 0.73,
RVI = 6.5, and OSAVI = 0.64) at harvest, and the differences between vines were reduced.
At this measure, the VI values of the ST1 vines were 5, 17, and 3% higher than those of the
ST2 vines for the NDVI, RVI, and OSAVI, respectively. The mean 2021 values of the NDVI,
RVI, and NDRE were significantly different between the ST1 and ST2 vines.
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Table 10. VIs at 12 h (solar time) in the days of the UAV flight of vines of the two soil trenches (ST1
and ST2) located in the experimental vineyard (Toledo, Spain). Each value represents an average of
4–5 pixels/vines for six vines per soil type. SD, standard deviation.

Dates Vines NDVI RVI OSAVI GNDVI NDRE

25 July 2021
ST1 0.84 11.33 0.75 0.74 0.20
ST2 0.75 7.07 0.65 0.69 0.22
sig. ** ** ** ** **

SD
ST1 0.011 0.793 0.013 0.009 0.013
ST2 0.046 1.208 0.051 0.029 0.007

5 July 2021
ST1 0.79 8.56 0.69 0.71 0.24
ST2 0.79 8.55 0.70 0.73 0.24
sig. ns ns ns ** ns

SD
ST1 0.004 0.200 0.008 0.005 0.015
ST2 0.019 0.782 0.021 0.011 0.008

20 July 2021
ST1 0.83 10.48 0.74 0.76 0.24
ST2 0.77 7.72 0.69 0.74 0.26
sig. ** ** ** ** **

SD
ST1 0.007 0.465 0.010 0.008 0.011
ST2 0.030 1.005 0.034 0.019 0.013

30 July 2021
ST1 0.73 6.48 0.64 0.73 0.21
ST2 0.69 5.46 0.60 0.68 0.21
sig. ** ** ** ** ns

SD
ST1 0.007 0.200 0.014 0.010 0.010
ST2 0.031 0.591 0.032 0.035 0.018

19 August
2021

ST1 0.77 7.85 0.67 0.71 0.20
ST2 0.73 6.64 0.65 0.71 0.22
sig. ** ** ** ns **

SD
ST1 0.016 0.598 0.021 0.009 0.017
ST2 0.037 1.001 0.032 0.028 0.020

Average
2021

ST1 0.79 8.87 0.69 0.73 0.22
ST2 0.74 6.95 0.65 0.71 0.23
sig ** ** ns ns *

30 June 2022
ST1 0.77 7.57 0.58 0.65 0.19
ST2 0.77 7.87 0.58 0.65 0.21
sig. ns ns ns ns **

SD
ST1 0.018 0.58 0.02 0.01 0.01
ST2 0.038 1.15 0.03 0.03 0.01

15 July 2022
ST1 0.74 6.70 0.57 0.65 0.24
ST2 0.73 6.55 0.56 0.65 0.20
sig. ns ns ns ns **

SD
ST1 0.02 0.45 0.01 0.01 0.02
ST2 0.03 0.78 0.03 0.02 0.02

5 August
2022

ST1 0.73 6.32 0.55 0.59 0.24
ST2 0.73 6.38 0.57 0.62 0.28
sig. ns ns ** ** **

SD
ST1 0.02 0.56 0.02 0.02 0.01
ST2 0.02 0.40 0.02 0.01 0.01

12 August
2022

ST1 0.66 4.86 0.51 0.58 0.24
ST2 0.64 4.56 0.49 0.58 0.17
sig. ** ** ** ns **

SD
ST1 0.02 0.33 0.02 0.02 0.02
ST2 0.02 0.25 0.02 0.01 0.01

Average
2022

ST1 0.72 6.31 0.55 0.61 0.23
ST2 0.72 6.33 0.55 0.63 0.22
sig. ns ns ns ns *

Levels of statistical significance (Sig.): ns, non-significant; * p < 0.05; ** p < 0.01.
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The VI values distribution drastically changed in 2022. The mean value of the indices
between vines was similar but lower compared to 2021. At the beginning of the 2022 season
(30 June), the NDVI, RVI, OSAVI, GNDVI, and NDRE values in the ST1 vines decreased by
9, 33, 23, 13, and 5%, respectively, compared with those in 2021. Near harvest (12 August),
in 2022, the NDVI, RVI, OSAVI, and GNDVI values of the ST1 vines decreased by 15, 38,
24, and 19% compared to the previous season. Conversely, the NDRE of the ST1 vines
increased by 20% in 2022.

Differences between the evaluated vine VIs depended on the season. The RVI showed
the highest differences between vines on different soils in the 2021 season. In 2021, the RVI
value of the ST1 vines was 22% higher than that of the ST2 vines. In 2022, the NDRE index
was the only index that showed differences between the vines.

4. Discussion

Soil zoning of vineyards can be undertaken on different scales based on the objec-
tive. Soil often has a tremendous spatial variability; a small-scale mapping approach will
encounter difficulties considering this soil variability [14].

In our work, photo interpretation allowed us to establish a preliminary classification of
seven different soils in the study zone (Figure 3a). Information extracted from soil sampling
in the field helped us to adjust the study zone to consider just two types of soils: ST1 and
ST2 (Figure 3b). The soils were different in some essential characteristics, such as texture
and depth. Differences in these parameters between horizons significantly affected vine
development, especially on the WHC [3].

In non-irrigated plots, soil characteristics impacted grapevine water status, yield, and
fruit composition [37,38]. Under irrigation conditions, the effect of soil properties on vine
water status should not be strong, because the water supply to the plant is guaranteed more
by irrigation than by the water reservoir in the soil [4]. The study area was characterised
by low rainfall and high evaporation, and deficit irrigation was applied. The differences
between years in water available provoked a temporal heterogeneity. Rain + irrigation
was reduced by 49% in 2022 compared to 2021 (Figure 2), indicating that water-holding
capacity in soil is decisive for the development of plants. Our study observed that ST1 was
43% higher in terms of the WHC than ST2 (Table 3).

The average WHC values in ST1 and ST2 were 175 and 122 mm, respectively. These
value were considered to be a medium range. Ref. [39] established that this parameter
on vineyards was highly variable, covering a range from 50 mm in very shallow soils
with a sandy texture and with a high percentage of coarse elements, to over 350 mm in
silty soils that allow deep rooting. The water retention capacity in the soil is affected by
soil properties, such as gravel content, leading to a higher incidence of water deficits in
vine growth [40]. However, we observed the opposite in our study. The average gravel
content in the ST1 horizons was 74% higher than that in ST2. This suggests that gravel was
not relevant to estimating the WHC. The main properties that differed between soils and
influenced WHC were the higher OM content and percentage of finer texture (clay and
silt) in ST1 compared to ST2. According to [3], soil water is stored in porosity. The size
of the pores has an essential influence on the availability to plants. Pore size varies with
soil texture; hence, soil texture significantly impacts the soil WHC. Ref. [40] compared the
quantitative measures of soil water retention capacity for two soils on opposing slopes and
obtained similar results. Their study evaluated north aspect slopes compared with south
aspect slopes. Soil porosity, soil OM, and silt content were all greater on the north aspect.

Regarding ECe, the ST1 vines had a layer (Ck) that was considered saline (1.10 dS/m).
Under irrigation deficit, this horizon may affect the yield of the vines in ST1. Ref. [4]
observed that areas with maximum ECe values of 2.0 dS/m could have limited root
water uptake.

However, the influence of soil properties on grapevine water statuses also differs
depending on the climatic conditions and irrigation [38]. Climate affects the vine water
status through rainfall and reference crop evapotranspiration (ETo) [39]. Climatic conditions
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during the two years of the study were highly evaporative, especially in 2022, which was
particularly dry due to less precipitation and irrigation (the irrigation amount was reduced
by 39%).

These yearly differences in climatic conditions could explain differences in plant
development. Vine vigour is often reported to affect fruit yield and quality considerably [1].
Thus, measures of vine canopy can be used to estimate differences in fruit yield and quality.
Poor vegetative development directly influences yield and maturity parameters. In 2021,
the ST1 vines had higher performances in terms of the number of bunches and TA compared
to the ST2 vines. The yield in the ST1 vines was three times higher than in the ST2 vines
(Table 8). However, in 2022, this changed. The zones both saw this parameter reduced,
excluding the brix and pH in the ST1 vines, which were maintained. The ST2 vines showed
a slightly reduced Brix degree (from 29.4 to 26.6), and the pH remained stable.

SWP represents the whole vine water status during the day and is a particularly
useful tool for irrigation management. It accurately represents vine water status, even if
the soil water content is heterogeneous [39]. In 2021, the studied vines showed average
SWP readings of −0.99 and −1.04 MPa for the midday measures in the ST1 and ST2 vines,
respectively, which were categorised as moderate to weak water deficits [39]. However, in
2022, the SWP readings were −1.43 and −1.47 MPa in the ST1 and ST2 vines, respectively,
categorised as a moderate to severe water deficit due to the increased evaporative conditions
and lower irrigation. Although the water stress conditions were similar for the vines of
the two soils in 2022, the effect was visible in their vegetative performance. This suggested
the superior adaptation of the ST2 vines to stress conditions. Ref. [41] observed that vines
exposed to early water deficit stress developed smaller xylem vessels than vines developed
under unlimited water uptake conditions. In agreement with [39], irreversible embolisms
might occur in vigorous vines with large xylem vessels that are suddenly exposed to
excessive water deficit SWP readings of−1.2 MPa. Low vigour vines progressively exposed
to water deficits might show SWP levels of −1.6 MPa. Limited vine water uptake could
reduce shoot growth and yield. Thus, the ST2 vines with lower vigour in 2021 resisted the
deficit conditions in 2022, maintaining yield and vegetative development. However, the
ST1 vines showed a reduced profile, volume, and surface leaf area, and increased canopy
gaps in 2022 compared to in 2021, which meant less vegetative development. Water deficit
stress during the season causes the stomata to close for part of the day [42]. This restricts
photosynthesis. Hence, dry matter production is reduced, which explains the pruning
weight and yield results in 2022 compared with in 2021.

The chlorophyll content of the studied vines (Table 7) showed some interesting features.
The ST1 vines had lower values than the ST2 vines in both years and in both hours of
measurement. The soils’ chemical properties could explain this. The studied soils have a
significant percentage of active limestone (Table 4), especially ST1. However, this did not
influence the yield and quality of the vines in 2021 (with less hydric restriction). Instead,
high calcium improves the soil structure [16], improving root penetration, speeding up
soil warming in the spring and improving internal drainage. Active lime also reduces soil
organic matter in turnover, limiting mineral nitrogen availability. Ref. [43] suggested this
could affect chlorophyll production. Thus, the ST1 vines had lower chlorophyll values than
the ST2 vines.

According to [1], vigour can indicate the effect of environmental factors and man-
agement on vines. Vigour can be easily mapped using remote sensing as a zoning tool.
The NDVI, RVI, OSAVI, GNDVI, and NDRE indicated differences between the ST1 and
ST2 vines in 2021. In 2021, the annual average values of the NDVI, RVI, and NDRE were
significantly different between the ST1 and ST2 vines (Table 10). ST1 presented higher
values for each VI and date, corresponding to higher vegetation development. Excluding
NDRE, the average of the ST2 vines in 2021 was slightly higher than the ST1 vines. The VI
values in 2022 did not show significant differences between vines. However, because there
was no clear trend among the NDRE values for the ST1 and ST2 vines during the two years
of the study, no conclusions can be drawn.
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The vine RVI values showed unusual behaviour. Unlike the other indices, a trend
was observed in the RVI values in 2021. When the season began, the values for both vines
were higher, but these values decreased as the season progressed. This index showed the
lowest value on the last day (18 August), close to harvest. Overall, the RVI showed higher
differences among the VI values evaluated in terms of the annual average. In the ST1 vines,
the RVI was 22% higher than in the ST2 vines. In 2022, although the difference was less
evident, the index showed a similar trend. At the beginning of the season, the values of the
RVI were higher (but lower compared to the beginning of 2021). These values remained
stable during the middle dates (15 July and 05 August) and later decreased, as in 2021.
Ref. [20] observed the variability of the indices of vines through a flight campaign in their
study zone. In this study, an overall NDVI decline was noted from the third flight of the
campaign onward. This was related to the grapevines’ vegetative cycle. The maturity stage
of the leaf better explained the reduction in the VI values than the decrease in vigour.

The two soils showed differentiated behaviour in their band reflection values at the
multispectral level (Figure 7). Values of the NIR, red edge, and green bands best differenti-
ated the soils in both years. The red band did not present differences between the two soils,
especially in 2021. The band’s behaviour for the soils suggested that components in their
structure influence a greater or lesser radiation absorption in those bands. The combination
of fundamental features of the soil has overtones that can cause spectral signatures in
the visible and NIR regions, making the visible and NIR regions potentially helpful in
determining many soil components [13]. A correlation between physical properties, such
as the percentage of clay and sand, with the green visible band was observed by [15].
These findings validated the observed differences in the VI values, where the GNDVI
exhibited significant variations between soils compared to the NDVI or RVI, primarily
due to the influence of the green band (Figure 8). To comprehend this, one must consider
the variations in soil texture between the studied soils. Specifically, ST1 has a higher clay
content in its initial horizons than ST2 (Table 2).

Thermal sensor data were obtained to complement the soil information (Table 9). Soil
temperature depends on the energy balance, which is related to soil colour and albedo
(proportion of sunlight reflected on the soil), slope steepness, and slope direction [3]. It
can be measured, but because it is spatially and temporally variable, it is challenging to
compute as a relevant indicator. Warm and cool soils can be identified by expertise, as
warm soils tend to be coarse textured and high in coarse elements [3,44]. Thus, ST1 was
colder than ST2, with a difference of 2.5 ◦C in summer. The maximum value was observed
on 20 July 2021, with 3 ◦C of difference. On the one hand, this suggested that more than
the gravel elements present in ST1, the fine texture, or colour could have influenced the
lower temperature. On the other hand, the colour of the soil may have had an influence, as
ST1 was a lighter soil, reflected more energy, and therefore warmed up less than the darker
ST2 soil.

These results indicated the effectiveness of using UAVs for identifying different man-
agement zones. Implementing high-resolution imagery focused on grapevine vegetation
precisely depicted the vineyard’s variability.

Several authors have shown the usefulness of IVs such as the NDVI to delineate
areas with heterogeneous vigour within vineyards, which correspond with different plant
performances [1,44–47].

However, yield maps or management zone maps based on the vines’ vegetative
growth should be considered under non-stress conditions; otherwise, the variability of the
vines may go unnoticed.

Taking into consideration soil information at the sampling level and using UAVs
allowed more precise zoning maps to be made.

5. Conclusions

Spatial and temporal heterogeneity is a reality that vine growers face year after year.
The soil influences spatial heterogeneity, while climate influences temporal heterogeneity.
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For optimal vineyard management, proper soil zoning is necessary. Knowledge of soil
heterogeneity will enable the different management of plots. This involves adapting
cultural practices to specific characteristics, such as the irrigation system, spacing between
drippers, flow rate, soil management, pruning, and harvesting date. As an alternative to
traditional methods of zoning map generation, information obtained from remote sensors
allows for quick and easy observation of the spatial and temporal heterogeneity.

In this experiment, temporal heterogeneity was found to be provoked by the differ-
ences in water availability between years. Rain + irrigation was reduced by 49% in 2022
compared to that in 2021. There was spatial heterogeneity between the evaluated soils. The
WHC of ST1 was 43% higher than that of ST2 due to the fine texture (clay and silt) and
higher OM. In 2021, vines in soil with higher WHC (ST1) had yields that were three times
higher than those of the ST2 vines.

High-resolution images from the multispectral camera onboard the UAV allowed us to
calculate different vine VI values. In 2021, significant differences between vine VI values in
different soils (NDVI, RVI, and NDRE) were detected. The RVI showed the most significant
differences of the VIs evaluated, where, in terms of the annual average, ST1 vines were
22% higher than ST2 vines. Meanwhile, the 2022 NDRE index was the only VI that was
statistically different in the drier year.

Spectral images of the soils showed differences in both years due to their physical
properties (colour and texture). Specifically, the green, red edge, and NIR bands successfully
differentiated the two soil types. The largest VI differences between soils were observed
in the GNDVI. The thermal images showed significant differences between soils. The
temperature of ST2 was 2.5 ◦C higher than that of ST1.

Regardless of the climatic conditions, soil spectral and soil thermal characteristics are a
reliable source of information, making them a more robust element for zoning than the vine
vegetation itself. These results confirmed that UAVs are a valuable tool for assessing spatial
and temporal heterogeneity and monitoring vineyards at minimal operational expense.
Regarding zoning applicability, soil spectral and thermal information is essential, as it is
influenced much less between years than vegetative information.
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