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Abstract: Rice is one of the world’s three major food crops, second only to sugarcane and corn in
output. Timely and accurate rice extraction plays a vital role in ensuring food security. In this study,
R-Unet for rice extraction was proposed based on Sentinel-2 and time-series Sentinel-1, including
an attention-residual module and a multi-scale feature fusion (MFF) module. The attention-residual
module deepened the network depth of the encoder and prevented information loss. The MFF
module fused the high-level and low-level rice features at channel and spatial scales. After training,
validation, and testing on seven datasets, R-Unet performed best on the test samples of Dataset 07,
which contained optical and synthetic aperture radar (SAR) features. Precision, intersection, and
union (IOU), F1-score, and Matthews correlation coefficient (MCC) were 0.948, 0.853, 0.921, and 0.888,
respectively, outperforming the baseline models. Finally, the comparative analysis between R-Unet
and classic models was completed in Dataset 07. The results showed that R-Unet had the best rice
extraction effect, and the highest scores of precision, IOU, MCC, and F1-score were increased by
5.2%, 14.6%, 11.8%, and 9.3%, respectively. Therefore, the R-Unet proposed in this study can combine
open-source sentinel images to extract rice timely and accurately, providing important information
for governments to implement decisions on agricultural management.

Keywords: rice extraction; MFF; SAR; deep learning; residual network

1. Introduction

Human life is inseparable from food crops such as rice, wheat, and corn. The output
of food crops determines the economic development of a country, and ensuring food
security is also one of the national strategies [1–3]. As one of the three most important food
crops in the world, rice is widely planted in Asia, Africa, and America. Therefore, timely
and accurate extraction of rice planting areas plays a decisive role in guiding national
agricultural production [4,5]. Since the end of the last century, the successive launches of
remote sensing (RS) satellites have provided abundant data sources for the application
of RS technology. RS images are characterized by timeliness, periodicity, and repetition
and can provide timely data for the extraction of crop planting areas at the national and
provincial levels. Therefore, RS technology has become one of the most important means in
the field of agricultural research, such as rice mapping [6,7].

In recent years, optical data (Landsat, Sentinel-2, etc.) have been widely used in agri-
cultural RS fields such as rice planting extraction [8–13] and crop yield estimation [14,15].
Scholars mainly extracted rice based on the vegetation indices (VIs) of the rice growth
period, such as the normalized difference vegetation index (NDVI), enhanced vegetation
index (EVI), land surface water index (LSWI) [16–19], etc. Based on the time-series EVI
and LSWI of rice, ref. [17] formulated a decision tree rule to extract rice in India. How-
ever, in tropical and subtropical rice-growing areas, affected by the monsoon, a large
amount of cloud cover will affect the optical image quality. In contrast, radar images
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can successfully acquire microwave information about ground objects in cloudy, foggy,
and rainy weather [20,21]. Meanwhile, rice contains a large amount of water during the
growth period, and the dielectric constant of the water is large, which is different from
other types of ground features [22,23]. Therefore, in addition to optical images, radar
images are important data sources in the field of rice extraction research, such as synthetic
aperture radar (SAR) Sentinel-1 [24–26]. Recently, scholars have carried out rice mapping
work by obtaining time-series SAR parameters during the rice growth period, such as the
backscattering coefficient (σ0) and polarization decomposition parameters [27–30]. Ref. [28]
used the random forest (RF) method to perform rice mapping in Hanoi, Vietnam, based on
rice time-series σ0. Existing studies on rice extraction using single optical or SAR data are
extensive, but few studies combine the two. A single data source cannot extract the optical
and SAR features of rice at the same time, but the combination of the two can fuse optical
and SAR features to improve the accuracy of rice mapping.

So far, rice extraction methods mainly include two types, one is traditional machine
learning (ML) methods, such as support vector machines [13], decision trees [24,25,31],
RF [13,28,32], etc., and the other is deep learning (DL) methods. Traditional ML has been
widely used in rice extraction studies. The traditional ML model has a simple structure
and can only learn the shallow features of rice, with poor robustness and limited precision.
Recently, DL, as a popular research method in the field of computer vision, has been
widely used in target detection and other fields due to its unique network structure, high
robustness, and excellent fitting ability [33–36]. With the rapid development and innovation
of DL, scholars have applied DL to RS image classification and obtained satisfactory
results [37,38]. The semantic segmentation model is a classic model in DL that is widely
used in the field of medical image classification [39]. At present, scholars have used deep
semantic segmentation models, such as U-Net [38–42], SegNet [43,44], FCN [45,46], etc.,
to successfully complete rice mapping. U-Net was first proposed and applied to medical
image segmentation by scholars. However, in the research on rice extraction, the U-Net
model structure is relatively simple, and the precision of rice mapping is limited. Recently,
scholars have extracted rice by improving the U-Net model [38,40]. Ref. [38] proposed
a new network, MobileUNet, based on polarization decomposition parameters of rice,
combining U-Net and MobileNet, and MobileUNet had a better rice extraction effect.
Ref. [40] extracted rice based on time-series σ0, using U-Net as the architecture, combined
with VGG16 and other backbones, and the rice extraction effect was better than U-Net.
The above method can extract the rice planting area, but it does not take into account the
multi-scale feature information of rice. Furthermore, in the field of rice extraction research,
there are limited DL models focusing on rice extraction.

In short, there are three main questions in existing studies:
Q1: The rice extraction work using only high-resolution images is difficult to obtain,

has a high cost, and has poor timeliness.
Q2: Rice extraction using single optical or SAR data has been extensively studied,

while studies combining the two are limited. Multi-source data can simultaneously extract
the optical and SAR features of rice, and the fusion of optical and SAR features can improve
the accuracy of the model to a certain extent.

Q3: The traditional ML method has been widely used, but it cannot learn the deep
features of rice and has poor robustness. DL algorithms are able to solve the above problems,
but there is a lack of DL models focusing on rice extraction.

Aiming at the above problems, the Sentinel-2 and time-series Sentinel-1 images of the
study area were pre-processed on the GEE platform to obtain the optical index and time-
series σ0 of rice. Meanwhile, a new deep learning model, R-Unet, focusing on rice extraction,
was proposed. The multi-scale feature fusion (MFF) module and the attention-residual
module were introduced in R-Unet. The main highlights of this study are as follows:
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• The MFF module was introduced into the model decoder, where dilated convolution
was used to increase the model receptive field;

• in order to prevent the encoder from overfitting and gradient disappearance, a residual
network structure was introduced to deepen the depth of the network model;

• the channel attention mechanism was introduced into the attention-residual module
to focus on the temporal features of rice;

• the use of open-source RS images (Sentinel-1 and Sentinel-2) is low in cost, easy to
obtain, high in timeliness, and can integrate optical and time-series SAR features
of rice.

Comparing the test results of different baseline models on seven datasets of optical
and time-series SAR features, it was found that R-Unet performed best in the rice extraction
research, outperforming other models. Meanwhile, compared with other classic models,
the rice extraction accuracy of R-Unet is still the highest.

2. Materials and Methods
2.1. Study Area

The state of Rio Grande do Sul in southern Brazil was selected as the study area, and
study areas A and B were used as training and testing areas for rice extraction, respectively
(Figure 1). As the largest country in South America, Brazil’s terrain mainly includes the
Amazon Plain, the Paraguay Basin, the Brazilian Plateau, and the Guyana Plateau. Brazil
is a major rice producer in South America and one of the top ten rice producers in the
world [40]. Rice is the main food crop in Brazil, and its main production areas are located
in the south, mid-west, and northeast of the country. The southern region is dominated
by Rio Grande do Sul. The study area is located in the southernmost part of Brazil, with
a subtropical climate, high temperature, and rich water resources, which are extremely
suitable for the growth of rice [40]. Apart from rice, soybeans, wheat, and corn are also the
main crops in this area.
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2.2. Data Preparation
2.2.1. Sentinel-1 Data

In our study, the time-series Sentinel-1 ground range detected (GRD) data of interfero-
metric wide swath (IW) mode and dual-polarization (VH and VV) C-band were obtained.
The time-series is from August 2019 to May 2020, covering the main growth season of
rice for a total of 10 months [40]. Based on the Google Earth Engine (GEE) platform, the
collected time-series dual-polarization SAR images were pre-processed. Figure 2 shows the
pre-processing of the Sentinel-1 time-series data, mainly including calibration and terrain
correction [10]. Meanwhile, the average value of the monthly SAR data was calculated [10],
and finally, the monthly average value of the dual-polarization backscatter coefficient (σ0)
in the rice growth period was obtained, with a total of 20 bands.
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2.2.2. Sentinel-2 Data

Based on the GEE platform, Sentinel-2 data with cloud cover of less than 5% in the
same period were collected. The GEE platform was used to perform cloud mask processing
on all images [10], and the optical indices of rice were calculated using Formulas (1)–(3) [10].
Finally, the median value of the three optical indices during the rice growth period was
calculated, and the results of NDVI, EVI, and LSWI were finally obtained, with a total of
three bands.

NDVI =
NIR − Red
NIR + Red

(1)

EVI = 2.5 ∗ NIR − Red
NIR + 6 ∗ Red − 7.5 ∗ Blue + 1

(2)

LSWI =
NIR − SWIR
NIR + SWIR

(3)

where blue, red, NIR and SWIR represent Sentinel-2 band 2, band 4, band 8, and band 11,
respectively.

2.2.3. The Ground Truth Data

The ground-truth rice map of Rio Grande do Sul was downloaded from the Brazilian
Agricultural Information Portal “https://portaldeinformacoes.conab.gov.br (accessed on
7 July 2023)”. The rice map is shapefile data, which is converted into raster data to produce
rice labels.

2.2.4. Training, Validation and Test Samples

Study area A was selected as the training and validation area of the rice extraction
model, which contained 222 rice and non-rice pixel samples of 256 ∗ 256 pixels. Among
them, 90% of the samples were used for model training, and the rest were used for vali-
dation. The test area was study area B, which tested the performance of different models,
including 150 samples of 256 ∗ 256 pixels. The training, validation, and test samples each
contained 7 datasets. Table 1 shows the dataset’s information. Datasets 01–03 were the SAR
datasets; Dataset 04 was the optical index dataset; and Datasets 05–07 were the combination
of SAR and optical indices.

Table 1. Datasets of rice extraction model.

Datasets Input Bands Channels Description

Dataset 01 VH 10 VH: vertical–horizontal polarization
VV: vertical–vertical polarization

Indices: NDVI + EVI + LSWI
NDVI: normalized difference

vegetation index
EVI: enhanced vegetation index
LSWI: land surface water index

Dataset 02 VV 10
Dataset 03 VH + VV 20
Dataset 04 Indices 3
Dataset 05 VH + indices 13
Dataset 06 VV + indices 13
Dataset 07 VH + VV + indices 23

2.3. Research Technical Route

Figure 2 shows the flowchart of our study, including data preparation and the rice
extraction model. Data preparation is to pre-process Sentinel-1 and Sentinel-2 data based
on GEE and produce rice labels. Time-series Sentinel-1 was used to extract the dual-
polarization (VH and VV) SAR features, and Sentinel-2 was used to extract the optical
indices during the rice growth period. The ground-truth rice map was used to generate the
rice labels. The rice extraction model was mainly based on seven datasets, and the models
have been trained, validated, and tested. Finally, the accuracy evaluation and comparative
analysis of the model’s performance were completed.

https://portaldeinformacoes.conab.gov.br
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2.4. Models and Principles
2.4.1. R-Unet

Based on the U-Net model, a new DL model for rice extraction, R-Unet, was proposed
in this study. U-Net is the most typical model in the deep semantic segmentation model,
which was first applied in the field of medical imaging [47]. U-Net is composed of an
encoder and a decoder. The encoder contains four times of down-sampling, including
two convolutional layers and a max-pooling layer [47]. The spatial resolution of the input
data is halved, and the number of channels is increased after each down-sampling. The
decoder mainly includes four up-sampling layers. In the up-sampling layer, the high-level
and low-level feature information of the model is concatenated in the channel dimension
through skip connections, and the size of the feature map is restored by using transposed
convolution [47].

In our study, the encoder and decoder of U-Net were improved. Based on the original
structure of the encoder, an attention-residual module was added after the ReLU activation
function of the last convolutional layer of each down-sampling layer to deepen the depth
of the model and learn the characteristic information of rice [47]. The attention-residual
module mainly included two convolutional layers, each of which consisted of a 3 ∗ 3 con-
volutional layer, a batch normalization (BN) layer, and a ReLU activation function. In
order to make the model pay more attention to rice information, an attention mechanism
was added. The feature map of the attention mechanism was added to the result of the
ReLU activation function of the last convolution layer of the attention-residual module
to obtain the feature map of the final output of the attention-residual module. A multi-
scale feature fusion (MFF) module was added to the decoder. The up-sampled transposed
convolution result was concatenated with the down-sampled attention-residual module
as the input of the MFF module. The MFF module replaced the two convolutional layers
in the up-sampling layer of the original decoder. The MFF module integrated high-level
and low-level feature information to achieve channel and spatial scale fusion [47]. Figure 3
shows the R-Unet structure.
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In this study, the training, validation, and testing of all DL models were performed
on a laptop with an NVIDIA GeForce RTX 3060 graphics processor with 16 GB of memory
and an 8-core processor with 6 GB of memory. Hyperparameters were set as follows:
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(a) learning rate = 0.0001, (b) batch size = 4, (c) epochs = 50, (d) Adam optimizer. The
cross-entropy loss function was chosen as the loss function, and the formula is as follows:

Loss = −(ylog(P) + (1 − y)log (1 − P)) (4)

where Loss is the loss value, y is the real label value, and P is the predicted probability of
the model.

2.4.2. MFF Module

The down-sampling of the encoder reduces the spatial resolution of the input image,
which may lead to the loss of some rice information. Dilated convolution introduces a
dilated factor to increase the receptive field while maintaining the resolution of the original
image, so that the feature map contains information under a larger receptive field [47].
Dilated convolution can reduce information loss to some extent [47]. Therefore, the MFF
module proposed in this study can prevent the loss of rice-related feature information and
improve the learning ability of the model for rice and non-rice [47].

The MFF module proposed in this paper mainly consisted of three parts. The first part
was the 1 ∗ 1 convolutional layer, BN layer, and ReLU activation function, which mainly
fused the input feature map on the channel scale. The second part was the 3 ∗ 3 convolu-
tional layer, BN layer, and ReLU activation function. Finally, the third part was the dilated
convolutional layer with an expansion factor of 2, which extracted rice feature information
in a wide range by expanding the receptive field. Since the rice patches selected in this pa-
per were relatively small, the detailed rice information was lost due to the large expansion
factor. Finally, the feature maps obtained from the three parts were added together, and the
feature information on the channel and spatial scales was fused as the final output of the
MFF module. The MFF module structure is shown in Figure 4.
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2.4.3. Attention-Residual Module

The down-sampling of the encoder may cause overfitting. In order to deepen the
network depth of the encoder and prevent the model from overfitting, an attention-residual
module was introduced in the encoder. The attention-residual module was added after
the double convolution of the encoder. Since the time-series SAR data of the rice-growing
period were obtained, the channel attention mechanism was introduced in the attention-
residual module to extract the time-series features of rice. The feature responses of each
channel of the input feature map were weighted to enhance the model’s attention to rice
features in different channels. The channel attention mechanism can enable the model to
specifically select rice and non-rice information in different channels to optimize feature
representation and model performance.

Figure 5 shows the proposed attention-residual module. The attention-residual mod-
ule mainly contained two branches. The first branch included two convolutional blocks,
and each convolutional layer module consisted of a 3 ∗ 3 convolutional layer, a BN layer,
and a ReLU activation function. The second branch was the channel attention module,
which was composed of a 1 ∗ 1 convolutional layer and a sigmoid function to enhance
channel attention on the input feature map. Finally, the results of the first branch and the
second branch were added as the output of the attention-residual module.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 20 
 

 

the double convolution of the encoder. Since the time-series SAR data of the rice-growing 
period were obtained, the channel attention mechanism was introduced in the attention-
residual module to extract the time-series features of rice. The feature responses of each 
channel of the input feature map were weighted to enhance the model’s attention to rice 
features in different channels. The channel attention mechanism can enable the model to 
specifically select rice and non-rice information in different channels to optimize feature 
representation and model performance. 

Figure 5 shows the proposed attention-residual module. The attention-residual mod-
ule mainly contained two branches. The first branch included two convolutional blocks, 
and each convolutional layer module consisted of a 3 ∗ 3 convolutional layer, a BN layer, 
and a ReLU activation function. The second branch was the channel attention module, 
which was composed of a 1 ∗ 1 convolutional layer and a sigmoid function to enhance 
channel attention on the input feature map. Finally, the results of the first branch and the 
second branch were added as the output of the attention-residual module. 

 
Figure 5. The structure of the attention-residual module. 

2.4.4. Performance Evaluation 
In this paper, overall accuracy (OA), precision, intersection and union (IOU), recall, 

F1-score, and Matthews correlation coefficient (MCC) were used as the main evaluation 
indicators for the performance evaluation of the rice extraction model. The calculation 
formulas for the above evaluation indicators are shown in Formulas (5)–(10): OA = TP + TNTP + TN + FP + FN  (5)

Precision = TPTP + FP  (6)

IOU = TPTP + FP + FN  (7)

Recall = TPTP + FN (8)

Figure 5. The structure of the attention-residual module.

2.4.4. Performance Evaluation

In this paper, overall accuracy (OA), precision, intersection and union (IOU), recall,
F1-score, and Matthews correlation coefficient (MCC) were used as the main evaluation
indicators for the performance evaluation of the rice extraction model. The calculation
formulas for the above evaluation indicators are shown in Formulas (5)–(10):

OA =
TP + TN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FP
(6)
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IOU =
TP

TP + FP + FN
(7)

Recall =
TP

TP + FN
(8)

F1 − score = 2 ∗ Recall ∗ Precision
Recall + Precision

(9)

MCC =
TP + TN

TP + TN + FP + FN
(10)

where TP represents the number of pixels correctly predicted as rice, TN represents the
number of pixels correctly predicted as non-rice, FP represents the number of pixels
incorrectly predicted as rice, and FN represents the number of pixels incorrectly predicted
as non-rice.

OA measures the model’s ability to correctly classify the entire dataset [10,40]. Pre-
cision refers to the accuracy of the model for rice classification [10,40]. IOU is the ratio of
the intersection and union of the number of pixels correctly predicted as rice and the true
pixels [40]. Recall can measure the ability of the model to identify rice [10]. The F1-score is
the harmonic mean of precision and recall, combining the performance of both [8,10,40].
MCC is the correction between predicted and true results [8].

3. Results
3.1. Rice Extraction Model Results for Different Datasets

In order to select the best dataset suitable for the rice extraction model, four baseline
models were selected for comparative analysis with R-Unet. Since R-Unet was proposed
based on U-Net, U-Net was first used as one of the baseline models. Secondly, the L-Unet
model contained both the residual structure and the MFF module, which was applied to the
extraction of landslides by scholars. In this study, L-Unet was used as one of the baseline
models. Finally, in order to compare and analyze the influence of the combined use of the
MFF module and the attention-residual module on the performance of the rice extraction
model, the attention-residual module and the MFF module were added to U-Net to obtain
two baseline models: Attention-ResUnet and MFF-Unet.

First, in study area A, five models were trained and validated on seven different
datasets, and the training and validation loss values, and the OA, precision, IOU, recall,
and F1-score of the validation samples were calculated. Figure 6 shows the loss values of
the five baseline models in training and validation on Dataset 07. As the epoch increased,
the loss value kept decreasing and eventually tended to be stable. Figure 7 shows the
OA, precision, IOU, and F1-score of the five baseline models on the validation samples on
Dataset 07. With the increase in epoch, the OA, precision, IOU, and F1-score tended to be
stable, all above 0.9. Table 2 shows the results of the confusion matrix corresponding to the
optimal accuracy of R-Unet in the validation samples. The OA, IOU, recall, and MCC of
R-Unet on the validation samples were as high as 0.963, 0.902, 0.961, and 0.920, respectively.

Table 2. Confusion matrix results of R-Unet in validation samples.

Predictions

Rice Non-Rice Producer Accuracy

Truth Rice 516,645 17,602 0.967
Non-rice 38,516 934,565 0.960

User accuracy 0.931 0.982
OA 0.963

F1-score 0.949 MCC 0.920
IOU 0.902 Recall 0.967
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Secondly, study area B without model training was selected as the test area. The five
models were tested on seven datasets, and the evaluation metrics of the test samples were
calculated. In addition, the average time (Time) of five baseline models to predict rice
on seven datasets was calculated in milliseconds (ms). The results showed that R-Unet
had the best performance on Dataset 07. Table 3 shows the test results of the five models
on Dataset 07. From Table 3, the precision, OA, IOU, F1-score, and MCC of R-Unet on
Dataset 07 were 0.948, 0.952, 0.853, 0.921, and 0.888, respectively, all of which performed
better than the other four baseline models. Meanwhile, R-Unet achieved a test Time of
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27.22 ms per sample on Dataset 07, which was faster than the other four baseline models.
In contrast, the accuracy of MFF-Unet, Attention-ResUnet, and U-Net was lower than that
of R-Unet. Among the above three models, the accuracy of adding the MFF module or the
attention-residual module was higher than that of the U-Net model. Table S1 shows the
test results of the five baseline models in Datasets 01–06. From Table S1, the accuracy of the
five baseline models on a single dataset was low. The precision of R-Unet on Dataset 01
and Dataset 02 was only 0.829 and 0.772, and the IOU was 0.733 and 0.506, respectively.
However, regardless of any dataset, the R-Unet performed best in the test results of the
baseline models.

Table 3. Test results of the baseline models on Dataset 07.

Model Precision IOU Recall F1-Score MCC OA Time (ms)

R-Unet 0.948 0.853 0.895 0.921 0.888 0.952 27.22
MFF-Unet 0.939 0.789 0.832 0.882 0.837 0.931 30.93

Attention-ResUnet 0.936 0.806 0.854 0.893 0.850 0.937 37.75
U-Net 0.927 0.825 0.882 0.904 0.863 0.942 29.16
L-Unet 0.926 0.731 0.777 0.845 0.792 0.914 28.41

Figure 8 shows the results of rice prediction obtained by five baseline models on Dataset
07. By comparing the rice extraction results, it was found that the overall effect of R-Unet
rice extraction was better, which was basically consistent with the rice ground-truth map.
However, the MFF-Unet, Attention-ResUnet, and U-Net had obvious misclassifications.
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Figure 8. Comparison of the rice extraction results of baseline models in the test samples: where (a) is
the SAR images (RGB is VV, VH, and VV/VH in December 2019), (b) is the optical indices (RGB is
NDVI, EVI, and LSWI, respectively), (c) is the ground-truth map, and (d–h) are the rice prediction
results of R-Unet, MFF-Unet, Attention-ResUnet, U-Net, and L-Unet, respectively.
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3.2. Rice Extraction Model Results of Different DL Models

R-Unet was compared with four classic models, including FCN-8s, DeepLab, SegNet,
and L-Unet, to validate the rice extraction effect of R-Unet. Based on the results of 3.1,
Dataset 07 was selected as the training, validation, and test dataset for the five models.
Firstly, in study area A, five classic models were trained and validated on Dataset 07, and
the loss value during training and validation, and the OA, precision, IOU, recall, and F1-
score of the validation samples were calculated. Figure 9 shows the training and validation
sample loss values of five classic models. As the epoch increased, the loss value continued
to decrease and finally stabilized between 0.1 and 0.15. Figure 10 shows the OA, precision,
IOU, and F1-score of the five classic models on the validation samples. With the increase in
epoch, the scores of OA, precision, IOU, and F1-score tended to be stable, and the scores of
OA, precision, and F1-score were all stable above 0.9. The IOU of R-Unet and L-Unet was
stable at around 0.9, while FCN-8s, SegNet, and DeepLab were relatively low. Compared
with FCN-8s, SegNet, and DeepLab, the performance of R-Unet and L-Unet in verification
samples was generally better than the other three classic models.
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Secondly, study area B, a test area without model training, was selected to test five
classic models and calculate evaluation indicators. Table 4 shows the results of five classic
models on test samples. From Table 4, the accuracy of R-Unet in test samples was better
than in other classic models. The Time of DeepLab was the fastest among the five models,
but the overall performance of DeepLab was low, with a precision of 0.896. In contrast,
R-Unet has higher accuracy and a relatively faster Time. In addition, the IOUs of L-Unet,
FCN-8s, and DeepLab were only 0.731, 0.707, and 0.719. Table 5 shows the confusion matrix
of R-Unet in the test samples. The rice and non-rice user accuracies of R-Unet were as high
as 0.948 and 0.954, respectively. The F1-score was as high as 0.921, and the MCC, IOU, and
recall were all above 0.85.

Table 4. Test results of the classic models on Dataset 07.

Model Precision IOU Recall F1-Score MCC OA Time (ms)

R-Unet 0.948 0.853 0.895 0.921 0.888 0.952 27.22
SegNet 0.928 0.755 0.802 0.861 0.809 0.920 27.58
L-Unet 0.926 0.731 0.777 0.845 0.792 0.914 28.41
FCN-8s 0.923 0.707 0.751 0.828 0.770 0.903 40.32

DeepLab 0.896 0.719 0.784 0.836 0.773 0.905 26.25
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Table 5. Confusion matrix results of R-Unet in test samples.

Predictions

Rice Non-Rice Producer Accuracy

Truth Rice 2,717,954 318,268 0.900
Non-rice 149,257 6,644,921 0.978

User accuracy 0.948 0.954
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Figure 11 shows the rice prediction results obtained by five classic models on the
test samples. Comparing the rice extraction results, it was found that the overall effect of
R-Unet rice extraction was better, and the prediction results were basically consistent with
the actual rice map. The results of the second group in Figure 11 show that there are more
misclassifications in FCN-8s and DeepLab. In addition, there were many misclassifications
in FCN-8s, DeepLab, SegNet, and L-Unet. In contrast, the rice prediction results of R-Unet
were better, and the distribution of misclassification was less.
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results of R-Unet, FCN-8s, DeepLab, SegNet, and L-Unet, respectively.

4. Discussion
4.1. Optimal Dataset for Rice Extraction

With the successive launches of optical and radar satellites, optical and radar images
have been widely used in agricultural RS fields such as rice extraction [8–13,24–27]. How-
ever, how to choose the optimal dataset for the rice extraction model is a major problem in
the field of rice extraction research. Rice extraction using only single optical or radar images
has been extensively studied [8,9,21–23,40]. In this study, to solve the above problem, seven
datasets were designed to train, validate, and test five baseline models.

For Datasets 01–04 with a single data source and Datasets 05–07 with a combination
of SAR and optical features, the model accuracy of the latter was better than that of the
former. From Table 3 and Table S1, the precision of R-Unet on Dataset 07 and Dataset 03
was 0.948 and 0.939, respectively, and the precision on the other five datasets was all less
than 0.9. For Dataset 03 and Dataset 07, the precision of the latter is 0.9% higher than that
of the former, and the Time of the latter is 2.17 ms faster than the former. Except for R-Unet,
the overall accuracy of the other four baseline models on Dataset 07 was better. It shows
that, in the case of consistent models, the accuracy of the rice extraction model fused with
SAR and optical features is better than that of a single data source.

For the single-polarization (VH or VV) and dual-polarization (VH and VV) datasets,
the latter model outperformed the former in overall accuracy. It can be seen from Table 3 and
Table S1 that the overall accuracy of the dual-polarization datasets (Dataset 07 and Dataset
03) was higher, and the overall accuracy of the single-polarization datasets was lower.
In the single-polarization datasets, the overall accuracy of the VH polarization datasets
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(Dataset 05 and Dataset 01) performed better than that of the VV polarization datasets
(Dataset 06 and Dataset 02). The IOU of the R-Unet single-polarization VV dataset was
only between 0.474 and 0.575. In short, the model accuracy of dual-polarization datasets
performed better than that of single-polarization datasets. In the single polarization dataset,
the model accuracy of VH polarization was better than that of VV polarization, which was
consistent with the research results of [40].

In summary, the dual-polarization datasets that fused optical and SAR features had
the highest overall accuracy. The result showed that the combination of optical and SAR
data can improve the accuracy of the rice extraction model, which solved Q2. Meanwhile,
the sentinel image used in this study was freely available from the European Space Agency,
which solved Q1 and provided the possibility for timely and accurate rice extraction.

4.2. Optimal Model for Rice Extraction
4.2.1. Discussion of Results from Rice Extraction Baseline Models

The R-Unet proposed in this study was based on the U-Net, adding the attention-
residual module and the MFF module in the encoder and decoder, respectively, to extract
rice in the study area [47]. In order to evaluate the performance of R-Unet in rice extraction,
based on U-Net, the attention-residual module and the MFF module were added to U-Net,
respectively, and two baseline models of Attention-ResUnet and MFF-Unet were obtained.
Meanwhile, the L-Unet applied to landslide extraction, which also contained MFF and
residual modules, was also one of the baseline models [47]. From Table 3, it can be seen
that the prediction Time of R-Unet was the shortest among all baseline models, at 27.22 ms.
Table 6 was obtained by calculating the difference between the evaluation indicators of
R-Unet and the other four baseline models. From Table 6, each indicator of R-Unet was
better than the other four baseline models. The IOU, recall, and MCC of MFF-Unet were
6.4%, 6.3%, and 5.1% lower than R-Unet, respectively. The IOU, recall, and MCC of R-Unet
were 4.7%, 4.1%, and 5.1% higher than those of Attention-ResUnet, respectively. Compared
with U-Net, the precision, IOU, and MCC of R-Unet were increased by 2.1%, 2.8%, and
2.5%, respectively. Therefore, the attention-residual module and MFF module can improve
the model performance of rice extraction to a certain extent, but a single attention-residual
module or MFF module still cannot better learn the SAR and optical features of rice. The
combination of the above two modules can efficiently learn rice features [47].

Table 6. Differences in evaluation indicators between R-Unet and baseline models (%).

Model Precision IOU Recall F1-Score MCC OA

MFF-Unet 0.9 6.4 6.3 3.9 5.1 2.1
Attention-ResUnet 1.2 4.7 4.1 2.8 3.8 1.5

U-Net 2.1 2.8 1.3 1.7 2.5 1.0
L-Unet 2.2 12.2 11.8 7.6 9.6 3.8

In addition, for R-Unet and L-Unet, which contained both the MFF module and the
attention-residual module, the IOU, recall, and MCC of the former were 12.2%, 11.8%,
and 9.6% higher than the latter, respectively. L-Unet contained both the attention-residual
module and the MFF module, but the MFF module was only in the last layer of the encoder
of L-Unet. The residual module of L-Unet was introduced into both the encoder and
decoder. Although the network structure depth of the model was deepened, it may cause
over-learning of the model, resulting in poor performance. Therefore, the position of the
MFF module and the attention-residual module in U-Net can also affect the performance of
the model. In the proposed R-Unet, the attention-residual module was only introduced
into the encoder of the model. The attention-residual module can ensure the depth of
the network, while the attention mechanism can pay more attention to the rice feature
information and prevent information loss to a certain extent [10,38–40]. The MFF module
was introduced into the model’s decoder to perform multi-scale feature fusion on the
high-level and low-level feature information in the up-sampling process [47,48]. While
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restoring the size of the image, the output feature map contained both the channel and
spatial information of the original feature map. In conclusion, the proposed R-Unet had
the highest rice extraction performance among the baseline models and solved Q3 to a
certain extent.

4.2.2. Discussion of Results from Rice Extraction Classic Models

With the rapid development of DL algorithms, deep semantic segmentation models
have been widely used in agricultural RS research fields such as rice extraction [33–37].
So far, scholars have applied classic models such as FCN-8s, SegNet, and U-Net to rice
extraction [38–46]. But the above model is not a proprietary model for rice extraction. In
this study, the proposed R-Unet was compared with FCN-8s, SegNet, DeepLab, U-Net, and
L-Unet. It can be seen from Tables 3 and 5 that the accuracy and effect of R-Unet in the test
samples outperformed the other five models, and the Time of R-Unet was faster, second
only to DeepLab. Meanwhile, the Time of DeepLab was the shortest, but the accuracy of
rice extraction was lower than that of R-Unet. Table 7 calculates the difference in evaluation
metrics between R-Unet and the other five models. The precision, IOU, F1-score, and
MCC of R-Unet were 2.1%, 2.8%, 1.7%, and 2.5% higher than U-Net, respectively. For
the DeepLab model, the precision, IOU, F1-score, and MCC of the R-Unet model were
5.2%, 13.4%, 8.5%, and 11.5% higher, respectively. For FCN-8s, SegNet, and L-Unet, the
IOU of R-Unet was around 10% higher than the other three models. In summary, the
overall accuracy of R-Unet outperformed the other five models. It can also be seen from
Figures 8 and 11 that the rice prediction results of R-Unet were closer to the ground-truth
rice map, while other classic models have some misclassifications.

Table 7. Differences in evaluation indicators between R-Unet and classic models (%).

Model Precision IOU Recall F1-Score MCC OA

SegNet 2.0 9.8 9.3 6.0 7.9 3.2
U-Net 2.1 2.8 1.3 1.7 2.4 1.0
L-Unet 2.2 12.2 11.8 7.6 9.6 3.8
FCN-8s 2.5 14.6 14.4 9.3 11.8 4.9

DeepLab 5.2 13.4 11.1 8.5 11.5 4.7

In general, the R-Unet proposed in this study can combine open-access Sentinel
satellite data (Sentinel-1 and Sentinel-2) to timely and accurately extract rice planting areas
in the study area. The rice extraction results of R-Unet can provide basic information for
the country or the government to implement decisions on agricultural management, such
as guiding national agricultural production and ensuring national food security.

4.3. Limitations and Prospects

In this study, the rice extraction research was only carried out in Rio Grande do
Sul, Brazil. Two study areas were selected as the validation and testing areas, but the
rice planting pattern, growth period, and growing environment are basically consistent.
Differences in rice planting patterns, rice varieties, and growing environments will affect
the SAR characteristics (σ0) of rice to a certain extent. At the same time, it may affect the
performance of the model when learning rice features, which may cause some differences
in the results of rice extraction. Further trials in other countries were not carried out in this
study, and future research will be carried out in other countries with different rice growth
patterns from Rio Grande do Sul. In future research, while ensuring the performance of
the model, we will try our best to improve its universality and strive to develop a general
model for rice extraction research.

5. Conclusions

Based on the GEE platform, the optical indices and time-series dual-polarization
σ0 data during the rice growth period in Rio Grande do Sul, Brazil, were obtained, and
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seven different datasets were produced. Based on U-Net, a model R-Unet focusing on
rice extraction was proposed, which included both the attention-residual module and the
MFF module. The attention-residual module was designed to deepen the network depth
of the R-Unet encoder, focusing on rice feature information while preventing information
loss. The MFF module was used to perform multi-scale feature fusion processing on the
high-level and low-level feature information of the decoder. In order to study the impact of
different datasets on model performance, R-Unet was compared with four baseline models.
Meanwhile, in order to verify the performance of R-Unet in rice extraction research, it was
compared with four classic models. Ultimately, the following conclusions were drawn:

1. The model accuracy of the single-polarization SAR dataset was the worst, while the
model accuracy of the dual-polarization SAR dataset was better. The precision of
R-Unet on Dataset 03 and Dataset 07 was 0.939 and 0.948, respectively, while the
precision on Dataset 01 and Dataset 02 was only 0.829 and 0.772.

2. The combined dataset of SAR features and optical indices (Dataset 07) had higher
accuracy than single SAR features (Dataset 03) or single optical indices (Dataset 04),
and the model performance was better. In Dataset 07, the precision, F1-score, and
MCC of R-Unet in the test sample were 0.948, 0.921, and 0.888, respectively.

3. Compared with classic models such as FCN-8s, SegNet, U-Net, etc., R-Unet had the
highest test result accuracy on the best dataset, and the rice extraction effect was the
best. The precision, IOU, MCC, and F1-score of R-Unet rice extraction increased by
5.2%, 14.6%, 11.8%, and 9.3%, respectively.

In summary, the R-Unet proposed in this study can extract the rice planting area timely
and accurately, and the research results can provide crucial information for governments to
implement decision-making about agricultural management.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15164021/s1, Table S1: Test results of the baseline models on
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