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Abstract: Improving the carbon sequestration capacity (CSC) of an ecosystem by optimizing urban
ecological networks is one of the effective ways to achieve the goal of “carbon neutrality” in the
world. The contradiction between the irreplaceable ecological function and economic development
of Yancheng City is prominent. Therefore, taking Yancheng City as an example, this paper adopted
the morphological spatial pattern analysis–minimum cumulative resistance (MSPA-MCR) model to
establish the ecological network of Yancheng City in 2020 and combined it with complex network
theory to evaluate its ecological base, network quality, and CSC. The results show that the ecological
network of Yancheng City has obvious characteristics of coastal cities. There is a significant positive
correlation between CSC and the clustering efficiency of ecological sources, and improving the
clustering efficiency of vegetation and water ecological nodes is conducive to enhancing the CSC
of ecological networks. In terms of functional restoration of ecological networks, four types of
13 ecological stepping stones and 12 ecological corridors have been designed to strengthen the
connectivity and balance of the network, and the improvement of network robustness before and
after optimization verifies that the optimization scheme is reasonable and effective. This study
improved the optimization method of ecological networks in Yancheng City based on enhancing
the CSC of ecological nodes, which provided a theoretical framework and practical reference for the
realization of global strategic goals of carbon neutrality.

Keywords: ecological network; MSPA-MCR model; complex network; topological structure; carbon
sequestration capacity

1. Introduction

In 2009, an evaluation report on the carbon sequestration capacity (CSC) of healthy
oceans issued by the United Nations Environment Programme pointed out that about
55% of carbon sequestrated by natural ecosystems worldwide was captured and stored by
coastal ecosystems. Coastal zones, as an important component of natural resources, have
higher storage density and longer storage time, which have a broad prospect for carbon
sequestration [1]. Therefore, the improvement of CSC of ecosystems in coastal cities is
significant to realize the ambitious goal of “carbon neutrality” [2].

Governments around the world have made tremendous efforts to improve the CSC
of coastal cities and have sought different solutions [3–6]. In recent years, scholars have
conducted a large number of studies on various ecosystems, different regions, and global
scales, indicating that urban ecological space is the only direct carbon sequestration resource
within a city, and its CSC on a large scale is closely related to natural environmental factors
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and land-use types [7]. Habitat fragmentation and land use transformation caused by the
urban development process are considered to be the most important factors in reducing the
CSC of regional ecosystems [8]. Ecological networks can help comprehensively describe
ecological processes, protect habitats, and maintain landscape connectivity [9–11]. More
and more researchers combine ecological network construction with the improvement of
the CSC of ecosystems [12,13].

The ecological network has been a hot topic in the field of landscape ecology recently,
including relevant studies on regional ecological patterns and ecosystem optimization [14].
ArcGIS provides a research platform that integrates regional environmental change and
in-depth analysis [15,16]. Researchers establish a network composed of regional landscape
patches on the GIS platform, which is called an ecological spatial network or ecological
network [17,18]. Ecological network regards important landscape elements (such as core
areas and nature reserves) as ecological nodes and considers linear channels connecting
ecological nodes as ecological corridors, coupling landscape structures, ecological processes,
and functions together [19]. The construction method of the ecological spatial network is
very mature. The mainstream research paradigm of ecological source–ecological resistance
surface–ecological corridor has initially formed [20]. Various remote sensing data and
morphological spatial pattern analysis (MSPA) analysis, integrated valuation of ecosystem
services and trade-offs (InVEST) model, minimum cumulative resistance (MCR) model,
circuit theoretical model, etc., are used to realize it [12]. The essence of an ecological spatial
network is the abstraction and simplification of spatial topological structures in landscape
patches [21]. The establishment of ecological networks of regional ecosystems is essential
for subsequent research on landscape dynamics, ecological security pattern construction,
landscape risk assessment, and landscape heterogeneity analysis [22–24]. The ecological
network identification method combining MSPA analysis and the MCR model is currently
widely used, highly universal, and recognized in the industry [20].

Currently, in terms of carbon source and sequestration in ecosystems, research has
mostly focused on carbon sequestration dynamics of forests [25], soils [26], or biological
carbon sequestration at the species level [27]. However, few researchers have applied
ecological networks to the spatial differentiation of CSC of urban ecosystems, which may
be related to the difficulties in quantifying geographical spatial location and ecological
network characteristics [28]. Some scholars have introduced complex network theory to
visualize ecological networks as “point-line” undirected networks and combined topo-
logical indicators to characterize the relative spatial relationship among various ground
objects. Scholars construct China’s forest and grass ecological network and analyze the
correlation among topological indicators, water retention, soil conservation, and carbon
storage. Moreover, the internal relationship between the structural characteristics of eco-
logical spatial networks and ecosystem services is clarified [29]. The estimation of carbon
sequestration amount (CSA) of ecosystems in large regions is mainly carried out by two
methods: measurement of net primary productivity (NPP) and net ecosystem productivity
(NEP), estimation of carbon sequestration coefficient. NPP and NBP are used to measure
CSC at forest and grassland ecological nodes in the Yellow River basin, and an optimization
strategy of adding ecological corridors between forest and grassland ecological network
nodes is proposed [14]. However, the measurement of CSC is limited to vegetation and
cultivated land, which lacks water body data. Therefore, it is inappropriate to use them
for research in coastal and dense water network areas. Carbon sequestration coefficients
are taken to estimate the CSA of forest land, grassland, and water ecological nodes in
the ecological network of Xuzhou City [30]. However, when the carbon sequestration
coefficient (0.87 t ha−1) of forest land derived from the average statistics of carbon seques-
tration in China’s forest ecosystem between 2001 and 2010 is used to estimate CSA in the
ecological source areas of Xuzhou, there is a significant error [31]. Reasonable optimization
of ecological networks can effectively improve service functions of the ecosystem, including
CSC [32].
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Yancheng City, along the eastern coast of China, has the largest and best-preserved
coastal mudflat wetland. It has an important ecological status all over the world [33]. As
China’s “golden coast”, it maintains a variety of endangered plants and precious animals
on the IUCN Red List. Most importantly, it is an irreplaceable supply station and habitat
for migratory birds on the East Asian–Australasian migration route and the world’s largest
wintering area for Grus japonensis. Under the trend of ecological globalization, the ecological
restoration and functional repair of Yancheng City’s ecosystems are important works to
maintain urban ecological health.

However, urbanization, construction, and economic development have also brought
ecological problems to Yancheng City, such as low forest coverage, habitat fragmentation,
high carbon emissions, wetland degradation, excessive reclamation, and fishing [34]. This
has brought a great crisis to urban ecological quality and wetland protection. Goals of
carbon neutrality and peak carbon dioxide emissions, irreplaceable ecological functions,
and relatively scarce land resources require Yancheng City to comprehensively coordinate
ecological resources in water areas, wetlands, plant resources, etc. In addition, ecological
networks are also required to build and optimize; the CSC of the urban ecosystem while
developing the economy needs to be enhanced; and a balance between resource protection
and development and utilization must be achieved.

In the context of achieving goals of peak carbon dioxide emissions and carbon neu-
trality around the world, this study aims to improve the habitat and CSC of coastal cities
through restoration and optimization of ecological networks, which provides a certain ref-
erence for the green space planning and layout of coastal cities with degraded habitat and
unbalanced ecological network construction. In this study, Yancheng City was selected as a
typical case. Multiple remote sensing data atlases and the MSPA-MCR model were used
to construct Yancheng City’s ecological network in 2020 and evaluate its comprehensive
spatial representation. Topological indicators and CSC of ecological network nodes were
calculated, and their correlation was analyzed. The ecological network was optimized from
the perspective of ecosystem function optimization and CSC improvement of ecological
nodes. Optimization results were then verified by calculating the robustness of the network
before and after optimization. How to balance urban spatial development and ecosystem
stability is a key issue in the development process of Yancheng City and even the world’s
other cities. This study has important practical and practical significance for the optimiza-
tion of ecological networks, the improvement of CSC of coastal cities around the world,
and the coordinated development of urban construction, development, and protection.

2. Study Area and Data Sources
2.1. Study Area

The study area, Yancheng City, China, has a total area of 6340 km2 (Figure 1). It is a
typical coastal city, and the total length of its coastline is 582 km, accounting for 61% of
Jiangsu Province’s. Among them, its coastal beach is 444 km in length, which is the longest
in China, and its beach area reaches 683 ha, accounting for one-seventh of China [35].
Therefore, the regulation of the ocean on the urban climate is very significant. It belongs to
the transition zone from the northern subtropical climate to the southern warm temperate
climate (Yancheng City Bureau of Statistics 2021).

2.2. Data Sources and Preprocessing

In Table 1, multiple datasets (accessed on 10 March 2022) from 2020 were listed,
including socioeconomic statistics and geospatial information used for analysis. The spatial
resolution of LULC data of the study area was 10 × 10 m. According to its landscape base
and study purposes, the land use was divided into eight types: woodland, shrub, grassland,
wetland, farmland, water area, artificial surface, and bare land. And other datasets were
reclassified to the same spatial resolution as LULC data.
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Figure 1. Location and urban protection zoning of the study area. The subgraph at the upper-left
shows the map of China’s administrative divisions and the geographical location of Jiangsu Province.
The lower-left corner shows the administrative map of Jiangsu Province and the geographical location
of Yancheng City. And the right figure shows the coastal wetland protection zonings and urban
construction land.

Table 1. The list of data used in this study.

Category Indicators Sources (accessed on 10 March 2022)

Socioeconomic

Boundary zoning data
The Resource and Environment Science and Data Center

of the Chinese Academy of Sciences
(https://www.resdc.cn/)

Population density data WorldPop (https://www.worldpop.org/)

Land use and land cover (LULC) data The Geographic Information Monitoring Cloud Global
Land Cover (http://data.ess.tsinghua.edu.cn/)

Road network data OpenStreetMap (https://www.openstreetmap.org/)

NPP and CO2 concentration data Geographic Remote Sensing Ecological Network
Platform (https://www.gisrs.cn)

Geospatial

DEM and slope data ASF Data Search (https://search.asf.alaska.edu/)

Water network data OpenStreetMap (https://www.openstreetmap.org/)

Mean annual precipitation data Geographic Remote Sensing Ecological Network
Platform (https://www.gisrs.cn)

NDVI data USGS (https://www.usgs.gov/)

3. Methods

In Figure 2, the framework of this study was mainly divided into the following three
parts.

https://www.resdc.cn/
https://www.worldpop.org/
http://data.ess.tsinghua.edu.cn/
https://www.openstreetmap.org/
https://www.gisrs.cn
https://search.asf.alaska.edu/
https://www.openstreetmap.org/
https://www.gisrs.cn
https://www.usgs.gov/


Remote Sens. 2023, 15, 4007 5 of 21

Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 22 
 

 

3. Methods 

In Figure 2, the framework of this study was mainly divided into the following three 

parts. 

(1) Establishment of ecological network based on MSPA-MCR model. According to 

MSPA method and landscape connectivity index, important ecological habitat patches 

were identified as ecological sources at the pixel level. Combined with multiple resistance 

factors, such as natural and anthropogenic disturbance factors, the MCR model was then 

modified. The minimum cumulative ecological resistance surface was calculated later. The 

ecological corridor was identified, and the landscape ecological network of Yancheng City 

was finally constructed. 

(2) Evaluation of ecological network. Ecological nodes and corridors were visualized 

as topological nodes and lines to form a topological network. The gravity model was 

adopted to evaluate the relative action intensity of ecological sources as well as the relative 

importance of ecological corridors. The carbon sequestration coefficient was used to esti-

mate the CSC of ecological sources, and the correlation with topological nodes was then 

analyzed. 

(3) Optimization and validation of ecological network. Ecological sources with weak 

ecological function or topological structure were screened out, and corresponding optimi-

zation schemes were proposed. The validity and rationality of optimized network were 

verified by comparing the robustness of ecological networks before and after optimiza-

tion. 

 

Figure 2. The framework of this study. 

3.1. Construction of Ecological Network 

3.1.1. Identification of Ecological Sources 

MSPA analysis is widely used in landscape science to identify ecological sources. It 

has the advantages of accurate and specific evaluation, less data required, and 

Figure 2. The framework of this study.

(1) Establishment of ecological network based on MSPA-MCR model. According to
MSPA method and landscape connectivity index, important ecological habitat patches
were identified as ecological sources at the pixel level. Combined with multiple resistance
factors, such as natural and anthropogenic disturbance factors, the MCR model was then
modified. The minimum cumulative ecological resistance surface was calculated later. The
ecological corridor was identified, and the landscape ecological network of Yancheng City
was finally constructed.

(2) Evaluation of ecological network. Ecological nodes and corridors were visualized
as topological nodes and lines to form a topological network. The gravity model was
adopted to evaluate the relative action intensity of ecological sources as well as the relative
importance of ecological corridors. The carbon sequestration coefficient was used to
estimate the CSC of ecological sources, and the correlation with topological nodes was then
analyzed.

(3) Optimization and validation of ecological network. Ecological sources with weak
ecological function or topological structure were screened out, and corresponding opti-
mization schemes were proposed. The validity and rationality of optimized network were
verified by comparing the robustness of ecological networks before and after optimization.

3.1. Construction of Ecological Network
3.1.1. Identification of Ecological Sources

MSPA analysis is widely used in landscape science to identify ecological sources. It has
the advantages of accurate and specific evaluation, less data required, and visualization of
analysis results. It was adopted to analyze the spatial characteristics of landscape patterns
of LULC data in this study. Woodland, shrub, grassland, wetland, and water area with
high ecological value and less human disturbance were considered as “foreground”, and
the farmland, artificial land, and bare land were regarded as “background” [36]. Based
on GuidosToolbox2.8 platform, the binary raster image was re-interpreted into seven
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landscape types through spatial morphological analysis, such as open and close operation:
core, bridge, loop, branch, islet, edge, and perforation [37]. Definition and their ecological
implication of seven landscape types are described in detail in Table S1.

Landscape connectivity reflects the exchange of material and energy and the intensity
and frequency of circulation among various ecological sources, which can measure the
function of ecological sources and the overall structure of its network. It is an impor-
tant supplement to the MSPA method [38]. Probability of connectivity (PC) refers to the
possibility of direct diffusion of ecological flows between two habitat patches, which is a
representation of overall landscape connectivity at the landscape level [39]. When a patch is
removed from the landscape pattern, the overall landscape structure will change, which is
called the delta of PC (dPC). It is an index to measure the importance of patches. PC value
ranges from 0 to 1; when it is higher, the connectivity between patches is stronger. And
when the dPC value is larger, the patch is more important. The formulas are as follows [40]:

PC =
∑n

i=1 ∑n
j=1 aiaj p∗ij
A2

L
, (1)

dPC =
PC − PCremove

PC
× 100, (2)

where n is the total number of patches, ai and aj are the area of patches i and j, respectively,
p∗ij is the maximum probability value of species diffusion between patches i and j, AL is the
total area of the patches, and PCremove the calculation result of connectivity after removing a
particular element.

Combined with the actual situation of study area and the relevant research,
the importance degree of ecological source was quantified by software Conefor2.6
(http://www.Conefor.org/ (accessed on 29 October 2022)), and its distance threshold and
connection probability were set as 1000 and 0.5, respectively. Habitat patches with dPC and
areas greater than 0.26 and 3 km2, respectively, in the study area, were selected as important
ecological sources. According to ecological function and dominant patch types, ecological
sources were divided into three categories: vegetation, wetland, and water area [40].

3.1.2. Construction and Correction of Resistance Surface

MCR model, widely used in species conservation and landscape pattern analysis, is
adopted to calculate the “accumulated cost” of “source” so as to overcome the “resistance”
of outward spread [41].

Based on the combination of previous research in references [42,43] and actual sit-
uations of the study area, the assignment of resistance factor was carried out, and the
AHP (Table S2) was adopted to determine the significance of each factor (Table S3). DEM,
Slope, LULC, NDVI, and MSPA were taken to characterize resistance factors of regional
natural ecological base. In addition, the degree of human disturbance was characterized by
population density, distance from water, and road networks.

3.1.3. Extraction of Ecological Corridors

Through the overlapping analysis of ecological source and resistance surface, the
minimum resistance path between the sources can be analyzed, that is, the potential
ecological corridor. The calculation formula is expressed as follows:

VMCR = fmin

i=m

∑
j=n

(
Dij × Ri

)
(3)

where Dij is the distance from patch i to j; Ri represents the resistance of material flow
between habitat patches; VMCR is the MCR; and f is the positive correlation between the
MCR and ecological process.

http://www.Conefor.org/
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The ecological source and comprehensive resistance surface are selected to calculate
the minimum cumulative cost distance between pixel and nearest unit on the cost surface
based on ArcGIS and the cost distance module platform [44].

3.1.4. Determination of Importance of Ecological Corridors

The gravity model can quantify the interaction between ecological sources. The
greater the interaction force, the more important the potential ecological corridor between
ecological sources and the higher the construction priority [9]. In this study, the ecological
sources with the top 50% of interaction intensity G value were used to construct corridors,
and the threshold of their G value was set to 20 and 100. Among them, corridors with G
values greater than 100 and between 20 and 100 were regarded as important and secondary
important ecological corridors, respectively, and the rest were selected as general ones. The
calculation formula is expressed as follows:

Gij =
Ni Nj

D2
ij

=
[ 1

Pi
× ln(Si)][

1
Pj
× ln

(
Sj
)
]

(
Lij

Lmax
)2

=
L2

maxlnSilnSj

L2
ijPiPj

(4)

where Gij is the interaction intensity between ecological sources i and j; Ni and Nj are
the corresponding weight values of sources i and j, respectively; Dij is the standardized
resistance value of potential corridor between source areas; Pi and Pj are the average
resistance values of ecological source i and j, respectively; Si and Sj are the areas of sources
i and j, respectively; Lij is the corridor resistance value between sources i and j; and Lmax is
the maximum resistance of corridors in the study area.

3.2. Topological Structure of Ecological Network

According to complex network and graph theories, ecological sources and corridors
are abstracted as nodes and lines of network, respectively. Therefore, the ecological network
can be visualized as a topological network [45]. In contrast, ecological topological network
actually simplifies and quantifies the real spatial structure of landscape for better research.
According to relevant research, 9 topological indicators are selected to evaluate the ecologi-
cal network of Yancheng City. Among them, the overall structure of ecological topological
network is represented by average degree, average clustering coefficient, and modularity;
degree, betweenness centrality, closeness centrality, clustering coefficient, eigenvector cen-
trality, and PageRank are used to evaluate the ecological sources and nodes [46]. These
indicators are described in Table S4.

3.3. Estimation of CSA

Many scholars around the world calculate the CSA of different land uses. Based
on China’s statistical data and related studies, the carbon sequestration coefficients of
different regions are determined to estimate the CSA [31]. Although agricultural land
has the potential of “carbon sequestration”, the CSC of China’s agriculture at the current
stage cannot completely offset the greenhouse gases produced in the production process.
Therefore, in this study, agricultural land was not calculated as a carbon source [30]. The
calculation formula is as follows:

Ct =
n

∑
i=1

AiSi (5)

where Ct is the total amount of carbon sequestration; i is the land-use type; Ai is the land
area of land-use type i; and Si is the sequestration coefficient of land-use type i (Table 2).
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Table 2. Carbon sequestration coefficient for different land-use types.

Land-Use Type
Carbon Sequestration Coefficient (Mg C ha−1)

Literature Sources
Vegetation * Soil Total

Forest 159.0 124.9 283.9 [47–49]
Shrub 43.1 131.4 174.5 [50]

grassland 11.5 132.4 143.8 [51–53]
wetland 15.3 347.5 362.8 [54,55]

Water area / 67.1 67.1 [56,57]
* The vegetation carbon density includes litter and dead wood.

3.4. Verification of Robustness

Robustness is the ability of the system to maintain its basic function despite internal
and external errors [58]. In natural system, the robustness of such network manifests itself
as stability: when a “disaster” occurs, it is able to maintain basic function even if some
of its components fail. According to relevant research, three indicators (average degree,
efficiency, and connectivity robustness) were chosen to assess the robustness of ecological
network nodes. These indicators are described in Table S5. The calculation of robustness
before and after optimization is one of the significant methods to verify the effectiveness of
network optimization.

4. Results
4.1. Construction and Analysis of Ecological Network
4.1.1. Identification of Ecological Sources

The LULC data of Yancheng City were processed by the MSPA method to obtain the
landscape-type distribution map (Figure 3a). It is shown that the foreground area is 1614.63
km2 in the binary grid base map, only accounting for 10.41% of the total. Foreground
elements were classified into seven landscape types, and the proportion of each type was
detailed in Table 3.
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Table 3. Classification statistics of MSPA.

Landscape Type Area (km2)
Accounting for Area
of Foreground (%)

Accounting for Area
of Study Area (%)

Core 781.46 48.40 5.04
Bridge 132.42 8.20 0.85
Loop 66.19 4.10 0.43

Branch 91.30 5.65 0.59
Islet 237.20 14.69 1.53
Edge 306.06 18.96 1.97

Perforation 28.79 1.78 0.19
Total 1614.63 100.00 10.41

dPC was used as an important indicator for ecological source selection to quantify
the contribution degree of the core patch to the overall landscape connectivity. Sixteen
ecological source plots with an area greater than 3 km2 and dPC values greater than 0.26
were obtained and numbered according to the source area, of which the land-use type with
the highest proportion was classified into three categories (Figure 3b). In 16 ecological
sources, large forests, national reserves, large coastal wetlands, river main flows, and
eco-tourism areas of Yancheng City are all included.

Ecological sources are mainly wetlands and water areas, which fully show the charac-
teristics of ecological spatial patterns in coastal areas. In addition, ecological sources are
concentrated in the wetlands near the eastern coastline of the city and sparsely distributed
in western and middle areas. It can be seen that the spatial distribution of ecological sources
is obviously unbalanced.

4.1.2. Results of MCR Surface

Based on the front resistance surface map (Figure S1), the ecological resistance surface
map was obtained (Figure 4) and displayed in a hierarchical way according to the resistance
value. The results show that Yancheng City has low resistance to ecological risks; among
them, low-resistance area accounts for only 7.36% of the total, and moderate low-resistance
area accounts for 17.15%; medium resistance area accounts for 35.61%, and moderate–high-
and high-resistance areas account for 39.87%. The spatial distribution of resistance values
shows that low-resistance area is similar to ecological sources, which is mainly concentrated
in eastern coastal wetlands and scattered green spaces of the city; moderate–high- and high-
resistance area are mainly urban construction area and artificial surface, while moderate
low resistance area is mainly large farmland near the man-made surface; and medium
resistance area accounts for a relatively high proportion in the study area, which has a
certain ecological buffer function.

4.1.3. Analysis of Potential Ecological Corridors

The Linkage Mapper component was used to construct a potential ecological corridor
of Yancheng City by adopting the MCR model in ArcGIS. As shown in Figure 5, there
are altogether 31 ecological corridors connecting 16 ecological sources in Yancheng City,
which are mainly concentrated in coastal wetlands. A number of ecological corridors
(7-10-12-15-11, etc.) are distributed along the tributaries of the city’s watershed. The gravity
model was adopted to analyze the interaction intensity among various corridors, evaluate
the significance of corridors and grade them. In this study, eight important, five secondary
important, and eighteen general ecological corridors were obtained. The interaction matrix
of the significance of ecological corridors is shown in Table S6.
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Overall, ecological corridors in Yancheng City’s eastern coastal areas are obviously
dense and short in length. However, there are only two north–south ecological corridors in
the west, and almost all corridors are east–west in the central region. It can be seen that the
ecological base of the study area is very poor, lacks a perfect ecological flow network, and
has great room for improvement.

4.2. Analysis of Topological Structure
4.2.1. Evaluation of Overall Structure of Topological Network

According to the complex network theory, ecological sources and corridors were
introduced into the complex network visualization software Gephi 0.9.2 based on the
JAVA platform in this study, and the topological network (Figure 6a) and modular division
(Figure 6b) of the ecological network were obtained.

From the overall structure of the network, it is shown that the average degree and
average clustering coefficient are 3.875, 6, and 0.508; by comparing with other studies, the
average degree of ecological network in this study is lower, indicating that the average
number of ecological corridors connected by ecological sources is smaller; the average
clustering coefficient is also smaller, revealing that the aggregation of ecological nodes is
clustered and unbalanced, most of ecological sources are mainly distributed in the coastal
space, and the heterogeneity of urban ecological space is quite high. The topology network
is divided into three communities, in which the clustering coefficient of community 3 is
higher (Figure 6b). It is indicated that ecological sources and corridors of community 3 have
better aggregation levels and stability. Community 1, located in the north of the city, has
the lowest value of modularity, indicating that ecological sources and corridors inside the
community have poor stability and are more prone to collapse due to external interference.

4.2.2. Evaluation of Topological Nodes

Six indicators used to describe topological nodes can be divided into three categories.
Firstly, degree and betweenness centrality refer to the “bridge” function of nodes. In the
ecological network (Figure 6c), nodes 3, 7, 10, and 15 have the highest values of degree
and betweenness centrality, revealing that these nodes at the center of the network have
important connection roles. If these nodes are lost, many nodes in the network may lose
the “bridge” to others.

Secondly, closeness centrality and clustering coefficient reflect the connectivity of
ecological nodes and quantify their geometric position in the ecological network. Values
of closeness centrality of all nodes are relatively average. However, the values of the
clustering coefficient of nodes 7, 13, 15, and 16 are the lowest, indicating that the number
of corridors between nodes and neighbor nodes is smaller, and these nodes do not fully
play the connection function. As a result, it is significant to enhance the construction of
ecological corridors between a node and its neighboring node.

Finally, eigenvector centrality and PageRank are two indicators that use different
weight algorithms to assess the significance of nodes. It is shown that eigenvector centrality
and PageRank of nodes 3, 5, 7, 10, 12, and 15 are higher, indicating that these nodes play
key roles in Yancheng City’s ecological network; in addition, multiple indicators values of
nodes 1, 4, 6, 13 and 16 are lower, which need to be optimized and improved.
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4.3. Estimation and Validation of CSA
4.3.1. Estimation of CSA

According to the dominant land-use types with the highest area proportion of the
ecological sources, the ecological sources can be divided into three categories: wetland,
water, and vegetation. Carbon sequestration coefficients of different land-use types were
used to estimate the CSA and proportions of 16 ecological sources in Yancheng City (Table 4).
Among them, wetland ecological source accounts for 88.62% of the total, and its CSA is
94.19% of the total. Water’s ecological source occupies 5.97% of the total, but its CSA is only
1.57% of the total. The main reason is that the carbon sequestration coefficient of wetlands is
much higher than that of water. In addition, from the dominant land-use types of ecological
sources, it can be seen that the distribution of land-use types is not balanced, and the
proportion of vegetation ecological sources is relatively low, which reduces the overall CSC.
Vegetation ecological sources cover only 5.41% of the total area of eco-sources, which is a
very low level for a city. Thus, it is critical to increase the number of new vegetation sources
and optimize their quality so as to improve the overall urban CSC.

Table 4. Carbon sequestration estimation of each type of ecological source.

No. of
Eco-Sources

Dominant
Land-Use

Type

Area
(ha)

Accounting
for Area of

Total
Eco-Sources

(%)

CSA
(Mg C)

Accounting
for Total
CSA (%)

CSA Per
Unit Area

(Mg C
ha−1)

1–6, 9, 10 Wetland 45,650 88.62 16,387,879 94.19 358.99
7, 12, 13, 16 Water 3074 5.97 2,734,780 1.57 88.96
8, 11, 14, 15 Vegetation 2785 5.41 738,028 4.24 264.96

Total 51,509 100 17,399,385 100 337.79
CSA: Carbon sequestration amount.

4.3.2. Correlation Analysis between Topological Indicators and CSC

To further explore the relationship between the CSC of ecological sources and their
relative position in the ecological network, the correlation between the CSC of ecological
sources and various topological indicators of complex networks (Figure 7a) was analyzed.
The correlation of carbon sequestration value and carbon sequestration value per unit
area with clustering coefficient is significant (r = 0.507, p < 0.05) and highly significant
(r = 0.725, p < 0.01), respectively. Based on the further correlation analysis of various
ecological sources, it is found that the carbon sequestration and clustering coefficient of
wetland sources are negatively correlated. The carbon sequestration value of water eco-
logical sources is positively correlated with degree, betweenness centrality, and PageRank.
The carbon sequestration value per unit area of vegetation ecological sources is positively
correlated with the clustering coefficient and negatively correlated with the other five
indicators (Figure 7b). Therefore, different optimization measures need to be emphasized
for the improvement of CSC of various ecological sources. The increase in CSA requires
the addition of other types of nodes to reduce the clustering coefficient of wetland nodes.
Furthermore, for vegetation nodes, it is necessary to increase the node number of the same
type to improve the clustering coefficient and reduce other topological indicators. However,
the node number of all types needs to be reduced to improve all topological indicators of
water nodes. There is a trade-off here in choosing to add water or vegetation nodes. And
considering the overall situation, we have to consider abandoning water nodes.
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Figure 7. (a) Pairwise comparisons of topological indicators shown with a color gradient representing
Spearman’s correlation coefficients. Mantel tests depict the association of carbon storage indicators of
ecological sources with topological indicators. The width of each edge matches Mantel’s r statistic
for the equivalent distance correlations. (b) Pearson’s correlation coefficients matrix between the
topological indicators and carbon sequestration indicators of the three kinds of ecological sources.
Asterisks denote the significance level: * 0.01 < p < 0.05, ** 0.001 < p < 0.01, *** p < 0.001.

5. Discussions
5.1. Spatial Distribution of Ecological Network

The ecological pattern of Yancheng City has the characteristics of typical coastal
cities. The wetland is the dominant land-use type in many ecological sources, and many
ecological corridors are distributed along the tributaries of the watershed. Ecological
sources and important corridors of ecological networks with high habitat quality were
mainly distributed in the eastern coastal wetland of the city. This is consistent with previous
research on the ecological network of coastal cities [59]. Unlike other cities, few vegetation
sources have a negative influence on the development of the city [22]. Therefore, there is
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great potential for the improvement of ecological networks in central and western regions.
Ecological nodes and corridors need to be increased to improve the stability of ecological
networks and the quality of urban ecology.

More importantly, the topological indicators of ecological nodes were found to have a
significant positive correlation with CSC (Figure 7). Fang et al. [30] also proposed a similar
conclusion that the CSC of vegetation nodes is related to its topological characteristics. In
addition, the second law of geography was used to explain the reasons. Spatial hetero-
geneity caused by geographical space separation resulted in the difference in topological
indicators of different types of ecological nodes.

5.2. Optimization and Improvement of Ecological Network
5.2.1. Identification of Stepping Stones

The identification of optimizable nodes in the ecological network is particularly impor-
tant for maintaining the stability and scientific integrity of the entire ecological network [29].
The correlation analysis in Section 4.3.2 provides a new perspective for optimizing ecologi-
cal nodes and CSC.

As shown in Figure 8a, stepping stones can provide transient habitat for species mi-
gration, contributing to the success of species migration and the survival of organisms.
Therefore, the intersection points between ecological corridors are usually chosen as step-
ping stones. In addition, if the ecological corridor is too long, it will also increase the risk
in the process of animal migration. It is also necessary to improve the small green patch
through the ecological corridor as a stepping stone to shorten the length of the ecological
corridor (stepping stone m) [25]. In this study, 13 patches with better habitat conditions
near the intersection of ecological corridors were selected as ecological stepping stones
where node a is cultivated land, b and e are wetlands, c and f are water areas, and the rest
are vegetation areas.
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After adding stepping stones, the overall structure and community division of the
optimized topological network has undergone tremendous changes (Figure 8b). The
average degree decreases from 3.8757 to 3.103, the network diameter increases from 6 to
11, and the average clustering coefficient declines from 0.508 to 0.229, indicating that the
increase and scattered distribution of ecological stepping stones weaken the importance
of each node and the aggregation degree of network, and enhance the stability of the
ecological network. The network community division is related to the spatial location of
nodes to a certain extent, and nodes in the same community have stronger connectivity with
each other. In a certain geographical range, however, ecological nodes with any damage in
the region have stronger stability. Among new ecological stepping stones, PageRank values
of nodes a–c, and f are the highest, revealing that the above four nodes play significant
roles in optimizing the network and are key zones for development and construction.

5.2.2. Optimization of Ecological Corridors

In previous literature, how to scientifically improve and increase the ecological corridor
lacked references and standards. Qiu et al. proposed an optimization strategy of adding
ecological corridors or adding ecological stepping stones to shorten the shortest path
between nodes with weak ecological functions or low carbon sequestration [30]. In our
study, correlation analysis in Section 4.3.2 may provide a new perspective. It is feasible
to improve CSC by increasing the node number to improve the clustering coefficient
(Figure 7a). The construction of wetland nodes needs to rely on special water and soil
environment, so it is not feasible to increase wetland nodes in the middle and west of
Yancheng City. Therefore, the improvement of ecological nodes in the central and western
regions of the city mainly needs to be optimized by vegetation nodes.

According to the significant positive correlation between the clustering coefficient and
CSA per unit area of vegetation nodes (p < 0.05), enhancing the network connectivity is an
effective means to improve the balance and stability of the ecological network. Therefore,
topological nodes are sorted by clustering coefficient, and eco-sources (7, 8, 12, 13, 15, and
16) and eco-stepping stones (f, k, and m) with low values are selected (Figure 9a). Till then,
12 eco-corridors between selected nodes and their surrounding neighborhood are added,
and the optimized ecological network is constructed (Figure 9b).
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Figure 9. (a) Identification of the optimized ecological corridors. The node size represents the
clustering coefficient. (b) The land-use division of the optimized ecological network. The node size
represents the clustering coefficient. (c) The modular division of the optimized ecological network.
The node size represents the PageRank. Numbers from 1 to 16 mark the ecological sources, and letters
a to m mark the stepping stones.

The average degree of optimized ecological network changes to 3.931, and the average
clustering coefficient increases to 0.32. The number of network communities rises from 3
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to 4 (Figure 9c), which is more suitable for the needs of urban form and ecological base.
It is proved that the construction of ecological stepping stones has great optimization
potential for ecological networks; clustering coefficients and PageRank values of optimized
ecological networks are generally balanced; especially, vegetation nodes have been greatly
improved (Figure 9b,c).

5.2.3. Enhancement of CSC

Enhancing the spatial landscape structure and improving the quality of urban ecology
are considered effective ways to improve the sustainability of the urban ecosystem [60].
From a macroscopic perspective, by optimizing the ecological topological network, the
material exchange capacity between ecological nodes can be promoted, the circulation risk
can be reduced, and the CSC of urban ecosystems can be enhanced [25].

The CSA of different green ecosystems is different, and forests are the main body of
terrestrial carbon sequestration all over the world [47]. In this study, it can be seen that
coastal wetlands have the strongest CSC (Table 2) and fix 94% of total carbon sequestration
among all types of ecological sources (Table 4). The coastal wetland system is an advantage
of the ecological foundation of coastal cities. However, carbon sequestration of urban
ecosystems cannot rely on wetlands alone. This result also shows the deficiencies of other
green spaces in Yancheng City, as well as the huge potential for improvement. Therefore,
this study proposes two strategies to improve the CSC of ecological networks. By increasing
the vegetation ecological stepping stones, CSA will directly increase (Figure 8). In addition,
the CSC of ecological nodes will be improved by increasing ecological corridors and
clustering coefficient (Figure 9).

There is no doubt that the addition of ecological stepping stones and corridors will
inevitably increase the carbon sequestration of the ecological network [61]. The larger the
construction area of urban green space, the more the total carbon sequestration, and the
larger the clustering coefficient between green spaces, the higher the carbon sequestration
per unit area. The benefits of an improved ecological network and the increase in carbon
sequestration are immeasurable [62].

5.2.4. Comparison and Analysis of Robustness

In this study, improving the stability and resilience of the ecosystem is another im-
portant purpose of optimizing the ecological network. Therefore, the robustness of the
ecological network needs to be further verified [31].

The resilience of ecological networks to shocks can be reflected by simulating the ro-
bustness of network matrices to sequential, random, and malicious attacks. On the platform
of Phony 3, the ecological network is simulated as an undirected adjacency matrix [63]. The
degree, efficiency, and relative size of the maximum connected subgraph for sequential,
random, and malicious attacks were calculated, as shown in Figure 10. As the proportion
of attacked nodes increases, the stability of the network decreases; as a whole, the stability
of the optimized network is stronger than that of the unoptimized network. After network
optimization, the degree and efficiency of the network have been reduced to a certain
extent, indicating that the connectivity and stability of the network have been relatively
improved, the importance of nodes has been reduced, and the connectivity distance has
been shortened to a certain extent. Especially before the proportion of attacked nodes
reaches 40%, the stability of the optimized network has significantly improved, indicating
that the attack resistance of the network has also significantly improved (Figure 10b).
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5.3. Applicability and Limitations

Under the background of achieving goals of carbon neutrality and peak carbon dioxide
emissions in the world, all levels of cities in the world, especially coastal cities, need a
research system that can coordinate and optimize the ecological function and CSC of
urban ecosystems. This system can also improve the quantity and quality of ecological
elements and optimize their spatial distribution, thereby forming a healthy and stable
ecosystem structure on the macro scale of urban planning and construction and improving
human ecological well-being [25]. The MSPA-MCR model used in this study is widely used
and highly recognized in current ecological network construction [22]; choosing a carbon
sequestration coefficient instead of NPP to estimate CSA is particularly suitable for cities
with dense water networks of the same type [30]. Moreover, this paper also focuses on the
strategies of ecological restoration and carbon sequestration improvement of coastal urban
ecological networks. The research seeks universal ecological network optimization methods
for cities under different ecological base conditions from the perspective of improving the
CSC of ecological nodes, which is applicable to but not limited to coastal cities, and has
certain reference significance for all levels of cities around the world.

In further study, the ecological support function of the study area to the surrounding
area on a larger spatial scale should be considered. Some scholars have shown that different
corridor widths directly affect ecosystem functions [64]. Combined with the migration path
and corridor utilization needs of some protected species in Yancheng City, more targeted
explorations on ecological corridor width and radiation channel must be carried out.

6. Conclusions

The establishment of an ecological network is an indispensable measure to realize
regional sustainable development. In this study, Yancheng City’s ecological network was
established. Topological indicators and CSC of each source region in the ecological network
were calculated, and their correlation was also analyzed. According to the results of
Spearman’s correlation coefficient analysis, the construction of ecological stepping stones
and corridors has been added to guide urban habitat protection and carbon sequestration
city construction. The main conclusions are as follows:

(1) The ecological pattern of Yancheng City has the characteristics of typical coastal
cities, and the spatial distribution of Yancheng City’s ecological network is uneven. The
ecological base in the central and western regions of the city is weak, which needs to be
improved.
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(2) There is a significant positive correlation between CSC and clustering efficiency.
Improving the clustering efficiency of vegetation nodes is effective for strengthening the
CSC of the ecological network in Yancheng City.

(3) Thirteen eco-stepping stones of four types (vegetation, wetland, water, and farm-
land) and 12 eco-corridors were added to improve the connectivity and balance of the
network.

The purpose of this study is to enhance the CSC of the ecological network in Yancheng
City and optimize the ecological network from the perspective of ecological function
restoration and CSC improvement. This study has certain theoretical and practical signifi-
cance for the studies of ecological network optimization and carbon sequestration function
improvement in coastal cities around the world.
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