
Citation: Lv, Y.; Chi, H.; Shi, P.;

Huang, D.; Gan, J.; Li, Y.; Gao, X.;

Han, Y.; Chang, C.; Wan, J.; et al.

Phenology-Based Maximum Light

Use Efficiency for Modeling Gross

Primary Production across Typical

Terrestrial Ecosystems. Remote Sens.

2023, 15, 4002. https://doi.org/

10.3390/rs15164002

Academic Editors: Xiaobin Guan,

Xing Li, Zhaoying Zhang and

Xinyao Xie

Received: 23 July 2023

Revised: 8 August 2023

Accepted: 10 August 2023

Published: 12 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Phenology-Based Maximum Light Use Efficiency for Modeling
Gross Primary Production across Typical Terrestrial Ecosystems
Yulong Lv 1,2 , Hong Chi 2,3,* , Peichen Shi 1,2, Duan Huang 4,5 , Jialiang Gan 4, Yifan Li 2,6, Xinyi Gao 2,6,
Yifei Han 2 , Cun Chang 3, Jun Wan 7 and Feng Ling 2

1 School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
2 Key Laboratory of Monitoring and Estimate for Environment and Disaster of Hubei Province, Innovation

Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences,
Wuhan 430077, China; lingf@whigg.ac.cn (F.L.)

3 State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography,
Chinese Academy of Sciences, Urumqi 830011, China; changcun@ms.xjb.ac.cn

4 Key Laboratory of Mine Environmental Monitoring and Improving around Poyang Lake of Ministry of
Natural Resources, East China University of Technology, Nanchang 330013, China

5 School of Surveying and Geoinformation Engineering, East China University of Technology,
Nanchang 330013, China

6 University of Chinese Academy of Sciences, Beijing 100049, China
7 Wuhan Regional Climate Center, Wuhan 430074, China
* Correspondence: chihong@whigg.ac.cn

Abstract: The maximum light use efficiency (LUE) (ε0) is a key essential parameter of the LUE model,
and its accurate estimation is crucial for quantifying gross primary production (GPP) and better
understanding the global carbon budget. Currently, a comprehensive understanding of the potential
of seasonal variations of ε0 in GPP estimation across different plant functional types (PFTs) is still
lacking. In this study, we used a phenology-based strategy for the estimation of ε0 to find the optimal
photosynthetic responses of the parameter in different phenological stages. The start and end of
growing season (SOS and EOS) from time series vegetation indices and the camera-derived greenness
index were extracted across seven PFT flux sites using the methods of the hybrid generalized additive
model (HGAM) and double logistic function (DLF). Optimal extractions of SOS and EOS were
evaluated, and the ε0 was estimated from flux site observations during the optimal phenological
stages with the light response equation. Coupled with other obligatory parameters of the LUE model,
phenology-based GPP (GPPphe-based) was estimated over 21 site-years and compared with vegetation
photosynthesis model (VPM)-based GPP (GPPVPM) and eddy covariance-measured GPP (GPPEC).
Generally, GPPphe-based basically tracked both the seasonal dynamics and inter-annual variation of
GPPEC well, especially at forest, cropland, and wetland flux sites. The R2 between GPPphe-based and
GPPEC was stable between 0.85 and 0.95 in forest ecosystems, between 0.75 and 0.85 in cropland
ecosystems, and around 0.9 in wetland ecosystems. Furthermore, we found that GPPphe-based

was significantly improved compared to GPPVPM in cropland, grassland, and wetland ecosystems,
implying that phenology-based ε0 is more appropriate in the GPP estimation of herbaceous plants. In
addition, we found that GPPphe-based was significantly improved over GPPVPM in cropland, grassland,
and wetland ecosystems, and the R2 between GPPphe-based and GPPEC was improved by up to 0.11 in
cropland ecosystems and 0.05 in wetland ecosystems compared to GPPVPM, and RMSE was reduced
by up to 5.90 and 2.11 g C m−2 8 day−1, respectively, implying that phenology-based ε0 in herbaceous
plants is more appropriate for GPP estimation. This work highlights the potential of phenology-based
ε0 in understanding the seasonal variation of vegetation photosynthesis and production.

Keywords: gross primary production; light use efficiency model; maximum LUE; phenology-based;
hybrid generalized additive model
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1. Introduction

Gross primary productivity (GPP) of the terrestrial ecosystem, which reflects the car-
bon dioxide (CO2) flux fixed by plants through the process of photosynthesis, is a crucial
factor in the global carbon cycle. Conventionally, the eddy covariance (EC) technique is
recognized as one of the best micrometeorological methods for measuring the net exchange
(NEE) of CO2 between the atmosphere and the surface of various ecosystems and ecosys-
tem respiration (ER) across diverse terrestrial ecosystems. The observed NEE, partitioned
into GPP and ecosystem respiration, can be used for indirect GPP estimation [1]. EC flux
measurements from continental or global flux networks provide fundamental data for
calibrating and validating the parameters of ecological models to improve GPP estimation
capability, facilitating numerous studies of carbon fluxes over various terrestrial ecosys-
tems [2]. These flux sites’ data integrated with satellite remote sensing and climate data
have been widely used to support the development of GPP estimation models at the site,
regional, and global scales [3,4].

Light use efficiency (LUE) models, driven by vegetation indices (e.g., the enhanced
vegetation index, EVI) obtained from remotely sensed imagery and climate data, have been
extensively used for estimating GPP from site scale to global scale due to their advantages
of a well-accepted explanation, few input parameters, and ease of operation. These models
estimate GPP as a product of absorbed photosynthetically active radiation (APAR) and
LUE (εg) (GPP = APAR × εg), which is derived from downscaling the maximum LUE
(LUEmax, denoted as ε0) by the scaling of environmental constraints (e.g., temperature,
water, CO2, etc.). Generally, the ε0 is initially regarded as a constant for global vegetation
in LUE models, such as C-Fix [5] and EC-LUE [6], and then considered as a biome-specific
constant, as in MOD17 [7], or a constant dependent on product types of carbon (namely
C3 and C4), as in VPM and TEC models [3,8], as well as a two-leaf-specific constant in the
TL-LUE model [9]. However, growing ecological communities think of ε0 as a dynamic
value rather than a constant [10,11].

In reality, ε0 was significantly influenced by vegetation canopy absorption of solar
radiation [12] and the internal physiological characteristics (e.g., chlorophyll content) of
plants [13] in earlier studies. Based on the fact that there is an essential increase in light
use efficiency under overcast conditions, a cloudiness index was used to dynamically
regulate ε0 in CFLUX and CI-LUE models [12,14]. Considering the nonlinear response of
vegetation photosynthesis to solar radiation induced by vegetation photosynthesis varies
with the dynamics of solar radiation, Xie et al. (2023) [10] proposed a PAR-regulated
dynamic ε0 in GPP estimation based on the LUE model, while several recent studies have
shown that ε0 greatly varies during the vegetation growing season [15] as a result of the
varying correlation between chlorophyll content and photosynthesis efficiency at various
growing stages [16]. Dynamic ε0 was parameterized in the phenological transitions of
paddy rice [17] and the leaf area index (LAI)-based green-up stage and senescence stage [11]
at flux sites to improve agroecosystem GPP estimation. So far, studies on the comprehensive
performances of phenology-based dynamic ε0 for GPP estimation in broader terrestrial
ecosystems (such as forests, grasslands, and wetlands) are few, but performance evaluation
can provide a deep understanding of dynamic ε0 in GPP estimation.

More specifically, Huang et al. (2021) [17] estimated ε0 during four phenological
stages corresponding to the physiological features of paddy rice. The results indicated that
phenology-based ε0 is more appropriate for GPP estimation in the paddy field ecosystem.
In another relevant study, Huang et al. (2022) [11] found seasonal variations of ε0 in
agroecosystems and re-parameterized ε0 in the green-up and senescence stages to provide
high-accuracy GPP estimates. These studies have demonstrated that phenology-based ε0
performs better than static or constant ε0 in GPP estimation because it is more consistent
with phenology variations in the vegetation. In terms of the global terrestrial ecosystem,
phenological stages diverge as a result of the changes in photosynthesis efficiency and
rate caused by plant physiological characteristics [10,11], and they are appropriated for
estimating ε0 in vegetation phenological stages.
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In order to evaluate the improvement of phenology-based ε0 in GPP estimates across
different terrestrial ecosystems, the extraction of identical phenology indicators is a key
step. The phenological stage indices, including the start (SOS), end (EOS), and length (LOS)
of the growing season, have been successfully derived from remotely sensed imagery or
ground observations with various algorithms [18]. Recent studies have showed that extrac-
tion algorithms such as the hybrid generalized additive model (HGAM) and double logistic
function (DLF) are robust and appropriate for estimating SOS/EOS/LOS from satellite nor-
malized difference vegetation index (NDVI), enhanced vegetation index (EVI), and in situ
GPP observations [19–21]. Moreover, automated digital camera imagery collected through
the Phenology Camera (PhenoCam) observation network can provide ‘near-surface’ obser-
vations of vegetation phenology with high temporal resolution [22,23]. These PhenoCam
images have been successfully used to evaluate satellite-derived phenology [24–26] and
test phenology algorithms in diverse ecosystems [27–29]. Therefore, a thorough evalua-
tion of the implications of phenology extraction algorithms on phenology-based ε0 and a
comprehensive comparison of phenology-based ε0 across different ecosystems are required.

In an effort to address the issue of the current ε0 estimation approach not fully taking
into account the identical phenological stages of various PFTs, we proposed a framework for
phenology-based regulation of ε0 and made a comparison of GPP estimates from phenology-
based ε0. Specifically, the objectives of the study were to: (1) compare phenology-based ε0
estimated from NDVI, EVI, and camera-derived greenness index based on two well-known
algorithms (HGAM and DLF) among forest, grassland, cropland, and wetland ecosystems
and (2) assess the degree of improvement in GPP estimation by use of phenology-based ε0
in the LUE model.

2. Data and Preprocessing
2.1. FLUXNET Data

In this study, data from seven flux sites from the FLUXNET dataset were collected,
covering evergreen needleleaf forest, deciduous broadleaved forest, paddy field, dryland,
grassland, and wetland ecosystems. The criterion used to select flux sites was that they
had to contain observations that include both flux data and phenology camera records
from the same time period (‘Data Availability’ in Table 1). Therefore, we selected the
time scale of these flux tower sites as 2010 to 2015. The FLUXNET provides two public
datasets: the FLUXNET2015 Dataset and the FLUXNET-CH4 Community Product. To
improve consistency and comparability, both datasets offer preprocessing and quality-
controlled flux data using consistent methodologies [30–32]. The variables used in this
study included gross primary productivity (‘GPP_NT_VUT_REF’), net ecosystem exchange
(‘NEE_VUT_REF’), ecosystem respiration (‘RECO_VUT_REF’), air temperature (‘TA_F’),
and photosynthetic photon flux density incident (‘PPFD_IN’). The variables of the USTAR
(‘VUT’) threshold for selected years were used in this study [33–35], and detailed data
processing method can be found on the FLUXNET website (https://fluxnet.org/data/
fluxnet2015-dataset/data-processing (accessed on 22 July 2023)). High-quality data were
refined to remove abnormal data with PPFD_IN_QC values of −9999 or 0. With regard
to GPP, the variables of ‘GPP_NT_VUT_REF’ were recognized as reference daily GPP
(g C·m−2·d−1). The variables of half-hour and hourly input were scaled to a daily scale for
calibration and validation of the model estimates.

Howland Research Forest is located in Piscataquis County, central Maine. It is charac-
terized by evergreen coniferous forest, with soils formed on coarse-grained granite. The
vegetation consists of approximately 66% red spruce, 25% eastern hemlock, and 34% other
coniferous trees and hardwoods [36]. Harvard Forest is situated in Petersham County,
Massachusetts. It is a deciduous broadleaf forest, with soils consisting of rocky sandy loam
and glacial till. The dominant vegetation types include red oak, sugar maple, eastern white
pine, and yellow birch [21]. Morgan Monroe State Forest is located in Morgan and Monroe
Counties, Indiana. It is a deciduous broadleaf forest characterized by a low-relief landscape
with ridges and ravines, where the maximum relief is less than 60 m. The main vegetation

https://fluxnet.org/data/fluxnet2015-dataset/data-processing
https://fluxnet.org/data/fluxnet2015-dataset/data-processing
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types are sugar maple, tulip poplar, yellow poplar, and various oak species [37]. US-Ne2 is
situated near Mead, Nebraska, at the University of Nebraska Agricultural Research and
Development Center. It represents a typical corn–soybean rotation agricultural ecosystem,
with corn planted in odd-numbered years. Unlike US-Ne3, which relies solely on rainfall,
US-Ne2 is equipped with a central-pivot irrigation system [38]. Twitchell Island rice field
is located within the Sacramento–San Joaquin Delta, near the Pacific coast. This rice field
ecosystem experiences a Mediterranean climate with distinct wet and hot seasons [39].
Mayberry Wetland is situated on Sherman Island and is a constructed restored wetland
built using the heterogeneity trenching method. The wetland vegetation is predominantly
cattail, and it exhibits the highest heterogeneity in water depth among the restored wet-
lands from the same period [40,41]. Vaira Ranch is located near Ione, California. The
primary vegetation consists of annual C3 grassland, influenced by a Mediterranean climate.
These annual grasslands exhibit higher activity during the warm and moist winter season
compared to during the summer season [42]. The distribution of the above sites is shown
in Figure 1.

Table 1. Basic information of the FLUXNET tower sites.

Site_ID Site_Name PFT Latitude Longitude Data
Availability Tmin Tmax Topt

US-Ho1 Howland Forest (main tower) ENF 45.204 −68.740 2013–2015 −20.64 25.66 18.87
US-Ha1 Harvard Forest EMS Tower (HFR1) DBF 42.537 −72.171 2010–2012 −15.83 27.52 20.13

US-MMS Morgan Monroe State Forest DBF 39.323 −86.413 2012–2014 −12.08 29.85 22.82
US-Ne2 Mead-irrigated maize–soybean rotation CRO 41.164 −96.470 2010–2012 −18.26 29.56 23.02
US-Twt Twitchell Island CRO 38.108 −121.653 2012–2014 2.60 28.65 20.46
US-Myb Mayberry Wetland WET 38.049 −121.765 2012–2014 4.14 27.27 20.02
US-Var Vaira Ranch, Ione GRA 38.413 −120.950 2012–2014 3.45 31.58 23.73

ENF: evergreen needleleaf forest, DBF: deciduous broadleaf forest, CRO: cropland, WET: wetland, GRA: grassland.
Site US-Ne2 is covered by dryland, and site US-Twt is covered by paddy field. Tmin, Tmax and Topt are the
minimum temperature, the maximum temperature and the optimal temperature, which were used in previous
studies based on site observations.

2.2. Phenology Camera Data

The PhenoCam tracks vegetation phenology in various ecosystems, initially in North
America and then globally [43,44]. Cameras are pointed in the dominant wind direction
in order to match the eddy covariance tower footprint [45]. Digital images are stored as
JPG files (image resolution of about 1900 × 960 pixels, three color channels with 8-bit
RGB color information) at half-hourly intervals for several hours per day with exposure
mode. If digital images contain devices or the sky, several regions of interest (ROIs) are
used to extract vegetation enclosing all areas in the foreground. As GCC (green chromatic
coordinate) is widely used for monitoring vegetation canopy development and quantifying
canopy greenness [45,46], it is estimated from the following equation:

GCCcam =
DNG

DNR + DNG + DNB
(1)

where the subscripts DNG, DNR, and DNB represent the red, green, and blue channels,
respectively. The daily GCC is smoothed by a filter based on the official algorithm to reduce
some uncertainty [47] and aggregated at 8-day intervals to match EVI temporal resolution
for extracting phenology. Because there were no time periods overlapping the FLUXNET
and PhenoCam databases, the GCC from the US-Ne2 site (dryland environment) could not
be used in this analysis.
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2.3. MODIS Data

The MODIS surface spectral reflectance (MOD09A1 V6), FPAR, and leaf area index
(LAI) products (MCD15A3H V6) are accessible at a spatial resolution of 500 m on the
Google Earth Engine (GEE) platform and were used in the study. The MOD09A1 and
MCD15A3H products are 8-day and 4-day composite data which choose the best pixels
filtered by their quality labels. We used red (620–670 nm), blue (459–479 nm), near infrared
(NIR, 841–876 nm), and shortwave infrared (SWIR, 2105–2155 nm) bands to calculate NDVI,
EVI, and LSWI (land surface water index) [48–50] in the following equations:

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(2)

EVI = G × ρNIR − ρRed
ρNIR + (C1 × ρRed − C2 × ρBlue) + L

(3)

LSWI =
ρNIR − ρSWIR
ρNIR + ρSWIR

(4)

where ρBlue, ρRed, ρNIR, and ρSWIR are the spectral reflectance of the blue, red, NIR, and
SWIR bands, respectively. G is set to 2.5, C1 is set to 6, C2 is set to 7.5, and L is set to 1 in
Equation (3). The MODIS sensor may have a small amount of abnormal data or missing
data due to its internal components or external solar radiation, whose time series data need
to be gap-filled and smoothed through interpolation and filter.

The Savitzky–Golay (SG) filter employs a locally weighted regression to fit the data
within the window as a polynomial. It replaces the original value at the center point of the
window with the polynomial value. The degree of fitting of the SG filter depends on the
window size and the order of the polynomial. The sliding window sizes for SG filtering
of NDVI, EVI, LSWI, and LAI time series data were set to 11 (for a few sites where data
anomalies still existed after processing, the window sizes were set to 15), and the order of
the polynomial was set to 3. The 4-day LAI products were averaged every two observations
to match the time resolution of MOD09A1. Likewise, we filtered daily GCC data and took
the maximum value of GCC within every 8-day period as the value for that period.
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3. Methodology

The overall framework of this study is shown in Figure 2. Some specific data processing
methods and GPP estimation models are detailed and described in this section.
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3.1. Phenology Extraction
3.1.1. Double Logistic Function

The DLF method has been fast developed and widely used to extract phenological
indices at site or regional scale. It is a common nonlinear function that is made up of two
logistic functions, each with an inflection point and a curvature parameter. We used the
following seven-parameter logistic function to extract SOS and EOS at the seven flux sites.
The parameters of the DLF can be adjusted to fit various ecosystem responses, making it
highly suitable for different environmental conditions and ecosystem types [19,51].

Y(t) = α1 +
α2

1 + e−∂1(t−β1)
− α3

1 + e−∂2(t−β2)
(5)

SOS = β1 (6)

EOS = β2 (7)

LOS = EOS − SOS (8)

where Y(t) represents the observed data value at time t on DOY (day of year). α1 is the value
during the winter dormant period, α2–α1 is the amplitude between the winter dormant
period and the spring and early-summer peak, and α3–α1 is the amplitude between the
winter dormant period and the late summer and autumn peak. ∂1 and ∂2 are curvature
metrics to adjust the slope of the logistic function. β1 and β2 are the inflection points in
DOY of the transitions for vegetation green-up and senescence stages. In this study, the
fitted parameters of β1 and β2 represent the SOS and EOS, and the length of the growing
season is the difference between β1 and β2.

3.1.2. Hybrid Generalized Additive Model

The HGAM is a statistical model that combines the advantages of the generalized
additive model (GAM) and hybrid model which was proposed for estimating SOS and PPY
(peak photosynthesis timing) from GPP data by Yang et al. [20]. The GAM is a nonlinear
modeling approach that describes the nonlinear effects of independent variables as smooth
functions. Taking into account the ambiguous representation of long time series feature
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points from raw discrete data, it was developed into a hybrid model. A detailed description
of the HGAM can be found in Yang et al. [20]. When modeling NDVI, EVI, and GCC
time series data with the GammaGAM class in the PyGAM library, the data need to be
preprocessed with gap filling and smoothing to make the input data more stable and
acceptable after entering the model. The cubic spline interpolation was used for gap filling,
and the smoothing operation is explained in Section 2.3.

This study employed ten splines to model the relationship between independent
and response variables. Specifically, each spline function defined a spline node, which
divided the range of independent variable into ten intervals. The interval ranges were
divergent, making the modeling procedure more flexible. Compared with the DLF method,
the HGAM does not have a concept similar to the inflection point and uses local tuning
thresholds to determine the temporal indices of the key phenological stages. Since the range
of GCC derived from the camera images of the flux sites was usually less than 0.2 (mostly
between 0.3 and 0.5), the mean of the maximum and minimum values (the difference
between the maximum and minimum values of GCC data for each group of experiments
in the study was less than 0.2) was used as the tuning threshold rather than the averaged
amplitude. Then, we set the threshold in the smoothed NDVI, EVI, and GCC curve to
identify the SOS and EOS. Based on the SOS and EOS estimated from the vegetation indices,
three phenological stages (i.e., before SOS, SOS–EOS, and after EOS) were derived for GPP
estimation in the next step.

3.2. Light Use Efficiency Model
3.2.1. Structure of the LUE Model

The general structure of a light use efficiency model to estimate GPP can be formulated
as follows:

GPP = εg × PAR × FAPAR (9)

where εg is the actual maximum light use efficiency (µmol CO2/µmol photosynthetic
photon flux density, PPFD), PAR is the incident photosynthetically active radiation (µmol
PPFD), and FAPAR is the fraction of PAR absorbed by vegetation. The εg is affected by
temperature and water stress and can be expressed as:

εg = ε0 × Tscalar × Wscalar (10)

where ε0 is the apparent quantum yield or maximum LUE (µmol CO2/µmol PPFD or
g C/mol PPFD), and Tscalar and Wscalar are the scalars for the effects of temperature and
water on the light use efficiency of vegetation, respectively. Using the equation developed
for the terrestrial ecosystem model [52], Tscalar from the vegetation photosynthesis model
(VPM) was used in this study [53]:

Tscalar =
(T − Tmin)(T − Tmax)

[(T − Tmin)(T − Tmax)]−
(
T − Topt

)2 (11)

where Tmin, Tmax, and Topt denote the minimum, maximum, and optimal temperature for
photosynthetic activity, respectively. Their values were determined based on the previous re-
search on GPP estimation in specific ecosystems, along with the sites’ real circumstances [3].
Wscalar was estimated from a satellite-derived, water-sensitive vegetation index:

Wscalar =
1 + LSWI

1 + LSWImax
(12)

where LSWImax is the maximum land surface water index (LSWI) during the vegetation
growing seasons and was calculated separately for each year.
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3.2.2. The Calculation of Maximum Light Use Efficiency (ε0)

Generally, ε0 is dependent on the PFTs and can be estimated from light–response
curves to fit time series data of net ecosystem exchange (NEE), photosynthetically active
radiation (PAR), and ecosystem respiration (Re). Specifically, this study employed a rectan-
gular hyperbolic function (the Michaelis–Menten light response equation) to fit the three
parameters mentioned above from eddy covariance measurements [54]:

NEE =
ε0 × PPFD × GEEmax

ε0 × PPFD + GEEmax
− Re (13)

where GEEmax is the maximum rate of ecosystem gross photosynthesis (µmol CO2·m−2·s−1),
and Re is the daytime ecosystem respiration. As ε0 values vary with phenological stages
of different PFTs [17,55], we fitted ε0 during three phenological stages (i.e., before SOS,
SOS–EOS, and after EOS), which were extracted from the time series vegetation indices
based on the algorithms of DLF and HGAM (see detailed description in Section 3.1).

3.2.3. The Calculation of FAPAR

Some earlier research on LUE models employed the fraction of PAR absorbed by the
vegetation canopy (FAPARcanopy) to estimate APAR, using a linear relationship between
FAPARcanopy and VIs as well as LAI as FAPARcanopy proxies [5,8,56]. Subsequently, as
communities discovered that the fraction of PAR absorbed by chlorophyll (FAPARchl)
or photosynthetically active vegetation (PAV, FAPARpav) contributes more to vegetation
photosynthesis, FPARchl or FAPARpav were found to be appropriate for estimating GPP. In
this study, we selected four common relationships between FAPARchl/FAPARcanopy and
satellite-based vegetation indicators as follows:

FAPARchl1 = a × EVI (14)

FAPARchl2 = (EVI − b)× c (15)

FAPARchl3 = min(max(d × NDVI + e, 0), 1) (16)

FAPARcanopy = 1 − ek×LAI (17)

where Equations (14) and (15) are linear functions between EVI and FAPARchl where a
is set to 1 [53], and b and c are, respectively, 0.1 and 1.25 [10]. Equation (16) removes the
influence of bare soil on NDVI, where d and e are set to 1.24 and −0.168 [57]. k is the
extinction coefficient set to 0.5 in Equation (17) [58].

3.3. Evaluation of Phenological Stages and GPP Estimation

In order to evaluate the performance of the DLF and HGAM in phenology stages
extraction, we compared modeled SOS and EOS with the digital images acquired on the
same day, as well as 8 days ahead of and lagging behind the date, by visual inspection. The
phenology cameras were able to capture the seasonal variations in foliage pigments of most
PFTs, which result in an increase in canopy greenness in the spring and a decrease in canopy
greenness in the fall. The agreement between the 8-day estimated GPP and observed GPP
was evaluated by the coefficient of determination (R2) and the root-mean-square error
(RMSE). Furthermore, GPP estimates from the VPM model were used as a reference to
evaluate phenology-based modeled GPP. ε0 and Tscalar were set according to site-specific
references [3,6,39,53], and others were default parameters.

RMSE =

√
1
n
×

n

∑
i=1

(
Ypre_t − Yobs_t

)2 (18)
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R2 =


n
∑

i=1

(
Ypre_t − Ypre_mean

)
(Yobs_t − Yobs_mean)√

n
∑

i=1

(
Ypre_t − Ypre_mean

)2 ×
n
∑

i=1
(Yobs_t − Yobs_mean)

2


2

(19)

In the equation, n represents the total number of samples, Ypre_t is the predicted value
for the current period, Yobs_t is the observed value for the current period, Ypre_mean is the
mean value of the predicted values, and Yobs_mean is the mean value of the observed values.

4. Results
4.1. SOS and EOS Estimated from Vegetation Indices Based on DLF and HGAM at Flux Sites and
Their Validation

The SOS and EOS derived from the DLF and HGAM models varied with the time
series observations. Among the 60 experiments, the HGAM method successfully extracted
the SOS and EOS within the effective time range (referring to 46 eight-day periods in a
year) in all cases. However, the DLF method only extracted the SOS and EOS within the
effective time range in 45 out of the 60 experiments. The calculated effective extraction rate
for the HGAM was 100%, while, for DLF, it was 75%. Notably, among the 18 experiments
using GCC, DLF failed to provide valid results in 12 cases. Therefore, despite the differ-
ent vegetation indices used in phenology extraction of different ecosystems, the HGAM
consistently produced valid results and exhibited better robustness compared to DLF.

Specific dates of SOS and EOS in the DOY with an 8-day interval (the same as used
below) are summarized in Table 2. In most years, the SOS of ENF (US-Ho1) showed a
closed range of 14.42–19.91, and the EOS displayed a relatively wider range from 28.09 to
45.55 at US-Ho1. Several anomaly SOS and EOS values were derived from GCC by the
DLF model (SOS = 9.57 and 5.31, and EOS = 15.01 and 13.90 in 2013 and 2015, respectively)
or from NDVI by the HGAM model (SOS = 6.72 in 2014). At the two DBF sites, the ranges
of both SOS and EOS were quite comparable, showing the SOS to be within 14.02–17.58
at US-Ha1 and 10.68–16.72 at US-MMS and the EOS to be within 32.59–43.61 at US-Ha1
and 34.96–41.16 at US-MMS. Most SOS and EOS values at US-Ne2 site fell within the
range of 19.83–23.21 and 27.96–34.51, with the exception of SOS = 7.97 and EOS = 18.55
obtained from NDVI by the DLF model in 2011. The estimates of phenological stages
from the three vegetation indices by means of the DLF and HGAM models had strong
comparability at US-Twt. The SOS and EOS ranged from 16.72 to 25.36 and from 28.36
to 38.12, respectively. The growth period of the wetland (US-Myb) demonstrated the
early start (averaged SOS < 12.01) and the late end (averaged EOS > 36.96) of the growth
period, implying a longer growing season of vegetation at the US-Myb wetland site. On
the contrary, the growth period of grassland was the shortest of all PFTs of this study. Most
LOS values were less than twelve 8-day intervals at US-Var.

We used phenology camera photos to evaluate the accuracy of the key phenological
events. The photos acquired at the SOS and EOS extracted from NDVI, EVI, and GCC using
the DLF and HGAM models were downloaded from PhenoCam. A red rectangular box
enclosing the vegetation area in the foreground was set in each photo for visual inspection.
We took the visual interpretation of US-MMS (in 2014) and US-Myb (in 2013) as examples
to represent the woody plant and herbaceous plant. At US-MMS, green leaves were
less visible in the photos where the acquired date of SOS was estimated from NDVI_DLF,
NDVI_HGAM, EVI_HGAM, and GCC_HGAM, while many new green leaves had emerged
in the photo whose acquired date of SOS was estimated from EVI_HGAM. The EOS date
derived from the NDVI_HGAM, GCC_HGAM, and NDVI_DLF was obviously lagging
behind, which could be seen by the large number of yellow leaves or chlorophyll-degraded
leaves in these photos (Figure 3a). The photo witnessed the forest growing stage when the
camera date was derived from the SOS of the EVI_DLF, and the EOS estimated from the
EVI_DLF and EVI_HGAM matched the time that the vegetation started to turn yellow in
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the camera images well. Overall, the SOS and EOS obtained by EVI_HGAM were more
compatible with the vegetation growth stages, and their dates were very close to those
in the research conclusions of Cheng et al. [59]. With regards to the restored wetland of
US-Myb in 2013, the SOS was estimated to be in the 12th 8-day interval from EVI_DLF,
NDVI_HGAM, and EVI_HGAM, while it was estimated from GCC_HGAM to be in the
15th 8-day interval. As shown in Figure 3b, the vegetation was still yellow in the 12th 8-day
interval and started to green up in the 15th 8-day interval, which basically coincided with
the SOS in DOY 105–140 in Fang et al. [60]. Similar evaluations of estimates of SOS and EOS
were implemented at other sites. Specifically, the EVI_HGAM was the appropriate model
to extract SOS and EOS at US-Ho1, US-Ha1, US-MMS, US-Ne2, and US-Twt, GCC_HGAM
was suitable for US-Myb, and EVI_DLF performed better than other models in US-Var
(Supplementary Materials, Figure S2.1–S2.21).

Table 2. Key phenological stages (SOS and EOS (number within parenthesis)) extracted by HGAM
and DLF at the seven flux tower sites.

Site_ID Year NDVI_HGAM EVI_HGAM GCC_HGAM NDVI_DLF EVI_DLF GCC_DLF

US-Ho1
2013 16.86

(36.86)
17.58

(32.67)
14.42

(39.06)
17.46

(18.46)
18.97

(29.41)
9.57

(15.01)

2014 6.72
(45.55)

17.31
(31.72)

15.77
(38.25)

0.07
(3.90)

19.91
(28.09)

−12.13
(16.17)

2015 17.80
(44.56)

18.75
(32.22)

15.32
(38.52)

17.85
(39.06)

19.21
(32.08)

5.31
(13.90)

US-Ha1
2010 14.02

(43.61)
17.17

(34.78)
14.92

(34.83)
14.52

(35.12)
16.67

(35.18)
−12.01
(14.12)

2011 14.69
(37.85)

17.58
(34.47)

15.98
(36.42)

16.16
(32.59)

17.39
(34.55)

−48.10
(16.51)

2012 15.64
(38.61)

17.53
(34.33)

15.95
(34.87)

16.59
(34.91)

17.41
(34.38)

−15.79
(15.37)

US-MMS
2012 15.32

(36.68)
15.95

(34.96)
10.68

(35.73)
14.80

(36.70)
15.06

(35.39)
−63.56
(10.56)

2013 14.74
(37.85)

16.23
(34.69)

13.12
(37.76)

15.54
(41.16)

15.05
(35.28)

11.17
(232.91)

2014 14.65
(38.25)

16.72
(35.10)

14.78
(36.59)

15.24
(37.29)

15.74
(35.61)

−60.81
(14.74)

US-Ne2
2010 21.32

(34.33)
22.08

(32.98) / 20.41
(34.51)

23.21
(29.20) /

2011 19.83
(33.66)

21.14
(32.04) / 7.97

(18.55)
22.60

(27.96) /

2012 21.27
(34.06)

21.95
(32.26) / 21.74

(32.89)
21.86

(30.69) /

US-Twt
2012 22.40

(37.98)
22.89

(37.13)
23.61

(37.94)
23.95

(37.31)
22.89

(37.23)
25.36

(31.73)

2013 21.90
(38.12)

21.81
(37.17)

16.99
(31.32)

23.32
(37.01)

21.18
(36.68)

20.52
(28.36)

2014 18.88
(37.94)

16.72
(37.62)

19.38
(32.22)

20.65
(32.71)

16.94
(36.94)

22.60
(29.71)

US-Myb
2012 12.44

(43.43)
13.03

(42.13)
11.14

(42.26)
−1.39
(8.39)

13.33
(40.47)

11.70
(50.75)

2013 13.12
(41.95)

13.48
(41.81)

16.09
(43.43)

−0.53
(1.13)

13.56
(40.20)

−11.49
(13.33)

2014 11.00
(36.50)

13.12
(35.68)

12.17
(29.69)

11.52
(45.13)

14.16
(34.77)

−12.58
(13.76)

US-Var
2012 6.27

(18.61)
6.81

(18.79)
8.97

(18.03)
19.45

(21.74)
8.07

(18.35)
−15.74
(15.22)

2013 7.17
(17.71)

7.76
(17.67)

4.33
(16.72)

9.71
(16.97)

8.85
(17.32)

−12.19
(13.12)

2014 1.72
(17.31)

4.83
(16.77)

7.62
(17.13)

−1.31
(10.81)

6.25
(16.17)

12.34
(16.25)
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used to visually examine SOS and EOS extraction results (US-Myb in 2013). SOS and EOS could not 

be extracted with the GCC_DLF method for the US-MMS sites in 2014, so the comparisons were 

Figure 3. Two examples of the validation of SOS and EOS at forest site and wetland site. (a) Pho-
tographs used to visually examine SOS and EOS extraction results (US-MMS in 2014); (b) photographs
used to visually examine SOS and EOS extraction results (US-Myb in 2013). SOS and EOS could
not be extracted with the GCC_DLF method for the US-MMS sites in 2014, so the comparisons were
missed. Meanwhile, SOS and EOS estimated from NDVI_DLF and GCC_DLF failed, resulting in
unavailable comparisons at US-Myb in 2013.

4.2. Estimates of the Maximum LUE (ε0) during Phenological Stages

The phenology-based maximum light use efficiency (ε0) at the seven flux sites is
shown in Table 3. Phenological stage 1 (PS1) refers to the period from the first day in the
DOY to the SOS, phenological stage 2 (PS2) refers to the second period from the SOS to the
EOS, and phenological stage 3 (PS3) refers to the third period from the EOS to the last day
in the DOY. At the US-Ho1 site from 2013 to 2015, the maximum ε0 appeared in the PS3
and varied from 0.042 to 0.049 µmol CO2/µmol PPFD, while the minimum ε0 appeared
in the PS1 and differed from 0.030 to 0.036 µmol CO2/µmol PPFD. For the DBF site, ε0
showed considerable ranges from 0.037 to 0.062 µmol CO2/µmol PPFD at US-Ha1 and
0.013–0.040 µmol CO2/µmol PPFD at US-MMS. In regard to the cropland site of US-Ne2
and US-Twt, the maximum ε0 was synchronous in the PS2 with the value of 0.065 in the
dryland and 0.045 in the paddy field. The ε0 of the wetland (US-Myb site) in PS2 was
relatively higher than that in PS1 and PS3, with the maximum value being approximate to
0.38 from 2012 to 2014. For the grassland site of US-Var during 2012–2014, the ε0 showed
substantial variations among the PS1, PS2, and PS3, especially the minimum value of 0.01
in PS1 and the maximum value of 0.084 in PS2 in the year of 2014. The maximum ε0
ranged from 0.042 µmol CO2/µmol PPFD to 0.084 µmol CO2/µmol PPFD in the PS2 of the
three years.

4.3. Comparison of GPP Estimates with Phenology-Regulated ε0 and Different FAPAR Proxies

A total of 21 site-years GPP values were simulated with phenology-based ε0 and
four FAPAR proxies. For one site-year GPP simulation, the specific parameters used to
generate five GPP estimates are shown in Table 4. GPP5 and GPPEC represent VPM GPP
and observed GPP estimated from each flux site.
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Table 3. Specific values of ε0 (µmol CO2/µmol PPFD) estimated from phenological stages at the
seven sites.

Site_ID Year PS1 PS2 PS3

US-Ho1
2013 0.032 0.035 0.049
2014 0.036 0.039 0.046
2015 0.030 0.036 0.042

US-Ha1
2010 0.061 0.044 0.053
2011 0.037 0.040 0.053
2012 0.041 0.045 0.062

US-MMS
2012 0.031 0.040 0.022
2013 0.030 0.034 0.034
2014 0.030 0.038 0.013

US-Ne2
2010 0.036 0.054 0.028
2011 0.020 0.065 0.030
2012 0.045 0.050 0.026

US-Twt
2012 0.024 0.040 0.020
2013 0.032 0.042 0.045
2014 0.031 0.031 0.004

US-Myb
2012 0.014 0.039 0.024
2013 0.035 0.037 0.015
2014 0.033 0.038 0.035

US-Var
2012 0.058 0.062 0.020
2013 0.035 0.042 0.028
2014 0.010 0.084 0.029

Table 4. Key parameters used to estimate GPP1, GPP2, GPP3, GPP4, and GPP5.

GPP ε0 FAPAR

GPP1 Phenology-based ε0 FAPARcanopy
GPP2 Phenology-based ε0 FAPARchl1
GPP3 Phenology-based ε0 FAPARchl2
GPP4 Phenology-based ε0 FAPARchl3
GPP5 Default ε0 FAPARchl1 (default setting)

The temporal dynamics of five GPP products are plotted against the temporal dy-
namics of GPPEC in Figure 4. At US-Ho1 and US-Ha1, GPP2, GPP3, and GPP5 accurately
tracked both the seasonal dynamics and inter-annual variation of GPPEC, while GPP1 and
GPP4 somewhat to moderately overestimated GPPEC during these years. At US-MMS,
five GPP products overestimated the observed GPP from 2012; however, in 2013 and 2014,
GPP2 and GPP3 traced the variability of GPPEC on seasonal and inter-annual scales well.
At US-Ne2, five GPP products followed GPPEC in 2010 and 2011 well, whereas these mod-
eled GPP values slightly lagged behind the GPPEC in 2012. The same situation occurred
at US-Twt in 2013. In 2012 and 2014, GPP4 slightly overestimated GPPEC. GPP1, GPP2,
GPP3, and GPP5 overall fitted the observed GPP in 2012, and GPP2, GPP3, and GPP5
somewhat underestimated GPPEC in 2014. From 2012 to 2014, GPP1 and GPP4 were greatly
larger than GPPEC at US-Myb. GPP2, GPP3, and GPP5 generally properly matched with
GPPEC in 2013 and 2014, while the three GPP products were moderately smaller than the
observed GPP in 2012. At US-Var, GPP1 and GPP4 significantly overestimated GPPEC from
2012 to 2014. In particular, in 2013, the five GPP products moderately lagged behind the
observed GPP.
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5. Discussion
5.1. SOS/EOS Estimating Methods of Different PFTs

Extracting the phenology of different PFTs from time series satellite data is a pre-
liminary step in ecological remote sensing research. In this study, we used two methods,
the HGAM and DLF, on three vegetation indices (EVI/NDVI/GCC) to extract the crucial
phenological stages (SOS/EOS) of different vegetation types [61,62].

On the one hand, the three vegetation indices have inherent differences in their charac-
teristics. NDVI serves as the foundation of remote sensing phenology and is sensitive to the
biochemical and physiological characteristics of vegetation, commonly used for distinguish-
ing between vegetation and bare soil [48]. Using the dynamic threshold method to extract
phenological parameters from NDVI time series can improve the prediction of soil organic
carbon content during crop rotation [63]. EVI, as an enhanced vegetation index, exhibits
higher sensitivity in areas with high biomass. Research has shown that EVI outperforms
NDVI in vegetation monitoring, particularly in regions dominated by evergreen broadleaf
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forests [49]. Using the sigmoidal logistic function, the mutual comparison and interpretation
of phenological indicators derived from MODIS EVI and flux tower GPP were validated in
southern Taihang Mountains, China [64]. GCC, a derivative product that was developed after
the emergence of phenocamera data, holds great potential for detecting vegetation canopy
development [65]. The study conducted by Fan et al. provided a comprehensive perspective
on the phenology of complex wetland landscapes by utilizing the DLF method and GCC
data [60]. The amplitude of NDVI variation within a year is frequently greater than that of
EVI and GCC due to its sensitive response to the change of vegetation canopy compared to
other indices. For the estimation of the SOS and EOS of the forest ecosystem in our study,
NDVI-based DLF/HGAM algorithms were inferior to the same EVI-based algorithms.

On the other hand, the principles of the two phenology extraction algorithms are
different. The double logistic function algorithm evolved from the simple logistic (SL)
method with the inclusion of additional variables that are assumed to better detect the
changes in greenness from extreme events [51]. The DLF algorithm has shown its potential
in monitoring vegetation seasonal growth dynamics as it showed good performance in
fitting growth curves in some PFTs (e.g., it fitted well in ENF, paddy fields, and wetlands
in our study). However, the maximum rate of change (both increasing and decreasing)
of the fitted VI curves supposed to be the SOS and EOS was not accepted. Adversely,
over-fitting in green-up or senescence stages, resulting in false inflection points, may have
been recognized as the SOS and EOS. Moreover, we found under-fitting of the EVI curve in
growth peaks at US-MMS (DBF site), as well as the identical circumstance for the NDVI
curves at US-Ne2 (cropland site) and US-Ho1 (ENF site), which implies that there are large
uncertainties relating to DLF algorithms applied at regional scale. Generally, the HGAM
algorithms showed better performance than DLF in the extraction of the SOS and EOS
of different PFTs. It could capture not only a single peak in cropland/grassland/ENF
ecosystems, but also asymmetrical peaks in DBF ecosystems during the peak season. Fur-
thermore, VI curves in the periods before green up and after senescence were well tracked
by the HGAM algorithms. The HGAM approach allows for the automatic derivation of the
predictor functions, which eliminates the requirement to know the fitting parameters and
the ultimate kind of predictive functions in advance [20,61]. This can detect intra-annual
variations of NDVI/EVI/GCC in the entire growth season across different PFTs using
regression splines and smoothing splines [20]. Phenology camera images, which benefit
from daily acquisition and in situ near-surface observation, were more welcome in recent
studies of GPP estimation. Our findings demonstrated that a GCC time series derived
from phenology camera images was capable of extracting phenological metrics with the
HGAM, especially for the wetland ecosystem. This conclusion agrees with Knox et al.’s
conclusion [45]: that camera-based indices have significant promise in capturing wetland
seasonal fluctuations. It should be noted that the estimation of camera-based indices and
visual inspection from camera photos can be more ambiguous given the varying growth
status of the vegetation in the foreground and background.

5.2. Phenology-Based ε0 of Different PFTs

During various phenological stages, the photosynthetic responses of different PFTs vary
quickly or slowly in response to the climate or environment changes. In recent studies, the ε0
during four phenological stages of paddy rice was investigated and showed 0.020–0.065 mol
CO2/mol PPFD in Huang et al. [17], 2021, and 0.014–0.0397 mol CO2/mol PPFD in Cheng
et al. [55] (an approximate conversion of 2.1 between MJ and mol PPFD was used) with
different parameter calibration methods. While we used the same calibration method as
Huang et al. to estimate ε0, and its values ranged from 0.004 to 0.045 mol CO2/mol PPFD
during the three phenological stages (before SOS, SOS–EOS, after EOS), we concluded that
the ε0 of rice was comparable even if it was derived from different phenology extraction
methods (SL in Huang et al. vs. HGAM in this study). Another new piece of research on
the ε0 of dry crops illustrated that ε0 starts to swiftly increase during the green-up stage and
gradually drops during the senescence stage [11], which is consistent with our finding that
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there is synchrony between ε0 and crop growing status. Zhu et al. [54] reported that the
ε0 varied with different grassland types, ranging from 0.029 to 0.102 mol CO2/mol PPFD
across temperate/tropical/alpine grasslands. In that study, the ε0 of US-Var estimated from
M–M equations between 2001 and 2014 was ~0.03 mol CO2/mol PPFD, which is analogous
to our ε0 estimates at US-Var between 2012 and 2014. Comparing the dynamic range of ε0
(0.01–0.084 mol CO2/mol PPFD) with a fixed constant ε0 can remind us to pay more attention
when using them in grassland ecosystem. Overall, PFTs have a large annual seasonal variation
in canopy structure [66], resulting in dynamic ε0 during the growing season. The estimation
of ε0 with a phenology-based strategy was proposed to find the optimal response of the
parameter to photosynthesis in different phenological periods.

5.3. Phenology-Based Methods in GPP Estimation with LUE Models—Strengths and Limitations

Comparisons of four GPP products based on phenology-based ε0 (denoted as GPPphe-based)
and VPM GPP (GPPVPM) with GPPEC are shown in Figure 5. For the majority of the flux
sites, the overall performances revealed good agreements between the four GPP products
and GPPEC, and the variation in accuracy was dependent on the use of FAPAR proxies.
For forest ecosystems, FAPAR data products based on NDVI and EVI showed weaker
improvement than LAI-based FAPAR in most years. In addition, compared with GPPEC,
these GPPphe-based values were comparable to GPPVPM at the forest sites, which implies
that the use of phenology-based ε0 in LUE models has limited effect on improving the
accuracy of GPP estimation. For herbaceous plants, the correlations between GPPphe-based
and GPPEC were subject to different PFTs. Generally, EVI- and NDVI-based FAPAR was
found to be more effective than LAI-based FAPAR in GPPphe-based estimation for grassland
and wetland ecosystems. The optimal GPPphe-based estimated from phenology-based ε0 and
EVI/NDVI/LAI-based FAPAR performed better than GPPVPM (0.62 vs. 0.14 in R2 max),
indicating significant enhancement by the phenology-based strategy in the estimation of
ε0 and its advantage of reduced uncertainty of the parameter. In terms of the cropland
ecosystem, the LAI-based FAPAR used for GPPphe-based estimation worked better than
the others in most years (four out of six site-years). The GPPphe-based was more accurate
than the GPPVPM in the rice ecosystem (US-Twt site), but there was not much of difference
between them in the dryland ecosystem (US-Ne2 site). Considering the positive influences
of dynamic ε0 based on phenological stages in GPP estimation in paddy field environments
from previous research and this work [17,55], ε0 refined at fine spatial scales is a practicable
way to extrapolate site GPP to regional or global scale for rice ecosystems.

We compared vegetation photosynthesis model (VPM) GPP (GPPVPM), phenology-
based VPM GPP (GPPphe-based), and eddy covariance-measured GPP (GPPEC) across five
ecosystems. The substantial improvement in GPP reflects that ε0 is influenced by the
vegetation canopy absorption of solar radiation and internal physiological traits of plants.
Under different solar radiation conditions, ε0 showed different photosynthesis efficiency
and rates, for example, increases in light use efficiency under overcast conditions and
saturation of vegetation photosynthesis to solar radiation under high solar radiation. Ad-
ditional factors to be consider are variations in the physiological traits of the vegetation
itself, such as changes in chlorophyll content. The distinctive tillage characteristics of
drylands and paddy fields, the instability of artificially restored wetlands, and the unique
climatic circumstances of grasslands bring about significant changes in these ecosystems
compared to in forest ecosystems. Therefore, the phenology-based GPP estimation sub-
stantially improved the estimation in croplands, grasslands, and wetlands compared to
original models. Meanwhile, we also noticed that GPPphe-based and GPPVPM estimates
lagged behind GPPEC for herbaceous plant in several years, particularly for the grassland
site (US-VAR) in 2013. Examining the camera photos of the extracted SOS and EOS revealed
no obvious flaws in the extraction process. When tracing back to the results of phenology
extraction using the HGAM method at this grassland site, we found that the predefined
threshold may have crossed the reconstructed VI three times rather than twice, as in ear-
lier research (Supplementary Materials, Figure S1.19–S1.21, which suggests that the third



Remote Sens. 2023, 15, 4002 17 of 23

crossing in the DOY may have been the SOS rather than the first intersection. Then, the
third crossing and the second crossing in the DOY were set for the SOS and EOS, and we
recalculated the GPP using the same procedures as mentioned above. The results showed
that the R2 between the EVI-based GPPphe-based and GPPEC was not substantially promoted
(0.04 vs. 0.02). Therefore, it was still a challenge to use the phenology-based method in GPP
estimation for the grassland ecosystem due to its greatly divergent or sharp waves in its VI
time series after filtering [18]. Another factor that affects phenology extraction is extreme
events (e.g., drought) under Mediterranean climates, resulting in vegetation activity that is
significantly higher in winter than in summer, which generates an inflection point which
may be potentially misidentified as the SOS or EOS [18]. Additional work should focus
on using more grassland sites from additional years to provide a more comprehensive
comparison of different phenology methods.
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The method used to estimate ε0 is another limitation that should not be overlooked.
Fitting light response equations is one of the commonly used methods. Specifically, ε0
is estimated from the Michaelis–Menten light response equation to fit observed NEE,
PAR, and ecosystem respiration, which was adopted in this study. This method is largely
dependent on the choice of equation forms. Gan et al. [67] found great variations of ε0 when
comparing its estimates from low light regression and the light response equation across
eight biomes. Future work is needed to synthesize these methods to offer a comprehensive
vision of ε0 estimation.

6. Conclusions

In this study, we investigated and evaluated the performance and robustness of DLF
and the HGAM in vegetation phenology extraction from NDVI/EVI/GCC time series
across seven PFTs and proposed a phenology-based framework to estimate ε0 for improved
GPP estimation in the LUE model. The results showed that using the HGAM method
and EVI data was suited for phenology extraction in forest and cropland ecosystems;
wetland phenology extraction preferred the integration of camera photos and the HGAM
method; and grassland phenology favored EVI and the DLF method. Based on land
surface phenology and light–response curves, we estimated phenology-based ε0 for the
different ecosystems. The results showed that the ranges of ε0 for different ecosystems were
divergent. However, we found high consistency in the seasonal dynamics of ε0 across these
ecosystems. Based on the point, four phenology-based GPP products were estimated from
phenology-based ε0 and four different forms of FAPAR and compared with VPM GPP. In
different types of ecosystems, the improved model showed varying degrees of improvement
compared to the original model. Generally, the good agreement between the GPPphe-based
and GPPEC in our study implies that the maximum LUE estimated in the phenological
stages reduces the uncertainty of the parameter to a certain extent and provides a substantial
improvement in GPP estimations for cropland, grassland, and wetland.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15164002/s1, Figure S1.1–S1.21 presents the key phenological
stages extracted by HGAM and DLF at the seven flux tower sites. Figure S2.1–S2.21 presents the
phenological camera photographs corresponding to the key phenological stages at the seven flux
tower sites. Figure S3 presents the linear correlation between the flux tower observation GPP and the
four FAPAR proxies.
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Abbreviations

A list of abbreviations used in this paper is shown in table.

LUE light use efficiency
VPM vegetation photosynthesis model
GPP gross primary productivity
PFT plant functional type
SOS start of growing season
EOS end of growing season
LOS length of the growing season
HGAM hybrid generalized additive model
DLF double logistic function
EC eddy covariance
ER ecosystem respiration
APAR absorbed photosynthetically active radiation
PAR photosynthetically active radiation
FAPAR fraction of absorbed photosynthetically active radiation
EVI enhanced vegetation index
NDVI normalized difference vegetation index
LAI leaf area index
GCC green chromatic coordinate
LSWI land surface water index
SG Savitzky–Golay
NEE net ecosystem exchange
Re ecosystem respiration
Tscalar the scalars for the effects of temperature
Wscalar the scalars for the effects of water
GEEmax the maximum rate of ecosystem gross photosynthesis
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