
Citation: Du, S.; Xiao, Y.; Huang, J.;

Sun, M.; Liu, M. Guided Local

Feature Matching with Transformer.

Remote Sens. 2023, 15, 3989.

https://doi.org/10.3390/rs15163989

Academic Editor: Andrea Garzelli

Received: 3 July 2023

Revised: 3 August 2023

Accepted: 8 August 2023

Published: 11 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Guided Local Feature Matching with Transformer
Siliang Du 1,†, Yilin Xiao 1,† , Jingwei Huang 1, Mingwei Sun 2 and Mingzhong Liu 1,*

1 Huawei Technologies Co., Ltd., Wuhan 430074, China; dusi@whu.edu.cn (S.D.); xiaoyilin@whu.edu.cn (Y.X.);
jingweih@stanford.edu (J.H.)

2 School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430072, China;
mingweis@whu.edu.cn

* Correspondence: mingzhongliu@foxmail.com
† These authors contributed equally to this work.

Abstract: GLFNet is proposed to be utilized for the detection and matching of local features among
remote-sensing images, with existing sparse feature points being leveraged as guided points. Local
feature matching is a crucial step in remote-sensing applications and 3D reconstruction. However,
existing methods that detect feature points in image pairs and match them separately may fail to
establish correct matches among images with significant differences in lighting or perspectives. To
address this issue, the problem is reformulated as the extraction of corresponding features in the
target image, given guided points from the source image as explicit guidance. The approach is
designed to encourage the sharing of landmarks by searching for regions in the target image with
features similar to the guided points in the source image. For this purpose, GLFNet is developed
as a feature extraction and search network. The main challenge lies in efficiently searching for
accurate matches, considering the massive number of guided points. To tackle this problem, the
search network is divided into a coarse-level match network-based guided point transformer that
narrows the search space and a fine-level regression network that produces accurate matches. The
experimental results on challenging datasets demonstrate that the proposed method provides robust
matching and benefits various applications, including remote-sensing image registration, optical
flow estimation, visual localization, and reconstruction registration. Overall, a promising solution is
offered by this approach to the problem of local feature matching in remote-sensing applications.

Keywords: feature matching; guided points; guided point transformer; remote-sensing image
registration; reconstruction registration

1. Introduction

Pairwise image feature matching aims to identify and correspond the same or similar
content from two or more images at the pixel level. It is a fundamental problem in remote
sensing, with various applications in remote-sensing image registration [1–4], change
detection [5,6], and 3D reconstruction [7]. The most popular solution for image matching
is to separately detect key points for the source and target images as feature points and
establish matches between them, followed by traditional algorithms [8–12] and deep-
learning-based approaches [13–16]. Some applications further select a subset of matched
points sharing the same landmarks in space so that a global registration model can be
derived. However, it is observed that image matching often encounters challenges at this
stage, particularly when dealing with images exhibiting substantial differences in lighting
or perspectives. Such discrepancies can lead to tracking failures in camera localization and
incomplete results in 3D reconstruction, as separate landmarks detected from different
images may not correspond to the same points in 3D space.

Some works address this challenge by designing detectors to produce more feature
points [9,10,17,18], which increases the opportunity for sharing landmarks in both images.
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However, it also raises the chance of producing false-positive matches and requires addi-
tional matching networks [11,12,15] to improve matching accuracy. In scenarios such as 3D
reconstruction and visual localization, incremental matching based on existing models is
often required. Leveraging the existing feature points can significantly improve efficiency
and accuracy in such cases. As shown in Figure 1, the problem is reformulated by addition-
ally considering guided points from the source image as guidance to regress corresponding
points in the target image. It is argued that such a formulation encourages corresponding
points from the image pair to share landmarks.

GLFNet Architecture

Is It

Figure 1. GLFNet is introduced to facilitate local feature matching between images, with guided
points as the guidance. Diverging from the conventional approach of independently extracting and
matching feature points from both images, the problem is reformulated by utilizing the guided points
in the source image to guide the regression of exact coordinates for corresponding points in the
target image. By adopting this novel perspective, the sharing of landmarks among matching pairs is
fostered, thereby promoting more robust and accurate image matching.

For this reformulated problem, there are existing methods that can potentially address
it. However, they suffer from certain drawbacks. One straightforward approach involves
regressing the corresponding location in the target image for each feature point from the
source image using [16]. However, this method involves iterative regression over the entire
image, leading to increased runtime linearly with the number of guided points, which
becomes time-consuming. Another brute-force solution exhaustively checks pixel-wise
correspondences from a 4D correlation tensor [14]. Despite the fusion of features from
two different resolutions in the 4D correlation tensor, the receptive field of 4D convolu-
tion remains limited to each match’s neighborhood area. It is essential to highlight that
both of these methods lack the ability to embed information from guided points in the
feature representation process. To overcome these challenges, GLFNet is proposed to
search for corresponding feature points in a coarse-to-fine manner based on the guided
point transformer.

In detail, GLFNet consists of a feature extraction network and a search network. Each
image is passed through the feature extraction network to produce coarse and fine feature
maps. Further, the search network is split into a coarse-level match network and a fine-level
regression network. The coarse-level match network embeds coarse image features to
coarse patch features using the guided point transformer. Then, it matches the patches
and guided points by solving an optimal transport problem based on the guided point
transformer. Once the coarse matches are established, the fine-level coordinate regression
network is utilized to regress the 2D coordinate for all guided points in its matched local
patch based on fine feature maps. While [16] iteratively regresses the coordinate for each
feature point in the entire image, the local search space supports the regression network
to execute only once for all points but with higher accuracy, leading to acceleration by
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173 times. As a result, the coarse-to-fine search network efficiently estimates accurate
coordinates in the target image corresponding to guided ones in the source image.

The proposed method benefits various applications by introducing guided points.
It outperforms the state of the art for remote-sensing image registration, optical flow
estimation, and visual localization. By using GLFNet as the image-matching module,
the standard pipeline of 3D reconstruction successfully incorporates more images into the
camera graph. Based on guided points, it is found that GLFNet significantly improves
alternative methods on an image-matching benchmark [19] in terms of accuracy.

Overall, the core contributions of the paper are:

• The image-matching problem is reformulated by considering guided points as input.
• GLFNet is designed with a coarse-to-fine search network to efficiently and accurately

detect and match corresponding points. Additionally, the guided point transformer is
proposed to incorporate the guided points information during feature representation.

• The GLFNet significantly improves the standard image-matching task and benefits
various applications.

2. Related Work
2.1. Detector-Based Local Feature Matching

The detector is the key part of the detector-based local feature-matching method. Be-
fore the arrival of the deep learning era, SIFT [8] was the most successful hand-crafted local
features detector, which is applied to a wide range of computer vision works. ORB [20]
combines the advantages of FAST [21] and BRIEF [22] to efficiently complete feature ex-
traction and feature description. Deep-learning-based methods can significantly improve
performance in difficult environments. D2Net [9] is an approach where a single convolu-
tional neural network plays a dual role: it is simultaneously a dense feature descriptor and
a feature detector. ASLFeat [17] takes advantage of the inherent feature hierarchy to restore
spatial resolution and low-level details for accurate keypoint localization. SuperPoint [10]
proposes a self-supervised training method through homographic adaptation, which is
currently the most widely used. GMS [11] encapsulates motion smoothness as the statistical
likelihood of a certain number of matches in a region and enables translation of high match
numbers into high match quality, which makes it perform well in the case of low textures
and blurs. R2D2 [18] proposes a predictor of the local descriptor discriminativeness, which
can ignore ambiguous areas, thus leading to reliable keypoint detection and description.
The above-mentioned local features use the nearest neighbor search to find matches be-
tween images. Recently, SuperGlue [12] proposed a network flexible context aggregation
mechanism based on attention, which achieves impressive performance by learning feature
matching via graph neural networks. However, these methods rely on the detector and
cannot guarantee that detected feature points from images share landmarks.

2.2. Detector-Free Local Feature Matching

Detector-free methods do not require a detector and directly describe and match in a
unified manner. NCNet [13] proposed a different approach by directly learning the dense
correspondences in an end-to-end manner. It constructs 4D cost volumes to enumerate
all the possible matches between the images and uses 4D convolutions to regularize the
cost volume and enforce neighborhood consensus among all the matches. DGC-Net [23]
and GLU-Net [24] are based on the optical flow method, which can provide a dense
matching effect in the case of large transformation. DualRC-Net [14] obtains pixel-wise
correspondences in a coarse-to-fine manner which extracts both coarse- and fine-resolution
feature maps. A full but coarse 4D correlation tensor is produced by a coarse map, which
will be refined by a learnable neighborhood consensus module. The fine-resolution feature
maps are used to obtain the final dense correspondences guided by the refined coarse
4D correlation tensor. ASpanFormer [25] is built on the hierarchical attention structure,
adopting a novel attention operation that is capable of adjusting attention span in a self-
adaptive manner. LoFTR [15] describes the image by a transformer that first establishes
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pixel-wise dense matches at a coarse level and later refines the matches. COTR [16] first
downsamples each image with a CNN, and then the result is fed into a transformer along
with the query point. The work of this paper is inspired by LoFTR [15] and COTR [16] in
terms of using self- and cross-attention for message passing, but a fine-level regression is
proposed to obtain more accurate sub-pixel coordinates, and it can be guaranteed that the
corresponding coordinates will share the 3D points.

2.3. Transformers in Vision

Due to its parallelism, high computational efficiency, and more interpretable model,
Transformer has become the most popular model in the field of natural language processing
(NLP). Recently, in order to apply Transformers to vision tasks, a lot of related studies have
appeared, such as Transformers in image segmentation [26–29], Transformers in object
detection [30–34], Transformers in image classification [35–37], and Transformers in image
enhancement [38,39]. Concurrently with our work, some researchers [15,16,40] also apply
Transformers to the field of local feature matching. The Transformer can improve the
accuracy of matching by capturing the context information between two images well.

3. Method
3.1. Problem Definition

The image-matching problem is formulated as determining a set of point coordinates
Ct in the target image It that matches guided points Cs in the source image Is, as described
in Equation (1).

Ct =Ms→t(Cs|Is, It) (1)

While a straightforward solution to this problem is by directly regressingMs→t [16],
the problem is proposed to be efficiently solved with more accurate regression in two stages.
At the first stage, images are subdivided into coarse-level patches P s and P t at N × N
resolution for both Is and It. The aim is to learn an embedding for each patch p so that
the angles between latent feature vectors of patches measure their similarity. Specifically,
the patch similarity between two patches is defined as:

S(pa, pb) = F (pa) · F (pb). (2)

F is the patch embedding that maps a patch to a unit feature vector in the latent space.
When the patch match is established based on the similarity score, the coordinate

regression problem is solved in a manner similar to Equation (1) but in a local manner:

ct
i =M(cs

i |ps
i , pt

i) ∀cs
i ∈ Cs. (3)

Specifically,M is learned as a coordinate regression function that maps each guided
point cs

i in Cs to a target point coordinate ct
i in Ct. ps

i ∈ P s is the patch in the source image
where ct

i locates in. pt
i ∈ P t is the most similar patch to ps

i and can be obtained from
Equation (2).

Figure 2 illustrates GLFNet architecture as the solution to the problem. The feature
extraction network (Figure 2a) is introduced in Section 3.2. It serves as a basis for the
coarse-level matching network (Figure 2b) for Equation (2), which will be described in
Section 3.3. Section 3.4 shows the fine-level regression network (Figure 2c) that implements
Equation (3). More implementation details are finally included in Section 3.5.



Remote Sens. 2023, 15, 3989 5 of 22
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CNN

(b) Coarse-level Match

(c) Fine-level Regression

Guided point
Transformer

# 
H*

W
/6

4

#H*W/64

Optimal Transport
Cs= c1

s ,⋯,cns

Mc= xi
s, xj

t

Transformer
Module Ct= c1

t ,⋯,cnt

Cs= c1
s ,⋯,cns

It

Is

f̂s, f̂t
fs, ft

FPN

flatten

Positional
encoding

concat

Cropping

Figure 2. The GLFNet architecture. The proposed method is made of three components: (a) the
feature extractor, which can extract the input features of coarse-level match network and fine-level
regression; (b) the coarse-level match network, which can make the images divided into multiple
patches to calculate the coarse match prediction; and (c) the fine-level regression, which can obtain
the fine regression coordinates.

3.2. Feature Extraction Network

First, the source and target images Is and It are passed through a feature extraction
network in Figure 2a to derive image features in both low resolution and high resolution.
Specifically, each image is downsampled through a CNN [41] to obtain a coarse feature
map, where each feature fp is corresponding to a subdivided patch p in P s or P t. Then,
the coarse feature map is upsampled back to one half of the original resolution using an
FPN network [42] to derive the fine feature f̂c for each pixel c. The feature extraction
network serves as an image backbone, where the coarse features fp are further processed to
match coarse patches and f̂c are analyzed during coordinate regression.

3.3. Coarse-Level Match Network

Figure 2b illustrates the coarse-level match network that matches patches in the target
image to those in the source image. To implement the patch embedding F in Equation (2),
a transformer architecture with self-attention and cross-attention layers is used to consider
coarse features fp in both source and target images.

3.3.1. Positional Encoding

First, the patch coordinate is encoded with a 2D extension of the standard positional
encoding [43] as follows:

PEm
p = f (x, y)m :=


sin(ωk · x), m = 4k
cos(ωk · x), m = 4k + 1
sin(ωk · y), m = 4k + 2
cos(ωk · y), m = 4k + 3

(4)

ωk = 1

10,000
2k
d

, (x, y) is the coordinate of a patch p, d is the number of dimensions of the

encoded feature, and PEm
p represents the value of its m-th feature dimension. The coarse

feature fp is added with its positional encoding for patch p, which enriches image features
with spatial information. For each image, all patch features are stacked as a matrix (0)x,
representing the input to the first transformer module.
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3.3.2. Guided Point Transformer

Our transformer module in Figure 2b consists of several attention layers [43]. The i-th
attention layer can be described as mapping a query qi and a set of key–value pairs (kj, vj)
to an output. qi, kj, and vj can be expressed as follow:

qi = W1
(`)xi + b1, (5)

[
kj
vj

]
=

[
W2
W3

]
(`)xj +

[
b2
b3

]
. (6)

W∗ and b∗ are parameters to learn, ` stands for the `-th attention layer, and (`)x represents
the output from the (`− 1)-th layer and input to the `-th layer. Next, the message mi is
obtained by weighting and aggregation through the attention mechanism:

mi =
|P|

∑
j=1

αijvj, (7)

where the attention weight αij = Softmax
(
q>i kj

)
. Finally, the feature for the next layer

is outputted:
(`+1)xi =

(`)xi + MLP
([

(`)xi‖mE→i

])
, (8)

where [· ‖ ·] denotes concatenation.
To enhance performance, a combination of self-attention and cross-attention mecha-

nisms is employed to capture descriptive patch features through multiple attention layers,
as illustrated in Figure 3. Building upon the traditional transformer architecture, a novel
approach called guided point transformer is introduced. Initially, the extracted features
are passed through a feature extractor, resulting in coarse feature maps fs and ft. These
maps are then transformed into one-dimensional vectors and augmented with positional
coding. Next, the self-attention and cross-attention layers are employed to exploit high-
dimensional information within and between the images, producing output features f

′
s

and f
′
t. To incorporate information from guided points, these points are encoded using

positional encoding, and a cross-attention layer is employed to decode the guided points’
features Qs from the feature map f

′
s. Subsequently, another cross-attention layer is used

to extract information between Qs and f
′
t, resulting in Qs

′
and f

′′
t for subsequent optimal

transport operation.

Self&Cross
Attention

fs

ft

fs′

ft′

Decoder

Embedded
guided points

Cross
Attention

QsPositional
encoding

Qs′

ft′′

Figure 3. The guided point transformer. The coarse feature maps fs and ft are transformed into
one-dimensional vectors with positional coding and sent to self-attention and cross-attention layers.
Then, the embedded guided points and f

′
s are sent to the decoder to decode the Qs. Subsequently,

another cross-attention layer is used to extract information between Qs and f
′
t.

3.3.3. Coarse-Level Matching

After the transformer module, the features for both the source guided points and
target images are obtained as {xs

i } and {xt
j}. The matches between source and target

are established by solving an optimal transport problem following SuperGlue [12] using
Sinkhorn algorithm [44]. The pairwise similarity is computed scores as:

Si,j =< xs
i , xt

j >, ∀(i, j) ∈ |Cs| × |P t|, (9)



Remote Sens. 2023, 15, 3989 7 of 22

where < ·, · > is the inner product. Then, the optimal transport problem is solved to obtain
an assignment matrix Ai,j by maximizing the total score ∑ i,jSi,jAi,j. Then, the mutual
nearest neighbor (MNN) is used to find the nearest neighbor of the assignment matrix A.
The coarse-level matches can be obtained:

Mc =
{
(xs

i , xt
j) | ∀(i, j) ∈ MNN(A), A(i, j) ≥ θc

}
, (10)

where θc is the threshold based on which low-quality matches are filtered out. To handle
patches without valid matches, a dustbin is added for each image [12] so that the optimal
transport establishes pseudo-matches between these patches and dustbins.

3.4. Fine-Level Regression

The guided points cs
i ∈ Cs are divided by downsampling factors to obtain their

respective coordinates on the coarse and fine feature maps. By utilizing the guided points’
coordinates on the coarse feature map, the patches can be determined to which they belong.
Subsequently, the corresponding patches of each guided point on the fine feature map can
be determined based on coarse-level matchesMc. To enhance the accuracy of subsequent
window ranges, the center coordinates of each patch are adopted instead of the top-left
coordinates. Precisely, the coordinates of the corresponding patch are adjusted by adding
0.5 and multiplying by the downsampling factor, yielding the coarse correspondence
coordinates c̄t

i on the target image. In the fine-level regression stage, the accurate coordinate
ct

i is regressed given context information of neighborhood at cs
i in the source and c̄t

i in
the target feature maps. For each location c at the original resolution, its neighborhood is
represented as a 9 × 9 window centered at c. For each location in the window, the bilinear
sampling is performed at both the coarse feature map fp and the fine feature map f̂c from
the feature extractor. All collected features from 9 × 9 locations are aggregated as the
point feature for c. The point features for cs

i and its coarse correspondence c̄t
i are further

concatenated to represent the context information for the i-th input point.
A transformer module is utilized, which contains a self-attention layer and a cross-

attention layer, to further enrich the context information. In detail, the query is provided as
the positional encoding of the input point coordinates cs

i . The context information for the
input point from two images is stacked as a matrix and pass them as the key–value pair
to the network. The output of the transformer module is finally passed through a 3-layer
MLP to predict the offsets of the target points to c̄t

i . The offsets are added to c̄t
i to obtain

the final correspondence coordinates ct
i . As shown in Figure 4, a coarse-to-fine approach is

introduced, which effectively combines the advantages of both methods, ensuring both
efficiency and performance benefits.

Coarse-level match Fine-level regression GLFNet

Figure 4. Coarse matching alone will lead to fast matching speeds but large errors. Direct global
regression such as COTR [16] is very slow and inaccurate due to the large range of regression. GLFNet
narrows the search space based on the results of coarse matching and performs regression in a small
range, taking into account both accuracy and speed.
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3.5. The Implementation Details

In order to train the network, two losses are designed to guide the coarse-level match
network and the fine-level regression network. First, the primary objective of the net-
work is to generate an assignment matrix that aligns with the ground truth. Therefore,
the assignment matrix Ai,j is penalized for matches between patches and dustbins.

Lc =− ∑
(i,j)∈Mgt

c

log Ai,j

−∑
i∈I

log Ai,d − ∑
j∈J

log Ad,j
. (11)

d represents the dustbin patch, Mgt
c is the correspondence matches from the ground

truth, and I and J are patches without matches from source and target images in the
ground truth.

The regression network is additionally supervised given ground-truth corresponding
points ct,gt

i using mean squared errors.

L f =
1
|{ct

i}|
∑ ||ct

i − ct,gt
i ||

2, (12)

The final loss includes the losses for both terms: L = Lc + L f . The GLFNet is trained
on the MegaDepth dataset [45], which provides both images and corresponding dense
depth maps, generated by SfM [46]. The proposed model is trained using Adam optimizer
with an initial learning rate of 1× 10−3 and a batch size of 8. The model converges after
72 h of training on 8 GTX 3090 GPUs. A modified version of ResNet-18 [41] is used as the
feature extractor. The entire model is trained end-to-end with randomly initialized weights.
The number of coarse match layers is set to 4, and the number of adaptive fine regression
layers is set to 1. The threshold θc of the assignment matrix is set to 0.2.

4. Experiments

Initially, the effectiveness of the two primary components and the parameter sensitivity
of the proposed GLFNet is evaluated in Section 4.1. Subsequently, experimental evalua-
tions are conducted to determine the contribution of guided points in Section 4.2. Finally,
a comparison of the proposed method with state-of-the-art techniques across multiple tasks
is presented. Specifically, Section 4.3.1 examines the performance of remote-sensing image
registration, while Section 4.3.2 compares reconstruction registration performance. Addi-
tionally, Section 4.3.3 evaluates the performance of motion image analysis in the context of
optical flow estimation, and Section 4.3.4 assesses the performance of visual localization.

4.1. Ablation Study

In order to evaluate the effectiveness of the two main components (coarse-level match
network and fine-level regression) in the proposed GLFNet, an ablation study is conducted
on HPatches [47]. Furthermore, to gauge the sensitivity of GLFNet to its parameters,
a sensitivity analysis is conducted on HPatches [47] focusing on the main parameters.

4.1.1. Ablation Study

Table 1 shows the comparison of different components of GLFNet. Since the coarse-
level match network only matches each patch on the downsampled image with the guided
point, leading to a relatively lower accuracy when solely using this module. Further-
more, the performance of the transformer module in the coarse-level match network is
compared, demonstrating the clear superiority of the guided point transformer over the
conventional transformer.
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Table 1. Ablation study on HPatches [47].

Method
Homography Est.AUC

Time Cost
@3 px @5 px @10 px

Coarse-level match network (conventional transformer [15]) 14.9 31.7 56.4 1 min 3 s
Coarse-level match network (guided point transformer) 18.7 36.0 61.2 52 s
Fine-level regression 54.0 68.2 77.4 1 h 12 min
GLFNet 68.2 77.9 86.5 1 min 24 s

Fine-level regression regresses coordinates on a sub-pixel scale, so it is competitive
to take only this module. However, based on the coarse-level match network, GLFNet
performs fine-level regression, which integrates the advantages of the two modules and
achieves high accuracy. For the time cost, as shown in Table 1, the coarse-level match
network is fast. Due to the large range of regression, the speed of fine-level regression
is slow. However, GLFNet narrows the search space by the coarse-level match network,
which can ensure high speed while maintaining high accuracy.

4.1.2. Parameter Sensitivity Analysis

To investigate the impact of various parameters on the proposed method, the parame-
ter sensitivity experiments are conducted on key parameters and the results are presented
in Table 2. In terms of the window size for fine-level regression, it is discovered that
9 × 9 yields optimal accuracy while also considering computational efficiency. When reduc-
ing the size from 9× 9, a significant drop in GLFNet’s matching accuracy is observed, albeit
with a slight improvement in efficiency. Conversely, increasing the size beyond 11 × 11
leads to a notable reduction in both the efficiency and accuracy of GLFNet. The reason
behind this lies in the fact that smaller sizes result in reduced regression areas, thus decreas-
ing the algorithm’s running time, but at the expense of decreased precision in returning
accurate coordinates. Conversely, larger sizes expand the regression area and increase the
algorithm’s running time without proportionally enhancing regression accuracy. As for the
parameter θc used in coarse-level matching, it is determined that 0.2 serves as the optimal
threshold. Altering θc in either direction results in reduced model accuracy, emphasizing
the significance of the chosen value. Interestingly, different θc values exhibit no significant
difference in GLFNet’s operational efficiency due to the swift operation of the matching
filter module.

Table 2. Parameter sensitivity experiment on HPatches [47].

Parameter Homography Est.AUC
Time Cost

Window Size of Fine-Level Regression @3 px @5 px @10 px

5 × 5 67.3 76.9 84.7 1 min 3 s
7 × 7 67.9 77.5 86.3 1 min 11 s
9 × 9 68.2 77.9 86.5 1 min 24 s

11 × 11 68.0 78.1 85.6 2 min 06 s

θc of coarse-level matching @3px @5px @10px

0.1 67.6 77.2 85.9 1 min 26 s
0.2 68.2 77.9 86.5 1 min 24 s
0.3 67.7 77.1 85.7 1 min 24 s
0.4 67.4 76.8 85.5 1 min 22 s
0.5 67.0 76.2 84.9 1 min 21 s

4.2. Experimental Evaluations
4.2.1. The Contribution of Guided Points

The problem is reformulated as corresponding feature extraction in the target image
given guided points from the source image as explicit guidance. So, the contribution of
guided points as input is intended to be demonstrated. As shown in Figure 5, this is a scene
with big differences in perspective. The SuperPoint [10] is adopted to extract points on the
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source image as guided points. SuperPoint+SuperGlue [10,12] extracts feature points on
two images, respectively, and then performs matching between point pairs. COTR [16]
performs a global search on the target image for each guided point. GLFNet first matches
the patches of the two images based on the guided point transformer and then regresses
the exact coordinates based on guided points. Therefore, the qualitative example proves
that guided points are contributive, and GLFNet can use guided points efficiently.

Huawei Proprietary - Restricted Distribution1

c. GLFNet

b. COTR

a. SP+SuperGlue

Figure 5. Comparison between the proposed GLFNet, COTR [16], and SuperPoint + Super-
Glue [10,12] in the case of scenes with large differences in perspective. The results clearly demon-
strate that GLFNet effectively leverages guided points and performs admirably in scenarios charac-
terized by large differences in perspective.

4.2.2. Image Matching with Guided Points

Since the contribution of the guiding points has been demonstrated, the image match-
ing is completed under this premise. HPatches [47] is a very popular dataset to evaluate
image matching, which contains 57 scenes under photometric changes and 59 sequences
that show significant geometric deformations due to viewpoint change. Because the
problem is reformulated, methods that can solve this problem are selected for compari-
son. The baseline includes two categories of methods: (1) detector-based image-matching
methods: D2Net + NN [9], R2D2 + NN [18], and SuperGlue + SuperPoint [10,12]; (2) a
detector-free image-matching method: COTR [16]. To ensure a fair comparison between
methods that produce different numbers of matches, the corner error between images
is computed. Meanwhile, three different guided points are adopted for comparison to
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prove the superiority of the proposed method. LoFTR and ASpanFormer are also in-
cluded in the comparison, which are the SOTA detector-free methods but cannot solve the
reformulated problem.

As shown in Table 3 and Figure 6, GLFNet has a significant improvement in matching
accuracy under all error threshold conditions. Specifically, when the error threshold is
smaller, the improvement of GLFNet is more significant. At the same time, GLFNet is better
than most methods in time cost while maintaining high accuracy. In particular, compared
with the COTR method, which can also take guided points as input, the time cost has been
improved exponentially. By the way, GLFNet also outperforms LoFTR and ASpanFormer
in time cost and accuracy.

Table 3. Image matching on HPatches [47]. The AUC of the corner error in percentage is reported.
The time measurement experiments for all algorithms were run on the same machine.

Category Method
Homography Est.AUC

Time Cost #Matches
@3 px @5 px @10 px

Detector-based
SIFT + NN [8] 49.8 61.0 73.9 47 s 0.4K
D2Net + NN [9] 23.2 35.9 53.6 8 min 57 s 0.2 K
R2D2 + NN [18] 50.6 63.9 76.8 4 min 22 s 0.5 K
SuperPoint + SuperGlue [12] 53.9 68.3 81.7 1 min 11 s 0.6 K

Detector-free LoFTR [15] 65.9 75.6 84.6 5 min 2 s 1.0 K
ASpanFormer [25] 67.4 76.9 85.6 6 min 1 s 1.0 K
SIFT + COTR [16] 34.5 49.8 67.2 4 h 1 min 1.0 K
R2D2 + COTR [16] 34.9 50.2 68.7 4 h 3 min 1.0 K
SuperPoint + COTR [16] 56.1 69.4 81.3 4 h 2 min 1.0 K
SIFT + GLFNet 62.4 73.1 83.7 1 min 10 s 1.0 K
R2D2 + GLFNet 63.8 74.7 84.2 1 min 30 s 1.0K
SuperPoint + GLFNet 68.2 77.9 86.5 1 min 24 s 1.0 K

COTR GLFNetSIFT+NN SuperPoint+SuperGlue

Figure 6. Qualitative image-matching results of Hpatches [47]. The image pair on the left displays
the image-matching results, with the correct matching rate (CMR) calculation shown in the upper left.
The image pairs on the right exhibit enlarged sub-results, where green feature points denote correct
matching, and red feature points signify incorrect matching. Notably, GLFNet demonstrates superior
performance compared to all the comparison methods.

4.3. Comparison
4.3.1. Remote-Sensing Image Registration

Remote-sensing image registration represents a critical and fundamental step in the
process of aligning images of the same scene, captured by either the same or different
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sensors, at different times, and/or from varying perspectives. The primary objective of
remote-sensing image registration is to achieve accurate alignment between the target and
source images. This field finds broad applications, including change detection, landscape
planning, and agriculture monitoring. The image registration pipeline typically encom-
passes feature extraction, feature matching, transformation model estimation, and image
transformation. Among these stages, feature matching is particularly vital, making GLFNet
an effective approach for enhancing this task.

Datasets

The Google Earth dataset [1] is employed to assess the efficacy of GLFNet in remote-
sensing image registration. Comprising over 9000 high-resolution satellite images acquired
across multiple seasons, the dataset primarily covers the Greater Boston area. The input
and template images exhibit notable differences in traffic conditions and vegetation, posing
a significant challenge to feature matching.

Comparison

The performance of the proposed method is evaluated by comparing it with two
classical methods, SIFT + RANSAC [8] and CLKN [48], and three state-of-the-art methods,
DHN [49], MHN [50], and DLKFM [1]. Vanilla is also included as a baseline, which predicts
the centers of four corner boxes without any prior knowledge. The evaluation metric used
is the average corner error in pixels, which is calculated as the L2 distance between the
warped and original corners, following the methodology outlined in [1].

Results

In Table 4, Figures 7 and 8, the comparison results between GLFNet and benchmark
methods are presented. The proposed method outperforms state-of-the-art methods across
different error scales. Specifically, the proposed method achieves the three-pixel error
threshold for most images, while the baseline methods do not. Moreover, the greater the
error requirement, the more significant the improvement over the baseline methods.

Huawei Proprietary - Restricted Distribution3
Figure 7. Qualitative remote-sensing image registration results of Google Earth. The topmost row
displays the input image, while the bottommost row depicts the template image. GLFNet is employed
to carry out matching between the input image and the template, leading to the computation of the
rotation matrix. The middle row represents the region within the input image where the template
image corresponds.
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Figure 8. Comparison of average corner error on Google Earth. The x-axis represents the average
pixel error, and the y-axis represents the proportion of images with an average pixel error lower than
x. The proposed method outperforms state-of-the-art methods across different error scales.

Table 4. Remote-sensing image registration on Google Earth.

Method
Average Corner Error

<3 Pixel <5 Pixel <10 Pixel

Vanila 0 0 0
CLKN [48] 0 0 5.9
DHN [49] 0 1 20.1
MHN [50] 1.0 8.0 56.1
SIFT + RANSAC [8] 29.1 40.2 52.1
DHN + DLKFM [1] 60.0 74.7 83.1
MHN + DLKFM [1] 66.3 82.6 90.9
GLFNet 85.3 93.5 97.5

4.3.2. Reconstruction Registration

With the development of 3D reconstruction, an increasing number of 3D models are
being reconstructed, giving rise to the task of reconstruction registration. This registration
process involves either incremental reconstruction based on a large-scale 3D model or the
combination of multiple 3D models with small overlapping regions. Following the pipeline
proposed in [51], the reconstruction registration procedure consists of three main steps:
image retrieval, image matching, and transformation solving. In this work, GLFNet is
taken as a replacement for the conventional image-matching module. The key advantage
of GLFNet lies in its ability to directly utilize the existing 3D points from the 3D model as
guided points, thus avoiding errors that could arise from re-extracting feature points. This
enables us to obtain more accurate 3D point-matching pairs, consequently enhancing the
effectiveness of subsequent transformation solutions.
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Datasets

Following [51], the proposed method is evaluated on the public realistic synthetic sce-
narios datasets published in 1DSFM [52], which consists of twelve medium-scale datasets,
a large-scale dataset Piccadilly, and a challenging dataset Gendarmenmarkt with symmetric
architectures. The dataset is first divided into subsets for partial reconstruction through
off-the-shelf community detection algorithms, and then partial reconstruction results for
each subset are obtained using COLMAP [46] as input to the model.

Comparison

The proposed method is compared with four state-of-the-art global structure from
motion (SfM) methods, two incremental SfM methods, and Merge-SfM [51]. Most methods
gather all images together to re-perform SfM reconstruction, while the proposed method
and Merge-SfM [51] are different from this. The standard SfM system [51] is replaced with
GLFNet, and more implemented materials are provided in the supplementary material. Fol-
lowing [52], the calculated Nc, x̃ and x are compared with [53] to evaluate the effectiveness
of registration. The units are approximately in meters, as geotags associated with images
in the collection are used to place each sequential SfM reconstruction in an approximate
world coordinate frame, and a RANSAC approach [54] is used to compute the absolute
orientation between a candidate reconstruction and the sequential SfM solution.

Results

Table 5 shows the comparison of reconstruction results between GLFNet and other
methods. GLFNet preserves all the recovered images from partial reconstructions and
outperforms state-of-the-art methods in reconstruction accuracy. Specifically, the median
and mean position errors of the proposed method are competitive on most datasets, which
proves the success of our registration. Based on the success, the number of recovered
cameras of the proposed method is significantly higher than other methods, and the most
important reason is that GLFNet increases the probability of matching. A qualitative
example of GLFNet is shown in Figure 9.

Merge-SfM (2266)

Theia (1824) HSFM (2279)

GLFNet (2461) Our reconstructions registration resultCui (2276)

Colmap (2345)

Figure 9. Qualitative reconstructions registration result of Piccadilly. Piccadilly consists of six
partial reconstructions (each color represents a different partial 3D reconstruction), one of them is
chosen as the source reconstruction, and GLFNet is used to match the guided points in the source
reconstruction to the other five reconstructions. The numbers in parentheses represent the number of
recovered cameras.
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Table 5. Reconstruction registration accuracy comparison on public realistic synthetic scenarios
datasets [52]. x̃ and x denote the median and mean position errors in meters respectively by taking
the result of [53] as a reference; Ni represents the cameras in the largest connected component of the
input EG graph, which is published in [55]; and Nc represents the recovered cameras.

Dataset 1DSfM [52] LUD [55] Cui [56] Swe [57] HSfM [58] Theia [59] Merge-SfM [51] GLFNet

Name N Ni Nc x̃ x Nc x̃ x Nc x̃ x Nc x̃ x Nc x̃ x Nc x̃ x Nc x̃ x Nc x̃ x

Alamo 4 627 529 0.3 2 ×107 547 0.3 2 574 0.5 3.1 533 0.4 - 566 0.3 1.5 520 0.4 1.8 582 0.5 2.6 599 0.3 1.9
EllisIsland 3 247 214 0.3 3 - - - 233 0.7 4.2 203 0.5 - 233 2 4.8 210 1.7 2.8 232 0.8 4.4 238 0.8 3.3
Metropolis 2 394 291 0.5 70 288 1.5 4 317 3.1 16.6 272 0.4 - 344 1 3.4 301 1 2.1 328 1.6 5.3 335 1.5 5.3

MontrealND 2 474 427 0.4 1 435 0.4 1 452 0.3 1.1 416 0.3 - 461 0.3 0.6 422 0.4 0.6 374 0.3 0.8 453 0.2 0.8
NYCLibrary 3 376 295 0.4 1 320 1.4 7 338 0.3 1.6 294 0.4 - 344 0.3 1.5 291 0.4 1 336 0.3 1.3 351 0.3 3

PiazzadelPopolo 3 354 308 2.2 200 305 1 4 340 1.6 2.5 302 1.8 - 344 0.8 2.9 290 0.8 1.5 344 0.5 1.1 346 0.5 1.1
RomanForum 4 1134 989 0.2 3 - - - 1077 2.5 10.1 966 0.7 - 1087 0.9 8.4 942 0.6 2.6 1109 0.8 6.4 1093 0.4 1.7

TowerofLondon 4 508 414 1 40 425 3.3 10 465 1 12.5 409 0.9 - 481 0.7 6.4 439 1 1.9 469 0.7 5.4 481 0.6 5.5
UnionSquare 4 930 710 3.4 90 - - - 570 3.2 11.7 701 2.1 - 827 2.8 3.4 626 1.9 3.7 724 2.3 5.5 927 1.4 5.8

ViennaCathedral 4 918 770 0.4 2e4 750 4.4 10 842 1.7 4.9 771 0.6 - 849 1.4 3.3 738 1.8 3.6 823 0.7 3.5 906 0.7 2.6
Yorkminster 2 458 401 0.1 500 404 1.3 4 417 0.6 14.2 409 0.3 - 421 1.2 1.7 370 1.2 1.8 431 1.2 4.2 438 0.4 3.8

Gendarmenmarkt 4 742 - - - - - - 609 4.2 27.3 - - - 611 2.8 26.3 597 2.9 28 704 2.4 38 729 2.4 19.3
Piccadilly 6 2508 1956 0.7 700 - - - 2276 0.4 2.2 1928 1 - 2279 0.7 2 1824 0.6 1.1 2266 0.7 9 2461 0.3 1.6

4.3.3. Optical Flow Estimation

Optical flow estimation is a fundamental component of motion image analysis, serving
the purpose of estimating pixel motion between two frames to determine sparse feature sets
or the displacement of all image pixels, subsequently calculating their motion vectors. This
technique finds extensive applications in object detection and tracking, image dominant
plane extraction, motion detection, robot navigation, and visual odometry. A crucial step
in optical flow estimation involves identifying pixel correspondences between the two
frames, a task adeptly addressed by GLFNet through image matching, thereby enhancing
the overall process.

Datasets

Following [16], to evaluate the effect of the proposed method in real 3D scenes of
optical flow estimation, the ETH3D dataset [60] is adopted, which is multi-view and
contains indoor scenes and outdoor scenes captured from a moving hand-held camera.
A set of sparse geometrically consistent image correspondences is provided [46].

Comparison

The proposed method is compared with three state-of-the-art image-matching methods
applied to this task, which are DGC-Net [23], GLU-Net [24], and COTR [16]. Meanwhile,
the proposed method is compared with three state-of-the-art optical flow methods applied
to this task, which are LiteFlowNet [61], PWC-Net [62], and RAFT [63]. Specifically,
image pairs are sampled from each sequence at different intervals to analyze different
magnitudes of geometric transformations, and the provided points are taken as ground-
truth correspondences. For each selected interval, there are approximately 500 image pairs
in total. The average end-point error (AEPE) is defined as the Euclidean distance between
estimated and ground truth flow fields. The AEPE at different intervals is employed as the
evaluation metrics.

Results

Table 6 and Figure 10 show the comparison of optical flow estimation results between
GLFNet and other methods. The proposed method outperforms the baseline method for
different intervals, and the improvement is obvious when the interval is large. Because the
large interval leads to large differences in the perspective of the images, which improves
the difficulty of matching. However, the proposed method can also accurately match when
the difference in perspective is large. As shown in Figure 11, the effectiveness of GLFNet
on satellite images also is demonstrated.
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Table 6. Quantitative results for optical flow estimation. The average end-point error (AEPE) at
different sampling “rates” (frame intervals) is reported. The proposed method performs significantly
better as the rate increases and the problem becomes more difficult.

Method
AEPE

Rate = 3 Rate = 5 Rate = 7 Rate = 9 Rate = 11 Rate = 13 Rate = 15

LiteFlowNet [61] 1.66 2.58 6.05 12.95 29.67 52.41 74.96
PWC-Net [62] 1.75 2.10 3.21 5.59 14.35 27.49 43.41
DGC-Net [23] 2.49 3.28 4.18 5.35 6.78 9.02 12.23
GLU-Net [24] 1.98 2.54 3.49 4.24 5.61 7.55 10.78
RAFT [63] 1.92 2.12 2.33 2.58 3.90 8.63 13.74
COTR [16] 1.66 1.82 1.97 2.13 2.27 2.41 2.61
GLFNet 1.49 1.61 1.78 1.90 2.07 2.34 2.65

Huawei Proprietary - Restricted Distribution2

GLU-Net COTR GLFNetTarget ItSource Is

Figure 10. Qualitative optical flow estimation result of ETH3D. Pairs of images from ETH3D taken
by two different cameras. The proposed method significantly outperforms state-of-the-art methods.

4.3.4. Visual Localization

The visual localization task is to estimate the 6-DoF poses of target images with respect
to the reference 3D scene model. Thus, it relies on highly robust local feature-matching
methods. GLFNet is also beneficial for this task. In real-world scenarios, databases are
often already described by descriptors. Traditional methods need to re-describe the base
map in the database to complete visual localization, which is time-consuming. However,
the proposed method can achieve a good result on this task without re-describing the
base map.

Datasets

The Aachen Day-Night dataset [64,65] is used to demonstrate the effectiveness of
GLFNet for visual localization in outdoor scenes, whose base map is described by SIFT [8].
And SIFT [8] is the most common descriptor in the industry. The dataset contains 4328 source
images taken during the daytime with hand-held cameras over about two years and 922 tar-
get images taken during the daytime and nighttime with mobile phone cameras. The dataset
considers varying conditions, e.g., day–night changes and scene geometry changes.

Comparison

The GLFNet is compared with state-of-the-art methods without changing the base
map descriptor. And the AUC of the pose error at thresholds (0.25 m, 2°)/(0.5 m, 5°)/(5 m,
10°) is adopted as the metrics, where the pose error is defined as the maximum angular
error in rotation and translation. In practice, GLFNet transfers sparse points directly from
the original COLMAP [46] project into target images. To recover the camera pose, the PnP
is solved from predicted matches with RANSAC [54]. The process is kept consistent for
all methods.

Results

The evaluation results of GLFNet and state-of-the-art methods are provided in Table 7.
The proposed method has a significant improvement over the state-of-the-art methods in
both daytime and nighttime scenarios. In the daytime scenario, the baseline methods all
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work well. However, in the nighttime scenario, the gap between the proposed method and
the baseline is large because the lighting difference between images is too big.

Target

Sequence 1 Sequence 2 Sequence 3

Sequence 1: GLU-Net Sequence 2: GLU-Net Sequence 3: GLU-Net

Sequence 1: COTR Sequence 2: COTR Sequence 3: COTR

Sequence 1: GLFNet

Target

Sequence 1

Sequence 1: GLU-Net

Sequence 2 Sequence 3

Sequence 2: GLU-Net Sequence 3: GLU-Net

Sequence 1: COTR Sequence 2: COTR Sequence 3: COTR

Sequence 1: GLFNet

Sequence 2: GLFNet Sequence 3: GLFNet

Sequence 2: GLFNet Sequence 3: GLFNet

Figure 11. Qualitative optical flow estimation result of satellite images. GLFNet is applied to
remote-sensing images, and superior results were achieved.



Remote Sens. 2023, 15, 3989 18 of 22

Table 7. Visual localization evaluation on the Aachen Day-Night benchmark [64,65]. The pro-
posed method outperforms the state-of-the-art methods.

Matching Method Day Night
(0.25 m, 2°)/(0.5 m, 5°)/(5 m, 10°)

SIFT + NN [8] 84.5/92.7/97.5 66.3/75.5/87.8
SIFT + COTR [8,16] 82.4/91.9/96.8 75.5/90.8/99.0
SIFT + SuperGlue [8,12] 85.3/93.9/98.2 72.4/88.8/96.9
SIFT + GLFNet 88.2/95.4/98.2 84.7/92.9/99.0

5. Discussion

As detailed in Section 4.1, the ablation experiments are conducted to assess the perfor-
mance of the proposed guided point transformer in image-matching tasks in comparison
to the traditional transformer. The results demonstrate the significant advantages of the
guided point transformer. We observed that using the coarse-level yields faster matching
speeds, although the precision is not as high. Conversely, relying solely on fine-level regres-
sion improves accuracy but sacrifices matching speed. To strike a balance between speed
and accuracy, the proposed coarse-to-fine approach is introduced, which effectively com-
bines the advantages of both methods, ensuring both efficiency and performance benefits.

As detailed in Section 4.2, the experimental evaluation of GLFNet’s performance is pre-
sented. Qualitative assessments in scenarios with large perspective differences demonstrate
the valuable contribution of guided points. Moreover, on the standard matching dataset
Hpaches, GLFNet exhibits superior performance, attributable to three key factors. Firstly,
the introduction of guided points into the image-matching problem provides valuable
guidance, significantly enhancing both efficiency and accuracy. Secondly, the guided point
transformer, a core component of GLFNet, effectively incorporates guided points into
the feature expression process, enabling comprehensive exploration of high-dimensional
information between the guided points and the target image. This fosters the extraction of
informative representations crucial for achieving accurate matches. Thirdly, the network
architecture design of GLFNet plays a pivotal role. By utilizing a coarse-level network,
the search space is efficiently narrowed down, effectively reducing computation time.
Concurrently, the fine-level network accurately regresses the coordinates, ensuring high
precision in the matching process. Additionally, GLFNet exhibits remarkable flexibility,
allowing seamless integration with any detector, thus broadening its potential applications
across a wide range of scenarios.

As detailed in Section 4.3, the comparison of GLFNet’s effectiveness across multiple
tasks is presented. Notably, GLFNet achieves significant performance improvements
in remote-sensing image registration compared to state-of-the-art methods. Moreover,
in the reconstruction registration task, GLFNet exhibits excellent robustness across various
scenarios. In the context of optical flow estimation, GLFNet outperforms all matching-based
and optical-flow-based methods, with its advantage becoming particularly prominent when
dealing with larger frame intervals. Additionally, GLFNet demonstrates its capacity to
effectively leverage 3D points from existing 3D models, which proves beneficial for visual
positioning tasks.

Despite its strengths, GLFNet does have certain limitations. The presence of dynamic
objects in the image can introduce changes in their positions between the source and target
images, posing significant challenges to the matching process. In future work, we aim to
explore the incorporation of semantic information into the matching algorithm to mitigate
the impact of dynamic objects on the matching performance.

6. Conclusions

This paper presents a novel approach to image matching by reformulating the prob-
lem with the guidance of guided points. This reformulation proves beneficial for tasks
such as reconstruction registration, visual positioning, and incremental reconstruction,
as it encourages corresponding points to share landmarks in 3D space. To address this
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reformulated problem, GLFNet is proposed, which is a guided local feature-matching
method that efficiently matches local features with the assistance of guided points. GLFNet
comprises a coarse-to-fine network based on the guided point transformer, which enables
effective search space narrowing at the coarse level and precise coordinate regression at
the fine level. Extensive experiments, including ablation studies and parameter sensitivity
analyses, validate the effectiveness of each proposed module in GLFNet. The results of
the experimental evaluation demonstrate GLFNet’s superiority in image-matching tasks.
Additionally, GLFNet’s performance is evaluated across various tasks, showcasing its effec-
tiveness in downstream applications. In the future, we plan to investigate techniques to
mitigate the impact of dynamic objects on image matching and explore ways to incorporate
semantic information into the matching process. These efforts will further enhance the
applicability and robustness of GLFNet in real-world scenarios.
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