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Abstract: Feature selection is a typical multiobjective problem including two conflicting objectives. In
classification, feature selection aims to improve or maintain classification accuracy while reducing the
number of selected features. In practical applications, feature selection is one of the most important
tasks in remote sensing image classification. In recent years, many metaheuristic algorithms have
attempted to explore feature selection, such as the dragonfly algorithm (DA). Dragonfly algorithms
have a powerful search capability that achieves good results, but there are still some shortcomings,
specifically that the algorithm’s ability to explore will be weakened in the late phase, the diversity of
the populations is not sufficient, and the convergence speed is slow. To overcome these shortcomings,
we propose an improved dragonfly algorithm combined with a directed differential operator, called
BDA-DDO. First, to enhance the exploration capability of DA in the later stages, we present an
adaptive step-updating mechanism where the dragonfly step size decreases with iteration. Second,
to speed up the convergence of the DA algorithm, we designed a new differential operator. We
constructed a directed differential operator that can provide a promising direction for the search,
then sped up the convergence. Third, we also designed an adaptive paradigm to update the directed
differential operator to improve the diversity of the populations. The proposed method was tested
on 14 mainstream public UCI datasets. The experimental results were compared with seven rep-
resentative feature selection methods, including the DA variant algorithms, and the results show
that the proposed algorithm outperformed the other representative and state-of-the-art DA variant
algorithms in terms of both convergence speed and solution quality.

Keywords: feature selection; binary dragonfly algorithm; differential evolution algorithm; multiobjective
optimization; classification

1. Introduction

With the advances in data mining and machine learning techniques, many research
problems now involve the analysis of multiple datasets. These datasets frequently contain
numerous irrelevant, noisy, and/or redundant features, which significantly affect the classi-
fication performance. Specifically, irrelevant or noisy features can significantly degrade the
classification performance due to their misleading information [1]. Feature selection (FS)
aims to enhance classification performance, reduce data dimensionality, save storage space,
improve computational efficiency, and facilitate data visualization and understanding by
selecting a small subset of relevant features. The increase in data and dimensionality leads
to an increasingly difficult feature selection [2].

Remote Sens. 2023, 15, 3980. https://doi.org/10.3390/rs15163980 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15163980
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-4175-6635
https://orcid.org/0000-0001-8117-2012
https://orcid.org/0000-0001-9129-534X
https://doi.org/10.3390/rs15163980
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15163980?type=check_update&version=1


Remote Sens. 2023, 15, 3980 2 of 28

In recent years, feature selection has found widespread application in various research
domains, including text classification, remote sensing [3], intrusion detection, gene analysis,
and image retrieval [4]. Notably, feature selection plays a crucial role in remote sensing
image classification tasks. Remote sensing images often contain a vast amount of pixel data
and diverse spectral information [5,6], yet only a subset of features contributes significantly
to the classification process. Hence, feature selection techniques are used to identify the
most informative and relevant features, reduce the complexity of the classification tasks, and
improve the overall accuracy. By effectively selecting pertinent features, the interference of
redundant information and noise can be minimized, while emphasizing the spatial, spectral,
and textural characteristics of objects in remote sensing images. Consequently, feature
selection holds paramount significance in achieving precise land object classification and
monitoring in remote sensing applications [7,8]. To this end, the development of efficient
feature selection methods becomes imperative, aiming to optimize classification accuracy
and computational efficiency.

Feature selection methods are mainly divided into two categories: filters and wrap-
pers [9]. Filter-based methods use the intrinsic information of features, such as correlation,
information gain, and consistency [10], to determine features [11]. The wrapper-based
approach is used to generate feature subsets through a classifier and a learning model
and perform accuracy evaluation by a learning algorithm to determine the feature sub-
sets [12,13]. Although wrapper-based methods can produce better feature subsets, they
are computationally expensive, especially when the search space is large and complex.
In contrast, filter-based methods are usually less computationally expensive, but have
lower classification accuracy and cannot select a good subset of features [14].

Although feature selection is an indispensable process, it is also a complex and chal-
lenging combinatorial optimization problem. The challenges of feature selection mainly
revolve around three aspects. Firstly, the search space for feature selection exponentially
grows with the number of features, as N features can yield 2N feature subsets [15,16].
Therefore, an exhaustive search of all possible subsets is impractical, especially when
dealing with numerous features. Secondly, features have complex interactions with each
other. Thirdly, feature selection is inherently a multiobjective problem. The two primary
objectives of feature selection are to maximize classification performance and to minimize
the number of selected features. However, these objectives are often conflicting [17]. A ro-
bust and powerful search algorithm forms the foundation for addressing feature selection
problems effectively.

In recent years, metaheuristics have been successfully applied to feature selection
methods. Metaheuristic algorithms are inspired by natural phenomena, such as particle
swarm optimization (PSO) [18–20], genetic algorithms (GA) [21], the differential evolution
algorithm (DE) [22,23], the bat algorithm (BA) [24,25], the gray wolf optimization algorithm
(GWO) [26–28], the dragonfly algorithm (DA) [29], cuckoo search (CS) [30], the salp swarm
algorithm (SSA) [31], Harris hawks optimization (HHO) [32], etc. When using or designing
metaheuristic algorithms, there needs to be an effective way to maintain a balance between
development and exploration. Metaheuristic algorithms need to search as much of the
search space as possible in the early stages and develop the optimal region in the later
stages, so a balance between exploration and development is essential.

The dragonfly algorithm (DA) is a recently developed optimization algorithm inspired
by the collective behavior of dragonflies in nature. Initially designed for continuous
optimization tasks, a binary version called the binary dragonfly algorithm (BDA) was later
introduced to address discrete problems [33]. While BDA has shown strong performance
on various datasets, it may suffer from limited exploration capabilities, potentially leading
to local optimization problems.

In this study, we propose a hybrid method that combines the BDA algorithm with
the directed differential operator to improve the performance of BDA. An adaptive step-
updating mechanism is also proposed to enhance the exploration capability of the algo-
rithm which improves the search performance. The proposed method has been tested on
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14 mainstream datasets and compared with seven representative feature selection methods,
including the DA variant algorithms. The main contributions of this study are as follows:

• The algorithm incorporates an adaptive step-updating mechanism to optimize the
search process. It adjusts the step size based on the stage of exploration: a longer
step size benefits an early search, while a smaller step size is advantageous for later
exploration. To achieve this, the dragonfly’s step size gradually decreases with each
iteration, adapting to the evolving search landscape. This adaptive mechanism en-
hances the algorithm’s ability to balance exploration and exploitation, resulting in
improved overall performance.

• Based on the renowned differential evolution algorithm, we propose a directed dif-
ferential operator. This operator utilizes information from both the best and worst
positions of the dragonflies to guide the algorithm towards promising regions, fa-
cilitating more effective search and convergence to optimal solutions. Additionally,
the size of the directed differential operator influences the balance between targeted
exploitation and broad exploration. A larger operator emphasizes guidance, while
a smaller one allows for greater exploration of the solution space. To achieve this
balance, we design an adaptive updating mechanism to adjust the directed differential
operator, playing a crucial role in optimizing exploration and exploitation within the
search space.

• We enhance BDA’s exploration capability by integrating it with the differential evolu-
tion algorithm (DE). During the position-updating phase of the dragonfly algorithm,
individual positions are combined with the directed differential operator to guide
the search in promising directions, accelerating convergence. To maintain population
diversity, we introduce an adaptive method for updating the directed differential
operator. Additionally, an adaptive update mechanism for the dragonfly step dynam-
ically adjusts the step size to improve exploration in later stages. This integration
significantly improves BDA’s performance and exploration capabilities.

The paper’s structure is as follows: In Section 2, related works are discussed, focusing
on recent feature selection algorithms and the binary dragonfly algorithm (BDA). Section 3
provides a detailed explanation of the proposed hybrid BDA-DDO algorithm, including the
three improvement mechanisms and the algorithm’s specific process. Section 4 describes
the experimental setup and analysis of the obtained results. Finally, Section 5 presents the
conclusion and proposes future research directions.

2. Related Work

In this section, an extensive review of feature selection algorithms is presented, with a
specific emphasis on the binary dragonfly algorithm (BDA). We provide a comprehensive
overview of existing approaches to feature selection, highlighting their methodologies and
performance. Furthermore, we delve into the intricacies of BDA, elucidating its principles
and underlying mechanisms.

2.1. Related Work on Feature Selection

Metaheuristic algorithms have gained popularity in the past decade due to their
advantages, and they have been widely applied to feature selection and optimization
problems. As a result, several feature selection algorithms based on metaheuristics have
been proposed. This section presents a comprehensive review of some noteworthy feature
selection algorithms that have emerged in recent years [14].

In [34], Xue et al. proposed a feature selection approach that combines multiobjective
particle swarm optimization (PSO) with NSGA-II. The algorithm efficiently explores the
solution space by integrating the nondominated sorting mechanism into PSO, resulting
in a set of nondominated solutions rather than a single one. However, a limitation of the
method is the rapid loss of diversity in the later stages, which affects its feature selection
performance. The particle-ranking-based PSO method [35] divides the objective space into
several subregions using uniform and nonuniform partitioning techniques. It calculates
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particle rank and feature rank to update particle velocity and position in each genera-
tion. This approach accelerates optimization and guides the particles to better solutions.
Luo et al. [36] proposed a memetic algorithm based on particle swarm optimization to tackle
high-dimensional feature selection. The algorithm includes information-entropy-based ini-
tialization and adaptive local search techniques to enhance search efficiency. Additionally,
a novel velocity-updating mechanism is introduced to consider solution convergence and
diversity. The algorithm demonstrates strong performance in improving feature subset
quality and size. The algorithm’s performance on low-dimensional datasets may be limited,
necessitating further enhancement of its robustness.

Xue et al. [37] introduced a hybrid algorithm that combines PSO and DE for feature
selection. DE is used to generate promising individuals to guide the search process. This
approach maintains diversity and directs particles to promising regions, enabling effective
escape from local optima. The algorithm performs well on small-scale datasets, but its per-
formance on large-scale datasets remains unverified. Nelson et al. [22] introduced a hybrid
DE algorithm that combines binary differential evolution (BDE) for obtaining feature sub-
sets and incorporates a local search method to minimize classification error. The algorithm’s
essence lies in using a classical feature selection algorithm as the local search strategy to
enhance the solutions derived from DE. In this way, the hybrid method aims to strike a
balance between exploration and exploitation in achieving improved solutions. In their
work [38], Wang et al. proposed SaWDE, a novel weighted differential evolution algorithm
that addresses large-scale feature selection problems. SaWDE employs a multipopulation
mechanism for enhanced diversity and introduces an adaptive strategy to capture diverse
features from historical dataset information. Additionally, a weighted model is used to
identify important features, leading to effective feature selection solutions. The algorithm
performs remarkably well in reducing feature dimensions and demonstrates strong perfor-
mance on large-scale datasets. However, further research is needed to fine-tune the number
of subpopulations and relevant parameters in the algorithm. Xue et al. proposed a multiob-
jective differential evolution approach in [39] to search for multiple optimal feature subsets.
They used a method that considers feature correlations for initialization to provide a strong
starting point. The population was divided into several subarchives using a clustering
approach, and within each subarchive, a sophisticated crowding distance was utilized
to ensure diversity by considering both the search and objective spaces. Nondominated
solutions from all subarchives were stored in another archive to guide the evolutionary
feature selection process. The proposed algorithm achieved improved feature subsets,
but the training process may take longer due to the increased computational time.

The dragonfly algorithm (DA) is a recent metaheuristic algorithm introduced by Mir-
jalili et al. In [33], they proposed a wrapper feature selection algorithm based on the binary
dragonfly algorithm (BDA). This algorithm uses a classical transfer function to convert the
continuous search space into a discrete space, which effectively solves feature selection
problems and outperforms particle swarm optimization (PSO) and genetic algorithms (GA).
In their subsequent work [40], Mirjalili et al. introduced three different update mecha-
nisms to balance exploration and exploitation in the dragonfly algorithm. The updated
algorithm showed improved performance compared to the binary dragonfly algorithm.
The reduced exploration capability in the later stages of the algorithm is still a limitation,
leading to the possibility of encountering local optimizations. Too et al. [41] proposed
the hyper-learning binary dragonfly algorithm (HLBDA) to mitigate the binary dragonfly
algorithm’s susceptibility to local optima. The algorithm employs a hyper-learning strategy
to improve search behavior and avoid getting trapped in local optimization. HLBDA
was applied to the COVID-19 dataset, and the results show its superior performance in
enhancing prediction accuracy. Hamouda et al. [42] proposed a hybrid feature selection
algorithm that combines the dragonfly algorithm (DA) with simulated annealing to address
the issue of local optimization in DA. By integrating simulated annealing, the algorithm
aims to improve its ability to select the optimal feature subset for classification tasks and
mitigate the problem of local optima. The approach shows promising results in enhancing
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classification accuracy. Duan et al. [43] proposed hybrid DA-DE, a novel algorithm that
combines the dragonfly algorithm (DA) and differential evolution (DE) to address global
optimization problems. The algorithm introduces a mutation operator from DA and adapts
the scaling factor in an individual-dependent and self-adaptive manner. By integrating
DE’s development capability and DA’s exploration ability, the algorithm achieves optimal
global solutions effectively, especially on high-dimensional functions.

In response to the limitations of the dragonfly algorithm (DA) and based on previous
research progress, we propose a hybrid approach by combining the binary dragonfly
algorithm with the directed differential operator. Our goal is to enhance the algorithm’s
search capability and improve its performance in feature selection problems.

2.2. Binary Dragonfly Algorithm

The Dragonfly algorithm (DA) is a swarm intelligence optimization algorithm pro-
posed by Seyedali Mirjalili [29] in 2015, inspired by the swarm intelligent behavior of
dragonflies. It was observed that dragonfly swarming behavior comprises two main
patterns: hunting and migration [29,42]. The hunting mechanism involves dragonflies
swarming in search of food sources, while the migration mechanism involves large groups
of dragonflies migrating over long distances in a specific direction. In 2016, Mirjalili in-
troduced the binary dragonfly algorithm (BDA), which is a discrete version based on the
original DA and adapted for binary optimization problems.

The dragonfly algorithm employs five primary behaviors, which is essential for updat-
ing the dragonfly positions. Each of these behaviors is described as follows:

• Separation, in order to avoid static collisions between individuals and other nearby
individuals. The mathematical model of separation behavior is represented by
Equation (1).

Si = −
N

∑
j=1

X− Xj (1)

In the presented model, X represents the current search agent, and Xj denotes its j-th
neighbor. The parameter N indicates the total number of neighbors.

• Alignment, which represents the speed match between the current individual and other
surrounding individuals. The mathematical model can be represented by Equation (2).

Ai =
∑N

j=1 Vj

N
(2)

where Vj denotes the velocity of the j-th neighbor.
• Cohesion, which implies that the current individual tends to move closer to the mass

center of the surrounding group. Mathematically, this cohesion behavior is expressed
by Equation (3).

Ci =
∑N

j=1 xj

N
− X (3)

• Attraction, which entails the attraction of a food source to an individual and its move-
ment towards the food source. Mathematically, it is expressed by Equation (4).

Fi = Flocation − X (4)

where Flocation represents the location of the food source.
• Distraction, which means the individual moves outward away from the enemy’s posi-

tion. The behavior of the i-th individual principle enemy is represented by Equation (5).

Ei = Elocation + X (5)

where Elocation represents the location of the current enemy.
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The dragonfly algorithm follows a framework similar to that of particle swarm opti-
mization (PSO). The position update process primarily involves two vectors: the step vector
(∆X) and the position vector (X). The step size vector serves a role similar to the speed
vector in PSO, determining both the movement direction and step size of the dragonfly.
The step vector is defined as follows:

∆Xt+1 = (sSi + aAi + cCi + f Fi + eEi) + ω∆Xt (6)

where s is the separation weight, a is the alignment weight, c is the cohesion weight, f is
the food weight, e is the enemy weight, ω is the inertia weight, and t is the current number
of iterations. Equation (7) demonstrates adaptively adjusting the value of ω to balance
exploration and exploitation. Hammouri et al. [40] proposed three adaptive methods to
adjust these parameters, aiming to enhance BDA’s performance. Further explanation of
these adaptive methods will be provided below.

ω = 0.9− Iter ∗ (0.9− 0.4)
Max_iter

(7)

The position of an individual is updated as in Equation (8):

Xt+1 = Xt + ∆Xt+1 (8)

In LBDA, a linear model is utilized to update parameter values within specific ranges,
as shown in Equation (9). The values of s, a, and c are linearly updated in the range of 0 to
0.2. Meanwhile, the value of e is updated within the range of 0.1 to 0, and the value of f is
updated in the range of 0 to 2.

s = 0.2− (0.2× iter/max_iter)

e = 0.1− (0.1× iter/max_iter)

a = 0.0 + (0.2× iter/max_iter)

c = 0.0 + (0.2× iter/max_iter)

f = 0.0 + (2.0× iter/max_iter)

(9)

In QBDA, a quadratic model is utilized to update the value of each parameter in a
nonlinear manner. The parameter value range remains consistent with that of LBDA.

s = (0.2− (0.2× iter/max_iter))2

e = (0.1− (0.1× iter/max_iter))2

a = (0.0 + (0.2× iter/max_iter))2

c = (0.0 + (0.2× iter/max_iter))2

f = (0.0 + (2.0× iter/max_iter))2

(10)

In SBDA, a sinusoidal model is used to update the values of the coefficients in a
nonlinear manner. The parameter value range remains the same as that of LBDA.

s = 0.10 + (0.10× |cos(iter/max_iter× 4× π − β)|)
e = 0.05 + (0.05× |cos(iter/max_iter× 4× π − β)|)
a = 0.10− (0.05× |cos(iter/max_iter× 4× π − β)|)
c = 0.10− (0.05× |cos(iter/max_iter× 4× π − β)|)
f = 2.00− (1.00× |cos(iter/max_iter× 4× π − β)|)

(11)

Feature selection poses distinct challenges in binary and continuous search spaces due
to its discrete nature. In the continuous search space, the position update is achieved by
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adding the updated step vector to the position vector. However, in the discrete search space,
where the position vector can only take binary values (0 or 1), a transfer function is essential
to convert the continuous space into the discrete space. BDA adopts a V-shaped transfer
function, represented by the following equation, where Xd

i (t) represents the d-dimensional
position of the i-th dragonfly, and ∆X represents the step vector.

Xd
i (t + 1) =

{
1− Xd

i (t) rand < TF(∆Xd
i (t + 1))

Xd
i (t) rand ≥ TF(∆Xd

i (t + 1))
(12)

TF(∆X) =

∣∣∣∣ ∆X√
∆X2 + 1

∣∣∣∣ (13)

3. The Proposed Feature Selection Method

In this section, we present the binary dragonfly algorithm with a hybrid directed
differential operator (BDA-DDO) and its application to feature selection. While BDA
exhibits powerful search capability, it faces challenges such as limited late exploration, slow
convergence, and a lack of population diversity. To effectively address these issues, we
propose three improvement mechanisms. In BDA-DDO, we introduce a directed differential
operator that combines BDA-generated individuals with the differential operator, resulting
in faster convergence. Additionally, we propose an adaptive approach to update this
operator, thereby increasing population diversity. Furthermore, we design an adaptive
step-updating mechanism to promote exploration in later stages. We provide a detailed
explanation of these improvements and describe the fitness function used to evaluate the
quality of the solution.

3.1. Directed Differential Operator

Differential evolution (DE), introduced by Storn and Price [44] in 1997, has gained
significant attention from researchers due to its simple structure, fast convergence speed,
and ease of implementation. In order to enhance the convergence speed of BDA, we have
devised a new differential operator based on the DE algorithm. This novel differential
operator combines the optimal and worst solutions of the dragonfly, forming a directed
differential operator. By doing so, it provides a promising direction in the search space,
guiding individuals towards better solutions and facilitating faster convergence to the
optimal region. Below, we provide a step-by-step description of the implementation of the
directed differential operator.

• Mutation: In the proposed algorithm, mutation is applied to the ith dragonfly individ-
ual to generate a mutation vector. Storn and Price [45] introduced several mutation
operations, with “DE/rand/1” being the most typical one:

Vi = Xi + F× (XFood − XEnemy) (14)

Among them, Xi represents the position of the individual after updating through BDA,
XFood represents the location of the dragonfly’s food (the best location in history),
and XEnemy represents the location of dragonfly enemies. The scaling factor, denoted
by F, controls the amplification of the difference vector and significantly influences the
convergence speed. We will provide a detailed explanation of F later in this section.

• Crossover: After mutation, a crossover operation is performed by randomly selecting
either the mutant individual Vi,j or the original individual Xi,j to generate the exper-
imental individual. Among the three classical crossover operators [46]—binomial
crossover, exponential crossover, and rotation-invariant arithmetic crossover—we are
using the binomial crossover operator, as shown in the following equation:

Ui,j =

{
Vi,j rand < CR or randi(1, d) = j
Xi,j rand > CR or randi(1, d) 6= j

(15)
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where rand is a random variable between [0, 1] and jrand is an integer randomly
selected from [1, D], ensuring that at least one of Ui,j comes from Vi,j. CR is the
crossover probability, selected from [0, 1], which controls the population diversity.
After the crossover operation, the resulting Ui,j vector is transformed into a discrete
space vector using the transfer function T1. Then, a selection operation is carried out
to determine whether it can survive to the next generation. The transfer function T1 is
defined as follows:

T1 =
1

1 + e−(U
d
i )

(16)

Ui,j =

{
Ui,j = 0 rand < T1
Ui,j = 1 rand > T1

(17)

• Selection: After the mutation and crossover operations, selection is performed to
determine the survival of individuals Ui and Xi in the next generation.

Xi =

{
Ui f (Ui) ≤ f (Xi)
Xi others

(18)

where f (Ui) and f (Xi) represent the fitness functions corresponding to Ui and Xi,
respectively.

3.2. Time-Varying Differential Vector

To address the issue of population diversity in the late stage of the BDA algorithm, we
propose a time-varying differential vector approach. The value of the differential vector
decreases from its initial value as iterations progress. The directed differential operator
introduced earlier provides directional information. In the early stage, a larger differential
vector is used to provide more valuable information for individual search. In contrast,
a smaller differential vector is applied in the late stage to improve population diversity in
the optimal region, there by improving the overall search performance. The time-varying
differential vector is designed as shown in Equation (19), where F ranges from [1, 0.5] and
gradually decreases with iterations.

F =
0.5

1 + (−0.5)× e−0.5×iter (19)

3.3. Adaptive Step-Updating Mechanism

We propose an adaptive step-updating mechanism in the BDA algorithm to address
the fixed step size issue. A fixed step size can cause oscillations if too large, or slow
convergence if too small, leading to local optima. To overcome this, our adaptive approach
dynamically adjusts the dragonfly step size during iterations. Equations (19) and (20)
are used for this purpose. The BDA-DDO algorithm, which integrates the adaptive step
updating mechanism and the directed differential operator, is given in Algorithm 1. This
comprehensive approach aims to enhance exploration and improve population diversity in
the late stages of optimization.

∆X = F× ∆X (20)
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Algorithm 1 Pseudocode of the BDA-DDO
Input: The number of populations N, the maximum number of iterations
Output: The best solution
1: Initialize population position Xi(i = 1, 2, . . . , N)
2: Initialize the step vectors, ∆Xi(i = 1, 2, . . . , N)
3: while Maximum number of iterations not reached do
4: Calculate the fitness value of all dragonfly individuals
5: Update the Flocation, and the Elocation
6: Update s, a, c, f , e, and ω (Using Equations (9) or (10) or (11), Using Equation (7))
7: for i = 1 to Number of dragonflies, N do
8: Calculate the values of S, A, C, F, E (Using Equations (1)–(5))
9: Update step vector using Equation (6)

10: Update step vector using Equation (20)
11: Update the position of dragonfly (i-th) using Equations (12) and (13)
12: Individual position mutations using Equations (14) and (19)
13: Crossover operation using Equations (15)–(17)
14: Select operation using Equation (18)
15: return the best solution

3.4. Fitness Evaluation

Feature selection is a multiobjective problem, where maximum classification accuracy
and the minimum subset of features are the goals that need to be achieved. We balance
these two objectives with a fitness function, by setting weighting factors. As shown in the
following equation [33,40–42]:

f itness = α× ERR + β× R
N

(21)

where ERR is the classification error rate obtained using the KNN classifier, R is the number
of subsets of features selected by the search agent, and N is the total number of features in
the datasets. α and β are weight factors for balancing classification accuracy and feature
subsets. The value range of α is between [0, 1] and the value of β is (1-α). To maximize
the classification accuracy, we set α to 0.99 and β to 0.01 in our experiments. We use the
parameter settings described in [40] and compare our results with those obtained using the
BDA method.

4. Experiments and Results Analysis

In this section, we evaluate the performance of three proposed BDA-DDO algorithms,
namely LBDA-DDO, QBDA-DDO, and SBDA-DDO, which are the improved versions
based on BDA. Section 4.1 presents the details of the mainstream datasets. The parameter
information of related algorithms is introduced in Section 4.2. Section 4.3 introduces
the performance comparison analysis of the proposed algorithm and LBDA. Section 4.4
presents a comparison between the proposed algorithm and QBDA. Section 4.5 introduces
the SBDA-DDO algorithm for comparison with SBDA. Section 4.6 presents a comparison of
BDA-DDO with other binary versions of metaheuristic-based feature selection algorithms.

4.1. Datasets

In this section, the performance of the proposed algorithm was evaluated on 14 popular
datasets collected from the UCI repository [47]. Table 1 provides detailed information about
each of the datasets, which are commonly used by researchers to study feature selection
methods. From Table 1, it can be observed that the datasets vary in terms of the number
of instances, features, and dimensions. This demonstrates that the proposed algorithm’s
performance has been tested on datasets with different structures. Each dataset in Table 1
was randomly divided into two sets: 80% for training and 20% for testing. To account for
the algorithm’s randomness, we conducted 30 independent runs for each algorithm.
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Table 1. Details of datasets.

DataSet No. of Attributes No. of Objects No. of Classes

Breastcancer 9 699 2
BreastEW 30 569 2

Exactly 13 1000 2
HeartEW 13 270 2

Lymphography 18 148 4
PenglungEW 325 73 7

SonarEW 60 208 2
SpectEW 22 267 2

CongressEW 16 435 2
IonosphereEW 34 351 2

KrvskpEW 36 3196 2
WaveformEW 40 5000 3

WineEW 13 178 3
Zoo 16 101 7

4.2. Parameter Settings

In this study, K-nearest neighbors (KNN) was utilized as the classification algorithm
to evaluate the accuracy of the selected features. The datasets were divided into training
and test sets using 10-fold cross-validation, and the classification error was calculated
using K-nearest neighbors (KNN) with k = 5. This experiment was conducted on a WIN10
system with NVIDIA GTX 1660 graphics card, Inter Core i5-11400 processor, 2.6 GHz main
frequency, and 16 GB RAM; the 2021a version of matlab was used. To ensure the fairness
of the experiments, we used the same parameter settings and biomimetic environment as
described in the original paper. The relevant parameters of the algorithm are set as shown
in Table 2 below:

Table 2. The parameter settings of algorithms.

Parameter Value

Population size 10
The maximum number of iterations 100

K parameters in KNN 5
CR 0.3

β of SBDA π
3

a of BGWO from 2 to 0
G0 of BGSA 100
α of BGSA 20

4.3. Comparison with LBDA Method

In this section, we obtain results on 14 mainstream datasets using the proposed FS
method. The obtained results are compared with LBDA in three aspects: classification
accuracy, number of selected features and fitness value. Table 3 shows the comparison
between BDA-DDO and LBDA in terms of classification accuracy, and it should be noted
that LBDA1 indicates that the proposed algorithm does not apply an adaptive step-updating
mechanism. Table 4 shows the comparison of the proposed algorithm with LBDA in
selecting the number of features. Table 5 shows that BDA-DDO compares with LBDA in
terms of fitness value.
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Table 3. Average classification accuracy based on the proposed LBDA-DDO algorithm.

DataSet Metric LBDA LBDA1 LBDA-DDO

Breastcancer Avg 0.999 0.999 0.999
StDev 0.003 0.002 0.003

BreastEW Avg 0.993 0.994 0.994
StDev 0.004 0.004 0.004

Exactly Avg 0.952 0.972 1
StDev 0.053 0.033 0

HeartEW Avg 0.903 0.921 0.935
StDev 0.020 0.018 0.019

Lymphography Avg 0.956 0.970 0.964
StDev 0.019 0.012 0.014

PenglungEW Avg 1 1 1
StDev 0 0 0

SonarEW Avg 0.954 0.960 0.964
StDev 0.019 0.013 0.015

SpectEW Avg 0.922 0.929 0.929
StDev 0.014 0.014 0.017

CongressEW Avg 0.998 0.999 1
StDev 0.003 0.004 0

IonosphereEW Avg 0.960 0.966 0.967
StDev 0.008 0.011 0.011

KrvskpEW Avg 0.970 0.968 0.985
StDev 0.007 0.005 0.003

WaveformEW Avg 0.831 0.829 0.845
StDev 0.005 0.005 0.005

WineEW Avg 1 1 1
StDev 0 0 0

Zoo Avg 1 1 1
StDev 0 0 0

Table 4. Average selected features based on proposed LBDA-DDO algorithm.

DataSet Metric LBDA LBDA1 LBDA-DDO

Breastcancer Avg 4.97 4.57 4.46
StDev 1.30 1.22 1.20

BreastEW Avg 14.17 13.93 12.57
StDev 2.07 2.82 2.01

Exactly Avg 7.30 7.17 6
StDev 0.78 0.58 0

HeartEW Avg 5.70 4.77 4.33
StDev 1.24 1.54 1.42

Lymphography Avg 7.73 8.13 6.77
StDev 2.06 2.44 2.06

PenglungEW Avg 126.13 106.13 105.30
StDev 19.17 5.93 9.54

SonarEW Avg 27.63 24.43 23.00
StDev 3.66 6.00 3.85
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Table 4. Cont.

DataSet Metric LBDA LBDA1 LBDA-DDO

SpectEW Avg 9.83 9.50 8.07
StDev 2.65 4.09 3.10

CongressEW Avg 6.50 4.83 4.33
StDev 2.19 1.80 1.81

IonosphereEW Avg 15.33 12.80 11.17
StDev 3.27 3.67 3.10

KrvskpEW Avg 19.90 19.07 16.53
StDev 2.75 3.08 2.30

WaveformEW Avg 22.37 22.67 19.83
StDev 3.11 3.38 2.55

WineEW Avg 4.43 3.70 2.67
StDev 0.88 0.82 0.65

Zoo Avg 4.90 4.40 3.93
StDev 0.70 0.66 0.72

Table 5. Average fitness based on the proposed LBDA-DDO algorithm.

DataSet Metric LBDA LBDA1 LBDA-DDO

Breastcancer Avg 0.007 0.006 0.006
StDev 0.003 0.002 0.002

BreastEW Avg 0.011 0.010 0.009
StDev 0.004 0.004 0.004

Exactly Avg 0.052 0.032 0.005
StDev 0.053 0.058 0

HeartEW Avg 0.101 0.081 0.066
StDev 0.020 0.017 0.019

Lymphography Avg 0.047 0.034 0.039
StDev 0.019 0.011 0.014

PenglungEW Avg 0.004 0.003 0.003
StDev 0.001 0 0

SonarEW Avg 0.050 0.044 0.039
StDev 0.018 0.012 0.014

SpectEW Avg 0.082 0.075 0.073
StDev 0.013 0.013 0.017

CongressEW Avg 0.006 0.004 0.002
StDev 0.004 0.003 0.001

IonosphereEW Avg 0.044 0.038 0.036
StDev 0.008 0.010 0.011

KrvskpEW Avg 0.036 0.037 0.019
StDev 0.007 0.005 0.003

WaveformEW Avg 0.173 0.175 0.157
StDev 0.005 0.005 0.005

WineEW Avg 0.003 0.003 0.002
StDev 0.001 0.001 0

Zoo Avg 0.003 0.003 0.002
StDev 0 0 0
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Table 3 shows the classification accuracy obtained by LBDA-DDO, LBDA1, and LBDA
on the 14 datasets. The results indicate that LBDA1 achieves higher classification accuracy
on most datasets compared to LBDA, while LBDA-DDO consistently outperforms LBDA
in terms of classification accuracy on all 14 datasets. Furthermore, considering the stan-
dard deviations, LBDA-DDO demonstrates better robustness than LBDA, indicating its
ability to handle variations in the datasets more effectively. Therefore, LBDA-DDO can
achieve better results by utilizing an adaptive step size strategy, which enhances the algo-
rithm’s search capability in the later stages and balances the trade-off between exploration
and exploitation.

Table 4 illustrates the average number of selected features by the proposed LBDA-
DDO algorithm on the datasets, with the best results highlighted in bold. The findings in
Table 4 indicate that LBDA-DDO consistently selects fewer features than LBDA and LBDA1
across all 14 datasets. Furthermore, LBDA1 demonstrates a lower feature count compared
to LBDA. These results demonstrate the ability of the proposed algorithm to effectively
reduce the number of selected features in comparison to LBDA, thereby eliminating noisy
or irrelevant features that may have been chosen by the LBDA method. This outcome
aligns perfectly with our main objective.

Table 5 illustrates the average fitness results obtained by the proposed LBDA-DDO
algorithm. As before, the best results are shown in bold. The results show that the fitness
values obtained by LBDA-DDO on the nine datasets are lower than those of LBDA and
LBDA1. On the two datasets Breastcancer and penglungEW, LBDA-DDO and LBDA1
exhibit the same fitness values. On Lymphography, LBDA1 achieves the best results.
Overall, LBDA-DDO performs better than LBDA.

Figure 1 presents the convergence behavior of the proposed LBDA-DDO algorithm on
14 mainstream datasets, comparing it with LBDA and LBDA1. LBDA refers to the binary
dragonfly algorithm with linear model updating, while LBDA1 represents the proposed
algorithm(LBDA-DDO) without the adaptive step-updating mechanism. The X-axis shows
the number of iterations, and the Y-axis displays the fitness value. The results show that
the proposed algorithm achieves better convergence on most datasets. This indicates an
enhanced search capability, especially with the inclusion of the adaptive step-updating
mechanism. The proposed algorithm effectively avoids getting stuck in local optima.
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Figure 1. Cont.
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Figure 1. Convergence behavior of the proposed algorithm based on LBDA on 14 mainstream
datasets.

Additionally, it can be observed that LBDA exhibits slower convergence on certain
datasets, necessitating more iterations to attain satisfactory fitness values. Consequently,
the proposed algorithm holds an advantage in terms of convergence behavior, enabling it
to swiftly discover high-quality solutions. This highlights the efficacy of the introduced
directional difference operator strategy in accelerating convergence speed, while the adap-
tive step-updating mechanism enhances search capabilities. In summary, the proposed
algorithm outperforms LBDA by achieving faster convergence and yielding solutions with
higher fitness values.

4.4. Comparison with QBDA Method

In this section, the performance of the proposed QBDA-DDO algorithm is examined,
which combines the QBDA method with DE. QBDA1 is also included as an algorithm
without the adaptive step size mechanism. For the performance of the algorithm, a compar-
ison is conducted with QBDA in three aspects: classification accuracy, selected features,
and fitness values. Table 6 presents the comparison of the classification accuracy between
the proposed algorithm and QBDA. Table 7 shows the comparison of selected features
between QBDA-DDO and QBDA. Additionally, Table 8 provides a comparison of fitness
values between the QBDA-DDO algorithm and QBDA. Furthermore, Figure 2 shows the
convergence speed of the three algorithms on the 14 mainstream datasets for visual analysis.
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Figure 2. Convergence behavior of the proposed algorithm based on QBDA on 14 mainstream
datasets.
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Table 6. The average classification accuracy of the proposed algorithm QBDA-DDO.

DataSet Metric QBDA QBDA1 QBDA-DDO

Breastcancer Avg 0.998 0.999 0.999
StDev 0.002 0.002 0.002

BreastEW Avg 0.994 0.995 0.994
StDev 0.004 0.004 0.004

Exactly Avg 0.974 0.990 1
StDev 0.044 0.023 0

HeartEW Avg 0.915 0.923 0.945
StDev 0.017 0.018 0.019

Lymphography Avg 0.963 0.969 0.971
StDev 0.023 0.018 0.020

PenglungEW Avg 1 1 1
StDev 0 0 0

SonarEW Avg 0.958 0.968 0.965
StDev 0.015 0.017 0.016

SpectEW Avg 0.920 0.930 0.940
StDev 0.014 0.013 0.013

CongressEW Avg 0.999 1 1
StDev 0.002 0.002 0

IonosphereEW Avg 0.959 0.965 0.970
StDev 0.009 0.011 0.011

KrvskpEW Avg 0.972 0.975 0.984
StDev 0.004 0.005 0.005

WaveformEW Avg 0.834 0.835 0.849
StDev 0.006 0.004 0.010

WineEW Avg 1 1 1
StDev 0 0 0

Zoo Avg 1 1 1
StDev 0 0 0

Table 7. The average number of the selected features of the proposed algorithm QBDA-DDO.

DataSet Metric QBDA QBDA1 QBDA-DDO

Breastcancer Avg 4.80 4.57 4.13
StDev 1.22 1.17 0.76

BreastEW Avg 14.73 13.73 11.77
StDev 2.43 2.95 1.83

Exactly Avg 7.00 6.63 6.03
StDev 0.89 0.60 0.17

HeartEW Avg 5.9 4.53 4.53
StDev 1.85 1.82 1.17

Lymphography Avg 8.37 7.30 7.03
StDev 2.23 2.18 1.74

PenglungEW Avg 128.00 112.17 108.90
StDev 6.67 5.01 5.73

SonarEW Avg 27.13 23.00 22.60
StDev 3.30 4.60 3.92
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Table 7. Cont.

DataSet Metric QBDA QBDA1 QBDA-DDO

SpectEW Avg 9.00 10.67 7.97
StDev 1.71 2.87 2.96

CongressEW Avg 6.17 5.07 4.10
StDev 1.97 1.36 1.12

IonosphereEW Avg 14.00 12.40 10.37
StDev 3.29 4.02 3.02

KrvskpEW Avg 19.67 19.33 17.90
StDev 2.38 3.05 2.00

WaveformEW Avg 22.87 21.83 21.20
StDev 2.28 2.50 3.15

WineEW Avg 4.53 3.63 3.06
StDev 1.15 0.66 0.51

Zoo Avg 5.03 4.23 3.87
StDev 0.91 0.67 0.42

Table 8. The average fitness value of the proposed algorithm QBDA-DDO.

DataSet Metric QBDA QBDA1 QBDA-DDO

Breastcancer Avg 0.006 0.006 0.005
StDev 0.002 0.002 0.002

BreastEW Avg 0.010 0.009 0.009
StDev 0.004 0.004 0.004

Exactly Avg 0.031 0.015 0.005
StDev 0.044 0.024 0

HeartEW Avg 0.088 0.079 0.058
StDev 0.016 0.017 0.019

Lymphography Avg 0.041 0.035 0.032
StDev 0.022 0.017 0.020

PenglungEW Avg 0.004 0.003 0.003
StDev 0.002 0 0

SonarEW Avg 0.045 0.035 0.038
StDev 0.015 0.017 0.016

SpectEW Avg 0.082 0.073 0.063
StDev 0.014 0.013 0.013

CongressEW Avg 0.004 0.003 0.002
StDev 0.002 0.002 0

IonosphereEW Avg 0.044 0.038 0.032
StDev 0.009 0.010 0.012

KrvskpEW Avg 0.033 0.030 0.020
StDev 0.004 0.005 0.005

WaveformEW Avg 0.170 0.169 0.154
StDev 0.006 0.004 0.010

WineEW Avg 0.003 0.003 0.002
StDev 0 0 0

Zoo Avg 0.003 0.003 0.002
StDev 0 0 0
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Table 6 displays the average classification accuracy achieved by the proposed QBDA-
DDO algorithm. QBDA-DDO achieves the best results on seven datasets, while the results
of the three algorithms are equal on three datasets. QBDA1 and BDA-DDO obtain the same
results on Breastcancer and CongressEW. For BreastEW and SonarEW, QBDA1 performs
the best. Therefore, the directional differential operator and adaptive step size, when
applied to QBDA, can effectively improve the classification accuracy of feature selection,
highlighting the effectiveness of the algorithm innovation.

Table 7 shows the average number of selected features obtained by the proposed
BDA-DDO algorithm, with the best results highlighted in bold. The results demonstrate
that the BDA-DDO algorithm achieves the best results on all 13 datasets, while QBDA1
outperforms QBDA on most datasets. This indicates that the directional differential operator
mechanism assists QBDA in converging to favorable solutions, while the adaptive step
size enhances the algorithm’s search capability in the later stages. In summary, these
improvements facilitate the removal of redundant and noisy features, resulting in enhancing
algorithm performance.

Table 8 presents the average fitness values obtained by the QBDA-DDO algorithm,
with the best results highlighted in bold. It is evident from the table that QBDA-DDO
consistently outperforms QBDA in terms of average fitness values on the majority of
datasets. The fitness value serves as an indicator of the combined performance in terms of
classification accuracy and the number of selected features. Thus, the proposed algorithm
demonstrates superior performance compared to QBDA, showcasing its effectiveness in
better overall results.

Figure 2 depicts the convergence behavior of the proposed QBDA-DDO algorithm
compared to QBDA and QBDA1 on 14 mainstream datasets. QBDA represents the binary
dragonfly algorithm with quadratic model-based parameter updates. The X-axis repre-
sents the number of iterations, and the Y-axis represents the fitness values. The results
demonstrate that the proposed QBDA-DDO algorithm exhibits superior search capability
in the later stages compared to QBDA for most datasets. The proposed algorithm effectively
avoids getting trapped in local optima.

4.5. Comparison with SBDA Method

In this section, we carried out tests on the proposed method from three perspectives:
classification accuracy, number of selected features, and fitness value. We also compared it
with the SBDA algorithm, where SBDA1 represents the algorithm without the application
of an adaptive step size mechanism. Table 9 presents the classification accuracy achieved
by the proposed method on the 14 mainstream datasets. Table 10 displays the number of
selected features obtained by SBDA-DDO. Table 11 shows the fitness values achieved by
SBDA-DDO on the 14 datasets. Additionally, Figure 3 is used to compare the convergence
speed of SBDA-DDO and SBDA on the 14 mainstream datasets.

In terms of classification accuracy, according to the results in Table 9, the SBDA-DDO
algorithm achieves the best results on seven datasets, which are highlighted in bold. It
is noteworthy that SBDA1 achieves the same classification accuracy as QBDA-DDO on
five datasets, and all three algorithms show the same accuracy on three datasets. This
indicates that the integration of the direction differential operator and the adaptive step
size mechanism further improves the performance of the SBDA algorithm. Therefore,
SBDA-DDO demonstrates superior ability to classify the datasets.

In terms of the number of selected features, it can be seen from Table 10 that BDA-
DDO can achieve better performance, BDA-DDO achieves the best results on eight datasets,
and SBDA1 obtained the best results on six datasets. Therefore, BDA-DDO is able to
select fewer features, proving that the adaptive step can improve the performance of the
algorithm, while the results obtained by SBDA1 are better than the original SBDA algorithm.
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Figure 3. Convergence behavior of the proposed algorithm based on SBDA on 14 mainstream
datasets.
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Table 9. The average classification accuracy of the proposed algorithm SBDA-DDO.

DataSet Metric SBDA SBDA1 SBDA-DDO

Breastcancer Avg 0.998 0.999 0.999
StDev 0.003 0.003 0.002

BreastEW Avg 0.993 0.994 0.993
StDev 0.003 0.004 0.004

Exactly Avg 0.946 0.960 0.987
StDev 0.060 0.052 0.025

HeartEW Avg 0.897 0.909 0.919
StDev 0.018 0.020 0.019

Lymphography Avg 1 1 1
StDev 0 0 0

PenglungEW Avg 1 1 1
StDev 0 0 0

SonarEW Avg 0.960 0.963 0.964
StDev 0.013 0.020 0.015

SpectEW Avg 0.924 0.929 0.929
StDev 0.018 0.014 0.018

CongressEW Avg 0.997 0.999 1
StDev 0.005 0.003 0

IonosphereEW Avg 0.959 0.961 0.968
StDev 0.010 0.011 0.011

KrvskpEW Avg 0.968 0.965 0.974
StDev 0.005 0.005 0.004

WaveformEW Avg 0.832 0.828 0.834
StDev 0.006 0.007 0.006

WineEW Avg 1 1 1
StDev 0 0 0

Zoo Avg 1 1 1
StDev 0 0 0

Table 10. The average number of the selected features of the proposed algorithm SBDA-DDO.

DataSet Metric SBDA SBDA1 SBDA-DDO

Breastcancer Avg 4.90 4.03 5.07
StDev 1.32 1.05 1.34

BreastEW Avg 14.40 13.63 13.17
StDev 2.39 3.73 2.74

Exactly Avg 7.47 7.13 6.77
StDev 0.62 0.80 0.61

HeartEW Avg 4.87 4.13 4.80
StDev 1.23 1.17 1.25

Lymphography Avg 8.77 7.97 7.73
StDev 2.17 2.64 2.00

PenglungEW Avg 136.50 103.03 108.47
StDev 15.32 4.98 4.72

SonarEW Avg 28.93 24.30 23.73
StDev 3.95 6.46 5.11
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Table 10. Cont.

DataSet Metric SBDA SBDA1 SBDA-DDO

SpectEW Avg 10.50 8.57 9.00
StDev 2.56 3.80 3.63

CongressEW Avg 6.63 4.43 5.10
StDev 2.55 1.41 1.87

IonosphereEW Avg 13.80 11.17 12.37
StDev 2.26 2.58 3.65

KrvskpEW Avg 20.07 19.47 18.63
StDev 2.05 3.87 2.73

WaveformEW Avg 22.97 21.43 20.50
StDev 3.17 3.57 2.80

WineEW Avg 4.70 3.60 3.23
StDev 1.29 0.88 0.67

Zoo Avg 5.13 4.50 4.13
StDev 0.76 0.88 0.88

Table 11. The average fitness value of the proposed algorithm SBDA-DDO.

DataSet Metric SBDA SBDA1 SBDA-DDO

Breastcancer Avg 0.007 0.006 0.006
StDev 0.002 0.002 0.002

BreastEW Avg 0.012 0.011 0.011
StDev 0.003 0.004 0.004

Exactly Avg 0.059 0.045 0.018
StDev 0.060 0.053 0.025

HeartEW Avg 0.105 0.093 0.083
StDev 0.018 0.020 0.018

Lymphography Avg 0.046 0.038 0.042
StDev 0.016 0.021 0.018

PenglungEW Avg 0.004 0.003 0.003
StDev 0 0 0

SonarEW Avg 0.047 0.040 0.039
StDev 0.013 0.020 0.014

SpectEW Avg 0.079 0.074 0.074
StDev 0.018 0.014 0.017

CongressEW Avg 0.006 0.003 0.003
StDev 0.004 0.002 0.001

IonosphereEW Avg 0.045 0.041 0.036
StDev 0.010 0.011 0.010

KrvskpEW Avg 0.037 0.040 0.031
StDev 0.005 0.005 0.004

WaveformEW Avg 0.172 0.176 0.169
StDev 0.006 0.007 0.006

WineEW Avg 0.004 0.003 0.002
StDev 0 0 0

Zoo Avg 0.003 0.003 0.002
StDev 0 0 0

Table 11 illustrates the results obtained by the proposed SBDA-DDO algorithm in
terms of fitness values, with the best results highlighted in bold. It can be observed that
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SBDA-DDO outperforms other algorithms on 13 datasets, while SBDA1 achieves the best
results on 6 datasets. Remarkably, SBDA-DDO and SBDA1 yield the same results on
five datasets. These findings confirm the effectiveness of our innovative approach, which
incorporates direction differential operators and adaptive step size mechanisms into three
different methods. The combination of these innovations with each algorithm demonstrates
superior performance compared to the original algorithms. Consequently, our proposed
approach enhances the algorithm’s performance by achieving improved classification
accuracy while selecting fewer features.

Figure 3 depicts the convergence behavior of the proposed SBDA-DDO algorithm
on 14 datasets, and the comparison with SBDA and SBDA1. SBDA represents the binary
dragonfly algorithm with parameter updates using the cosine model. The X-axis represents
the number of iterations, and the Y-axis displays the corresponding fitness values. Results
show that SBDA-DDO exhibits faster convergence than SBDA for most datasets, thanks to
the direction differential operator guiding individuals towards more promising directions.
In addition, the later search ability of this algorithm is obviously stronger than that of
SBDA, especially after using the adaptive step size mechanism.

The result of Figures 1–3 confirms the significant impact of the proposed innovative
mechanisms on enhancing the performance of BDA with various update strategies (linear,
quadratic, and cosine). The results indicate that the introduced improvements effectively
boost the performance of the three BDA variants, particularly improving their search
capabilities in later stages and facilitating escape from local optima. This highlights the
versatility and effectiveness of the proposed mechanisms in various scenarios, affirming
the algorithm’s robustness and adaptability.

4.6. Comparison with Other Binary Optimization Algorithms

In the previous section, we compared the proposed BDA-DDO algorithm and three
enhanced versions of BDA (LBDA, QBDA, SBDA) [40] in terms of classification accuracy,
selected feature count, and fitness values. Now, we extend the comparison to four other typ-
ical metaheuristic feature selection algorithms: binary grey wolf optimization (BGWO) [48],
the binary bat algorithm (BBA) [49], binary atomic search optimization (BASO) [50], and the
binary gravitational search algorithm (BGSA) [49]. The results are presented in Tables 12–14
for classification accuracy, selected feature count, and fitness values, respectively. By con-
sidering these additional algorithms, we aim to provide a comprehensive evaluation of the
performance of the proposed BDA-DDO algorithm.

Table 12. Comparison with other binary algorithms on average classification accuracy.

DataSet Metric LBDA-DDO QBDA-DDO SBDA-DDO BGWO BBA BASO BGSA

Breastcancer Avg 0.999 0.999 0.999 0.978 0.980 0.971 0.948
StDev 0.003 0.002 0.002 0.011 0.009 0.013 0.051

BreastEW Avg 0.994 0.994 0.993 0.978 0.983 0.960 0.928
StDev 0.004 0.004 0.004 0.013 0.009 0.018 0.014

Exactly Avg 1 1 0.987 0.805 0.982 0.727 0.732
StDev 0 0 0.025 0.065 0.069 0.070 0.124

HeartEW Avg 0.935 0.945 0.919 0.836 0.887 0.825 0.770
StDev 0.019 0.019 0.019 0.057 0.035 0.042 0.066

Lymphography Avg 0.964 0.971 1 0.872 0.911 0.859 0.864
StDev 0.014 0.020 0 0.053 0.049 0.049 0.081

PenglungEW Avg 1 1 1 0.883 0.924 0.924 0.949
StDev 0 0 0 0.072 0.069 0.074 0.054

SonarEW Avg 0.964 0.965 0.964 0.902 0.939 0.881 0.865
StDev 0.015 0.016 0.015 0.044 0.039 0.049 0.047

SpectEW Avg 0.929 0.940 0.929 0.863 0.894 0.831 0.785
StDev 0.017 0.013 0.018 0.044 0.036 0.031 0.034
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Table 12. Cont.

DataSet Metric LBDA-DDO QBDA-DDO SBDA-DDO BGWO BBA BASO BGSA

CongressEW Avg 1 1 1 0.977 0.983 0.963 0.943
StDev 0 0 0 0.018 0.012 0.023 0.026

IonosphereEW Avg 0.967 0.970 0.968 0.908 0.932 0.909 0.869
StDev 0.011 0.011 0.011 0.037 0.025 0.025 0.026

KrvskpEW Avg 0.985 0.984 0.974 0.972 0.983 0.904 0.898
StDev 0.003 0.005 0.004 0.008 0.005 0.041 0.051

WaveformEW Avg 0.845 0.849 0.834 0.843 0.845 0.799 0.697
StDev 0.005 0.010 0.006 0.011 0.010 0.015 0.021

WineEW Avg 1 1 1 0.955 0.986 0.946 0.976
StDev 0 0 0 0.045 0.016 0.049 0.035

Zoo Avg 1 1 1 0.943 0.985 0.933 0.995
StDev 0 0 0 0.059 0.026 0.045 0.015

Based on the results in Table 12, we compared our proposed method with BGWO,
BBA, BASO, and BGSA in terms of classification accuracy. The best results are highlighted
in bold. QBDA-DDO achieved the highest classification accuracy on 12 datasets, while
LBDA-DDO and SBDA-DDO obtained the best results on 8 and 6 datasets, respectively.
Therefore, QBDA outperformed other algorithms in improving classification accuracy.

Table 13. Comparison with other binary algorithms on average number of selected features.

DataSet Metric LBDA-DDO QBDA-DDO SBDA-DDO BGWO BBA BASO BGSA

Breastcancer Avg 4.46 4.13 5.07 5.23 4.17 4.23 4.47
StDev 1.20 0.76 1.34 1.45 1.21 1.23 1.01

BreastEW Avg 12.57 11.77 13.17 17.93 11.33 11.90 14.93
StDev 2.01 1.83 2.74 2.68 2.28 3.40 2

Exactly Avg 6 6.03 6.77 9.97 6 5.57 7.67
StDev 0 0.17 0.61 1.54 0.45 3.29 1.49

HeartEW Avg 4.33 4.53 4.80 6.97 4.50 4.40 6.63
StDev 1.42 1.117 1.25 1.54 1.06 1.94 1.94

Lymphography Avg 6.77 7.03 7.73 10.23 5.47 6.00 9
StDev 2.06 1.74 2.00 1.71 1.45 2.21 2.18

PenglungEW Avg 105.30 108.90 108.47 168.40 127.90 62.37 145.1
StDev 9.54 5.73 4.72 21.79 8.33 32.81 4.88

SonarEW Avg 23.00 22.60 23.73 33.93 23.27 18.27 27.07
StDev 3.85 3.92 5.11 3.26 3.89 7.97 3.64

SpectEW Avg 8.07 7.97 9.00 12.30 8.27 8.23 9.77
StDev 3.10 2.96 3.63 3.00 1.86 4.07 2.3

CongressEW Avg 4.33 4.10 5.10 8.03 5.33 4.17 7
StDev 1.81 1.12 1.87 1.94 1.72 2.03 1.91

IonosphereEW Avg 11.17 10.37 12.37 18.43 10.23 6.93 14.9
StDev 3.10 3.02 3.65 2.55 2.58 1.93 2.89

KrvskpEW Avg 16.53 17.90 18.63 28.40 19.80 18.27 19.73
StDev 2.30 2.00 2.73 2.58 2.45 4.40 2.36

WaveformEW Avg 19.83 21.20 20.50 31.27 22.93 21.27 21.6
StDev 2.55 3.15 2.80 1.86 2.53 4.16 3.69

WineEW Avg 2.67 3.06 3.23 6.53 3.53 3.73 6.57
StDev 0.65 0.51 0.67 1.76 1.15 1.21 1.36

Zoo Avg 3.93 3.87 4.13 8 5.37 5.53 6.97
StDev 0.72 0.42 0.88 1.73 1.05 1.80 1.25
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Table 14. Comparison with other binary-based algorithms in terms of average fitness value.

DataSet Metric LBDA-DDO QBDA-DDO SBDA-DDO BGWO BBA BASO BGSA

Breastcancer Avg 0.006 0.005 0.006 0.027 0.024 0.033 0.027
StDev 0.002 0.002 0.002 0.011 0.009 0.013 0.007

BreastEW Avg 0.009 0.009 0.011 0.027 0.020 0.044 0.039
StDev 0.004 0.004 0.004 0.012 0.009 0.018 0.01

Exactly Avg 0.005 0.005 0.018 0.200 0.023 0.275 0.253
StDev 0 0 0.025 0.065 0.068 0.069 0.094

HeartEW Avg 0.066 0.058 0.083 0.167 0.115 0.176 0.137
StDev 0.019 0.019 0.018 0.056 0.034 0.042 0.03

Lymphography Avg 0.039 0.032 0.042 0.132 0.090 0.143 0.081
StDev 0.014 0.020 0.018 0.052 0.049 0.048 0.033

PenglungEW Avg 0.003 0.003 0.003 0.121 0.079 0.077 0.004
StDev 0 0 0 0.072 0.068 0.073 0

SonarEW Avg 0.039 0.038 0.039 0.102 0.064 0.120 0.082
StDev 0.014 0.016 0.014 0.044 0.039 0.048 0.023

SpectEW Avg 0.073 0.063 0.074 0.141 0.108 0.171 0.153
StDev 0.017 0.013 0.017 0.043 0.035 0.030 0.018

CongressEW Avg 0.002 0.002 0.003 0.027 0.020 0.039 0.032
StDev 0.001 0 0.001 0.018 0.012 0.023 0.013

IonosphereEW Avg 0.036 0.032 0.036 0.097 0.070 0.092 0.127
StDev 0.011 0.012 0.010 0.037 0.025 0.024 0.011

KrvskpEW Avg 0.019 0.020 0.031 0.035 0.022 0.100 0.099
StDev 0.003 0.005 0.004 0.008 0.005 0.040 0.049

WaveformEW Avg 0.157 0.154 0.169 0.163 0.159 0.204 0.251
StDev 0.005 0.010 0.006 0.011 0.010 0.015 0.013

WineEW Avg 0.002 0.002 0.002 0.049 0.017 0.057 0.009
StDev 0 0 0 0.044 0.016 0.048 0.012

Zoo Avg 0.002 0.002 0.002 0.061 0.018 0.069 0.005
StDev 0 0 0 0.058 0.026 0.045 0.001

The superior performance of QBDA-DDO can be attributed to its specific algorithmic
strategies. By integrating the strengths of the QBDA algorithm and incorporating the
direction bias operator and adaptive step size mechanism, QBDA-DDO provides efficient
and accurate search capabilities. These strategies guide individuals in more promising
directions, leading to improved classification accuracy. Furthermore, both LBDA-DDO
and SBDA-DDO also demonstrate competitive performance on their respective datasets,
achieving relatively good results.

Table 13 shows the average number of selected features for the proposed algorithm
and four comparison algorithms on the 14 datasets. LBDA-DDO, QBDA-DDO, and BASO
achieved similar performance, obtaining the best results on four datasets. On the other
hand, the BBA algorithm demonstrated its advantage in feature selection by obtaining the
best results on two datasets. The comparable performance of LBDA-DDO, QBDA-DDO,
and BASO indicates their effectiveness in selecting a reasonable number of features on
different datasets.

Overall, the results in Table 13 emphasize the importance of algorithm selection in the
feature selection task. This comparison provides us with the advantages and disadvantages
of different algorithms and helps researchers and practitioners to choose the most suitable
method according to the specific dataset and needs.

Table 14 presents a comprehensive comparison of our proposed BDA-DDO algorithm
and four comparison algorithms (BGWO, BBA, BASO, and BGSA) based on their aver-
age fitness values across 14 datasets. The results clearly demonstrate that QBDA-DDO
outperforms the other algorithms, achieving the best fitness values on all 13 datasets. Ad-
ditionally, LBDA-DDO and SBDA-DDO also show strong competitiveness by obtaining
the best results on seven and three datasets, respectively. This highlights the effectiveness
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of the proposed algorithm compared to the four representative feature selection methods,
demonstrating its superior performance.

Based on the analysis of the classification accuracy, number of selected features,
and fitness, the proposed BDA-DDO algorithm consistently outperforms other algorithms
across the majority of datasets. Among them, the QBDA-DDO algorithm demonstrates
the highest performance, followed by LBDA-DDO and SBDA-DDO. The results highlight
the effectiveness of our proposed method in selecting a smaller subset of features while
achieving superior classification accuracy. Moreover, the proposed algorithm exhibits
faster convergence speed and higher solution quality compared to three improved BDA
algorithms. Furthermore, it proves to be highly competitive when compared to other
feature selection algorithms.

5. Conclusions and Future Work

The purpose of this paper is to enhance the performance of the BDA algorithm through
a hybrid approach. This goal has been successfully achieved by introducing three improve-
ment mechanisms. Firstly, a novel differential operator, called the directed differential
operator, is designed. Combining BDA with the directed differential operator provides a
correct direction for the search process, resulting in faster convergence. Secondly, an adap-
tive update method is devised to enhance population diversity by updating the directed
differential vector. Lastly, an adaptive step-updating mechanism is proposed to enhance
the algorithm’s exploration capability by adjusting the dragonfly step.

The proposed algorithm is evaluated on 14 mainstream datasets from the UCI library
and compared with seven representative feature selection algorithms. The experimental
results show that the proposed BDA-DDO algorithm outperforms LBDA on 10 datasets in
terms of classification accuracy, while achieving the same accuracy on 4 datasets. Addition-
ally, BDA-DDO selects smaller feature subsets than LBDA on all 14 datasets. Compared
to QBDA, BDA-DDO achieves higher classification accuracy on 10 datasets and the same
accuracy on some low-dimensional datasets (reaching 1). Moreover, BDA-DDO selects
smaller feature subsets than QBDA on all 14 datasets. When compared with SBDA, BDA-
DDO achieves higher classification accuracy on nine datasets and selects fewer features
on 13 datasets. In conclusion, BDA-DDO demonstrates its superiority over the three BDA
algorithms (LBDA, QBDA, and SBDA) by consistently achieving higher classification accu-
racy while selecting smaller feature subsets on most datasets. Moreover, when compared
to four other typical feature selection algorithms (BGWO, BBA, BASO, and BGSA), it also
achieves higher classification accuracy.

Although the proposed improvement mechanisms have successfully enhanced the per-
formance of the BDA algorithm, there are still some limitations. Specifically, the algorithm’s
performance may be constrained when dealing with complex optimization scenarios, such
as high-dimensional or large-scale datasets. Additionally, the feature selection problem is
a multimodal problem, where the same number of features may correspond to different
feature subsets. Currently, the algorithm may not be able to find all possible feature subsets.
Moreover, the algorithm has not been tested in real-world applications, such as remote
sensing tasks. Therefore, further research and experimentation is needed to address these
issues and ensure the algorithm’s applicability and effectiveness in practical scenarios.

In future research, our main focus will be to explore the practical applications of
the proposed algorithm, particularly in the field of remote sensing [51]. Remote sensing
datasets often exhibit high dimensionality and large scale, with a substantial number of
features, samples, and classes, and may contain feature correlations or redundancies. These
characteristics make the feature selection problem in remote sensing datasets more complex
and challenging, requiring consideration of feature interactions and impacts, as well as the
efficiency and stability of feature selection algorithms.
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