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Abstract: Understanding the characteristics of the raindrop size distribution (DSD) is crucial to
improve our knowledge of the microphysical processes of precipitation and to improve the accuracy
of radar quantitative precipitation estimation (QPE). In this study, the spatial variability of DSD
in different regions of Beijing and its influence on radar QPE are analyzed using 11 disdrometers.
The DSD data are categorized into three regions: Urban, suburban, and mountainous according to
their locations. The DSD exhibits evidently different characteristics in the urban, suburban, and
mountain regions of Beijing. The average raindrop diameter is smaller in the urban region compared
to the suburban region. The average rain rate and raindrop number concentration are lower in the
mountainous region compared to both urban and suburban regions. The difference in DSD between
urban and suburban regions is due to the difference in DSD for the same precipitation types, while the
difference in DSD between mountain and plains (i.e., urban and suburban regions) is the combined
effect of the convection/stratiform ratio and the difference of DSD for the same precipitation types.
Three DSD-based polarimetric radar QPE estimators were retrieved and estimated. Among these
three QPE estimators, R(ZH), R(Kdp), and R(Kdp, ZDR), R(Kdp, ZDR) performs best, followed by
R(Kdp), and R(ZH) performs worst. R(Kdp) is more sensitive to the representative parameters, while
R(ZH) and R(Kdp, ZDR) are more sensitive to observational error and systematic bias (i.e., calibration).

Keywords: raindrop size distribution (DSD); polarimetric radar; quantitative precipitation
estimation (QPE)

1. Introduction

Raindrop size distribution (DSD) represents the combined effect of dynamic, thermo-
dynamic, and microphysical processes in precipitation systems. Therefore, analyzing DSD
is crucial for the development or validation of microphysical parameterization schemes in
numerical weather prediction models [1–3], as well as for understanding the microphysical
characteristics in precipitation systems [4–7], which is of great help in improving weather
forecasts. DSD modeling and retrieval are also useful for improving the radar quantitative
precipitation estimation (QPE) [8–10], which is critical for meteorological and hydrolog-
ical applications. In addition, DSD is closely related to the kinetic energy of rain, which
is critical in understanding the erosive and runoff processes of soil and the subsequent
hydrological hazards [11,12].

DSD is affected by various factors, including environmental conditions (temperature,
pressure, humidity, wind, aerosol, etc.), evaporation, drop sorting, clustering and breakup,
and so on [5,13–15]. As a result, DSD exhibits significant variation across different climatic
regimes, seasons, and precipitation types. Numerous studies have extensively investigated
the characteristics of DSD worldwide, utilizing both in situ and remote sensing instruments
such as radars. Bringi et al. [16] (hereinafter BR03) analyzed the DSD of convection and
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stratiform in different climate regimes and showed that the DSD of convection can be
classified as “maritime” and “continental”. Tang et al. [17] showed significant differences
in DSD between the northern and southern regions of China. Other studies revealed the
characteristics of DSD in different regions of China [6,18,19]. It is also found that the
convection exhibits a larger mass-weighted mean diameter (Dm) and normalized intercept
parameter (Nw) as compared to the stratiform [4,7,20,21]. Zeng et al. [22–24] found that
both the number concentration and the drop size are larger at the top of Mt. Tianshan than
at its foot.

Beijing, the capital of China with a population of over 21 million, has experienced rapid
infrastructure development in recent decades. Extreme precipitation events and subsequent
floods have caused great losses to the city every year. The impact of urbanization on
precipitation has been widely recognized, and several possible mechanisms have been
identified. These include the destabilization and perturbation of the boundary layer due
to the urban heat island effect [25–27], enhanced convergence due to the large roughness
in urban areas [28–30], and increased cloud condensation nuclei due to the high aerosol
concentration in urban areas [31–33]. The climatological and statistical characteristics of
precipitation and the mechanism of extreme precipitation systems in Beijing have been
studied using rain gauges, radars, and models [34–39]. However, only a few studies have
focused on the DSD characteristics in Beijing due to the lack of DSD measurements. Tang
et al. [17] compared the difference in DSD characteristics between Beijing and southern
China. Ji et al. [40] analyzed the DSD in Beijing based on 14-month DSD observations from
one disdrometer. Ma et al. [41] studied the statistical characteristics of DSD during the rainy
seasons in Beijing urban areas. These above works were only based on the observation of
a single disdrometer and cannot represent the spatial variation of DSD characteristics in
the whole Beijing region. As pointed out by Jaffrain et al. [42], DSD could vary even on
the kilometer scale. Is there any DSD variability in different areas (urban, suburban, and
mountains) of Beijing? What is the cause of the variability? These questions have not been
well answered yet.

In recent years, quite a few second-generation OTT Parsivel (hereafter Parsivel2) laser-
optical disdrometers have been deployed in different areas of Beijing, providing a good
opportunity to investigate the spatial variability of DSD. In this paper, we aim to reveal
the DSD variability in Beijing as well as its impact on radar QPE, which would enhance
our understanding of the microphysical characteristics of precipitation and improve the
accuracy of radar QPE. This paper is organized as follows: Section 2 describes the data used,
as well as the method for quality control, precipitation type classification, and analysis. The
spatial characteristics of DSD in Beijing and its implication for polarimetric radar QPE are
analyzed in Section 3. Sections 4 and 5 provide the discussion and conclusion, respectively.

2. Data and Methodology
2.1. Dataset

In this study, DSDs were collected using 11 Parsivel2 disdrometers. The locations of
these disdrometers are shown in Figure 1. In brief, Parsivel2 is a laser-optical disdrometer
that can simultaneously measure the size and falling velocity of particles. The sampling
area of the Parsivel2 is 54 cm2 (18 cm in length and 3 cm in width). The measured size and
falling velocity are divided into 32 bins. These bins are non-uniform, ranging from 0.062
to 24.5 mm for size and 0.05 to 20.8 m s−1 for falling velocity. Tokay et al. [43] evaluated
the performance of Parsivel2. Compared to its predecessor Parsivel, Parsivel2 performs
much better in measuring particle size, as Parsivel tends to underestimate the size of small
particles and overestimate the size of large particles.
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tion. The DSD data were collected from May to September 2017. Rainfall during these 
months accounts for 90% of the annual rainfall in Beijing. 
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as noise and discarded. Drops exceeding ± 50% of their theoretical terminal falling velocity 
are also discarded from the DSD spectrum because such an observation may be due to 
splashing or wind effects. The theoretical terminal falling speed used here is based on the 
result of Brandes et al. [47]. The drop sizes that exceed 8 mm are also eliminated [17,41] 
because the largest raindrop recorded in nature are around 8 mm [48], and drops larger 
than 8 mm are unlikely to be raindrops. 

A total number of 124,647 1-min DSD observations from 11 disdrometers passed the 
quality control and were used for analysis. 

2.3. Separation of Precipitation Types Based on DSD Data 
Previous studies have demonstrated that the characteristic DSD parameters are re-
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DSD of this minute is classified as convection. Otherwise, it is stratiform. Δt is set to 5 min. 

Figure 1. (a) Location of Beijing in China and (b) topography of Beijing and locations of the disdrom-
eters used in this study. The thin black lines in (b) denote the 6th Ring Road of Beijing.

All the disdrometers were configured to measure DSD with a 1 min temporal reso-
lution. The DSD data were collected from May to September 2017. Rainfall during these
months accounts for 90% of the annual rainfall in Beijing.

2.2. Quality Control of DSD Dataset

Various sources affect the observational quality of the disdrometer, such as splashing
of raindrops, wind effect, and margin fallers [5,13,43–46]. Therefore, quality control must
be applied before using the data for analysis. The quality control procedure used here is
similar to that proposed by Tokay et al. [46]. For the dataset of 1 min each, if the total drop
number is less than 10, or the rain rate is less than 0.1 mm h−1, this 1-min DSD is considered
as noise and discarded. Drops exceeding ± 50% of their theoretical terminal falling velocity
are also discarded from the DSD spectrum because such an observation may be due to
splashing or wind effects. The theoretical terminal falling speed used here is based on the
result of Brandes et al. [47]. The drop sizes that exceed 8 mm are also eliminated [17,41]
because the largest raindrop recorded in nature are around 8 mm [48], and drops larger
than 8 mm are unlikely to be raindrops.

A total number of 124,647 1-min DSD observations from 11 disdrometers passed the
quality control and were used for analysis.

2.3. Separation of Precipitation Types Based on DSD Data

Previous studies have demonstrated that the characteristic DSD parameters are re-
lated to precipitation types. Therefore, it is necessary to separate different precipitation
types when analyzing DSD characteristics. Numerous methods have been proposed to
separate the precipitation type into convection and stratiform based on disdrometer ob-
servation [16,20,49,50]. The criteria of these methods are different, but the principles are
similar: Convection usually exhibits heavier rainfall that may vary from time to time, while
stratiform generally has a weaker but steadier rainfall. Therefore, when the rain rate and
its variation are large, the precipitation can be classified as convection. Otherwise, it can be
classified as stratiform. In this study, the precipitation separation method is similar to that
of BR03. To be clear, for a 1-min DSD observation at time t, if its rain rate is greater than
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5 mm h−1 and the standard deviation from t− ∆t to t+ ∆t is larger than 1.5 mm h−1, the
DSD of this minute is classified as convection. Otherwise, it is stratiform. ∆t is set to 5 min.

2.4. Raindrop Size Distribution

The direct measurement of the disdrometer provides the number of drops in each
bin (i.e., i size bins and j falling velocity bins). The mid-value of each bin is taken as
the representative size of the bin. The following parameters are calculated to represent
the characteristics of DSD, including the total number concentration Nt, mass-weighted
diameter Dm, normalized intercept parameter Nw, and rain rate R:

Nt =
∫ Dmax

D0

N(D)dD (1)

Dm =
∫ Dmax

D0

D4N(D)dD/
∫ Dmax

D0

D3N(D)dD (2)

Nw =
44

6
(
∫ Dmax

D0

D3N(D)dD)/D4
m (3)

R =
π

6

∫ Dmax

D0

D3V(D)N(D)dD (4)

where N(D) is the normalized number of drops in each size bin:

N(D) =
32

∑
j=1

nj

A∆tVj∆D
(5)

where ∆t, Vj, and ∆D are the measuring time, the falling velocity at a given size bin, and
the size bin width, respectively. A is the effective sampling area [46]:

A = L(W − Di/2) (6)

where L and W are the length and width of the sampling area, respectively.

2.5. DSD-Based Polarimetric Radar QPE Estimators

To simulate the radar QPE of operational X-band polarimetric radars in Beijing, po-
larimetric radar variables are calculated from DSD data using the T-matrix method [51],
including horizontal (vertical) reflectivity ZH(V) (mm6m−3), differential reflectivity ZDR,
and specific differential phase Kdp (okm−1):

ZH,V =
4λ4

π4|Kw|2
32

∑
i=1

∣∣ fhh,vv(180, Di)
∣∣2N(Di)∆Di (7)

ZDR = ZH/ZV (8)

Kdp =
180
π

32

∑
i=1

Re| fhh(0, Di)− fvv(0, Di)|N(Di)∆Di (9)

where fhh,vv(180, Di) is the back scattering amplitude of horizontal and vertical polarization
for a drop; fhh(0, Di) and fvv(0, Di) are the forward scattering amplitudes of horizontal and
vertical polarization, respectively; Kw is the dielectric factor of water (0.9639) and λ is radar
wavelength (32 mm in this study).
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Three widely used radar estimators are applied for radar QPE:

R(ZH) = aZb
H (10)

R(Kdp) = aKb
dp (11)

R(Kdp, ZDR) = aKb
dpZc

DR (12)

where a, b, and c are parameters.
To quantitatively evaluate the performance of different QPE estimators, 3 statistical

scores are used, including the correlation coefficient (CC), root mean square error (RMSE),
and relative mean bias (RMB):

CC =

n
∑

i=1
(R(es)i − R(es))(R(d)i − R(d))√

n
∑

i=1
(R(es)i − R(es))

2 n
∑

i=1
(R(d)i − R(d))

2
(13)

RMSE = [
1
n

n

∑
i=1

(R(es)i − R(d)i)
2]

1/2

(14)

RMB =
n

∑
i=1

(R(es)i − R(d)i)/
n

∑
i=1

(R(d)i) (15)

where R(es)i is the rain rate using one of the radar estimators (i.e., Equations (10)–(12)) with
radar variables simulated using DSD data with the T-matrix method (i.e., Equations (7)–(9)),
and R(d)i is the rain rate calculated directly from the DSD data using Equation (4).

3. Results
3.1. DSD Variability in Different Areas of Beijing

The areas within the 6th Ring Road have dense infrastructure, heavy traffic, and
frequent human activities. Over 90% of Beijing’s population lives and works in the areas
inside the 6th Ring Road, while outside the 6th Ring Road, there are mostly farms, forests,
and wastelands. The topography of Beijing is characterized by plains in the center and
southeast and mountains in the west and north (Figure 1). Accordingly, the 11 disdrometers
used in this study were categorized into three groups based on their location: Urban
stations (stations located within the 6th Ring Road, i.e., stations 399, 511, 513, and 594);
suburban stations (stations located outside the 6th Ring Road with an elevation of less than
200 m above sea level, i.e., stations 398, 419, 424, and 431), and mountain stations (stations
above 200 m above sea level, i.e., stations 406, 412, and 421).

The average DSD characteristics derived with all these 11 disdrometers are shown
in Figure 2. Figure 2a shows the density scatter plot of Dm versus R, superimposed with
the power–law relationship obtained using the least-square fit method. Dm increases
with the increase in R (positive exponent in power–law relationship). As shown in the
figure, Dm increases rapidly when R is less than 50 mm h−1. This is because both the
raindrop size and number concentration effectively increase within this rain rate range [52].
The increase in Dm becomes much slower (around 2.2~2.5 mm) when R is greater than
50 mm h−1. Apparently, the increase in the rain rate mainly relies on the increase in raindrop
concentration rather than raindrop size. This fact implies that the accurate estimation of
particle number concentration in numerical models is crucial for better forecasting of
extreme precipitation events. In addition, the spread of Dm becomes narrower with the
increase in R. Such a fact suggests that when the rain rate is small, the breakup and
coalescence processes of raindrops may be unbalanced, resulting in a wide spread of
Dm. At a high rain rate, the breakup and coalescence are likely to reach a more balanced
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state. This result also explains why retrieving the rain rate using Equation (10) (traditional
approach of QPE for single-polarimetric radar) is not accurate for small rain rate cases.
Since parameters a and b in Equation (10) depend on DSD and there is a wide spread of
DSD parameters with a small rain rate, if a fixed combination of a and b is used for QPE (the
common approach for operational QPE), large errors will appear. Figure 2b is the scatter
plot of Dm versus Nw for convection and stratiform in Beijing, superimposed with BR03′s
results. There is a clear boundary between convection and stratiform with some overlap
of samples. For convection, only 4.23% and 13.1% of the samples lie in “maritime” and
“continent” clusters in BR03, respectively. The mean value point of Dm-Nw lies between
these two clusters, suggesting that the characteristics of convection in Beijing be different
from those places recorded in BR03. As for the stratiform, the mean value point of Dm-Nw
and 90% of samples lie on the left side of the least square fitting line of stratiform in BR03,
indicating that the stratiform in Beijing has a smaller raindrop size and concentration. It is
notable that DSD studies in other locations of China (Nanjing, eastern China; Guangzhou
and Yangjiang, southern China; Naqu, Tibet Plateau) also suggest a lower raindrop size
and concentration in the stratiform as compared to BR03 [6,7,17,18].
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Figure 2. (a) Scatter density plot for R versus Dm, superimposed with the power–law relationship
obtained using the least-square fit method and (b) scatter plot for Dm versus Nw. Red (blue) dots
represent convection (stratiform). The star and square symbols represent the mean values for
convection and stratiform, respectively. The black line is the log10(Nw)–Dm relationship for stratiform
in BR03. Two rectangles indicate the maritime and continental convective clusters in BR03.

Figure 3 shows the variations of mean number concentration versus raindrop size
in different areas of Beijing. The number concentration in mountain areas is lower than
in the plains (i.e., urban and suburban areas) from the smallest raindrop size to up to
5 mm in diameter. The differences are most pronounced at the smallest sizes and around
3 mm. The urban and suburban curves are similar, but urban areas have a higher number
concentration of raindrops less than 1 mm, and a lower number concentration of raindrops
greater than 1 mm, indicating a smaller mean raindrop size.
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Figure 3. Average raindrop spectra for different areas of Beijing.

Table 1 shows the mean values of DSD parameters in different areas of Beijing. Among
these three areas, the urban average drop size (Dm) is the smallest, and this value is
comparable with previous studies based on urban disdrometer data in Beijing [40,41]. The
average drop size in the suburban areas is the largest and between the two in the mountain
areas. In terms of the average rain rate, the mountain areas have the smallest average rain
rates, the suburban areas have the largest average rain rates, and the urban areas are in
the middle. The distribution of R is consistent with previous works on the precipitation
in Beijing based on rain gauge measurements [38,53,54], which found that the average
hourly precipitation intensity in the mountains is smaller than that in the plains, but the
total precipitation hours are larger in the mountains, mainly because light rain occurs more
frequently in the mountains of Beijing. This phenomenon might be related to the specific
geographical location of Beijing. The southeast flow coming from the sea is the main
moisture source for precipitation systems in Beijing. The mountain areas are located in the
northwest part of Beijing, which means that the mountain areas of Beijing generally receive
less moisture than the plain areas of Beijing. However, although the mountain areas receive
less moisture, light precipitation can easily occur when the southeast flow is elevated by
the mountains. In terms of the number concentration (Nt), the mountain areas have the
smallest average number concentration, the urban areas have the largest average number
concentration, and the suburban areas are in the middle. In the mountain areas of Beijing,
the smallest average number concentration may also be related to the frequent occurrence
of light rain, as light rain is usually associated with fewer drop numbers. The comparison of
these parameters in urban and suburban areas reveals that the urban environment modifies
the precipitation microphysics, such that the drop size is suppressed while a greater number
of drops are produced. This phenomenon may be related to the high aerosol emission in
urban areas of Beijing due to human activities such as traffic. A high aerosol concentration
tends to reduce the average drop size and increase the number concentration by providing
more cloud condensation nuclei (CCN) [15,31,55,56].

Table 1. Mean values of DSD parameters in different areas of Beijing.

Location Samples Dm(mm) R (mm h−1) Nt (m−3)

Urban 47325 1.17 2.69 328.6
Suburb 44429 1.26 2.83 306.2

Mountain 32893 1.20 2.15 233.1
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Figure 4 shows the probability distribution functions (PDF) of Dm, R, and Nt in
different areas. Dm in these areas all peak around 0.9 mm, with suburban areas having the
highest frequency around the peak and urban areas having the lowest (Figure 3a). The
distribution of Nt in the mountain areas is sharper and more symmetrical compared to those
in the plains (i.e., urban and suburban areas). Both the urban and suburban areas have a
broader distribution around the peak, and the frequency decreases faster toward the higher
Nt end than toward the lower Nt end. In addition, urban areas have a higher distribution
for Nt larger than 103 and a lower distribution for Nt from 102 to 102.5. As for the PDF for R,
R less than 100.5 mm h−1 is mainly responsible for the differences in different areas. There
is a sharper and higher peak in mountain areas at the lower end of R, indicating that light
rain occurs more frequently in mountain areas than in plains. There is a higher frequency
of rain rate from 100 to 100.5 and larger than 101.0 mm h−1 in plains than in mountain areas,
while the rain rate from 100.5–101.0 is quite close together. This result suggests that the
mountains in Beijing may play a role in modifying precipitation microphysics mainly for
precipitation with a rain rate less than 100.5 or larger than 101.0 mm h−1. Light rain occurs
more frequently in mountain areas because mountain areas receive less moisture than the
plains in Beijing as the southeast wet flow travels further to reach the mountain areas in the
western part of Beijing [38,53,54]. As for the differences between urban and suburban areas,
suburban areas have a high frequency of rain rate of less than 100.3 mm h−1 and more than
101.3 mm h−1, with a lower frequency in the middle.
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Numerous studies have shown that Dm, R, and Nt are larger in convection than in
stratiform [16,17,20], and other studies suggested that the terrain or urban environments
can modify the microphysics processes in precipitation systems and change the DSD char-
acteristics [24,57]. Consequently, there might be three causes responsible for the variation
in DSD characteristics in different regions of Beijing: (1) The ratio of convection/stratiform
might be different in different regions and the higher frequency of convection might lead
to larger Dm, R, and Nt; (2) for the same precipitation type, DSD characteristics in different
regions might be different due to the terrain or urban effect; or (3) the combination of (1)
and (2).

Accordingly, DSD observations were classified into convection and stratiform for
further analysis. The DSD parameters, number of samples, and percentage of convection
and stratiform in different areas of Beijing are shown in Table 2. First, the difference
between urban and suburban areas was analyzed. Although the average Dm is larger
in suburban areas than that in urban areas, it is surprising to see that the percentage
of convection in suburban areas is almost identical to that in urban areas (8.58% versus
8.60%). Consequently, the differences in Dm between urban and suburban areas are not
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likely due to differences in convection/stratiform ratios but rather are more likely due to
differences in DSD characteristics for the same precipitation type. For both convection and
stratiform, Dm is smaller in urban areas than in suburban areas, perhaps due to the high
aerosol concentration in urban areas of Beijing. High aerosol concentration usually causes
smaller raindrop sizes by providing high CCN [15]. A study on the spatial distribution
of PM2.5 (particulate matter with aerodynamic diameters of less than 2.5 µm) in Beijing
shows that the PM2.5 concentration is much higher in urban areas than in suburbs during
rainy seasons [58]. On the other hand, smaller raindrops tend to evaporate more quickly
after falling out of the cloud, which may further lead to smaller raindrops in urban areas.
Urban areas have smaller R and Nt for convection than suburban areas, but larger ones for
stratiform. The result suggests urbanization affects convection and stratiform differently,
whereby the urban environment tends to reduce the intensity of rain and the number
concentration of raindrops in convection while positively influencing them in stratiform.
It appears that the differences in DSD between urban areas and suburban areas are not
due to differences in convection/stratiform ratios, but rather due to differences in DSD
characteristics for the same precipitation types.

Table 2. Mean values of DSD parameters, number of samples, and percentage of convection and
stratiform in different areas of Beijing.

Location Precipitation Type Samples Percentage (%) Dm(mm) R (mm h−1) Nt (m−3)

Urban
convection 4070 8.60 1.85 18.25 863.4
stratiform 43,255 91.40 0.97 1.22 278.3

Suburb
convection 3810 8.58 1.92 20.29 949.8
stratiform 40,619 91.42 1.02 1.20 245.7

Mountain
convection 2149 6.53 1.85 16.93 681.3
stratiform 30,744 93.47 1.05 1.11 201.7

The convection/stratiform ratio in mountain areas is lower than that in the plains,
and only 6.53% of the total precipitation is convection. For convection, Dm in mountain
areas is almost the same as that in urban areas and smaller than that in suburban areas.
However, for stratiform, Dm in mountain areas is larger than that in the plains. R and
Nt for both convection and stratiform are smaller in mountain areas than in the plains.
Therefore, smaller R and Nt values in mountain areas are the combined result of a smaller
convection/stratiform ratio and smaller R and Nt values for the same precipitation types.
Such a result may be related to the moisture conditions in Beijing. Beijing typically receives
its moisture from the east (from the ocean), which travels hundreds of kilometers before
reaching Beijing (the nearest ocean is 160 km away). The mountain areas on the west side of
Beijing receive less moisture than the plain areas on the east, thereby reducing convection
frequency, rain intensity, and number concentration.

3.2. Implication for QPE of Polarimetric Radar

Several X-band polarimetric radars (λ = 3.2 cm) have been deployed in Beijing in
recent years, aiming at providing better QPE products to meet the needs of meteorological
and hydrological applications. These radars all operate in VCP 21 mode, which completes
a volume scan in 3 min with radial and azimuth resolutions of 75 m and 0.95◦, respectively.
To study the X-band radar QPE using DSD data, the polarimetric radar variables of ZH,
ZDR, and Kdp were calculated from 1 min DSD observations. The parameters of a, b, and
c in Equations (10)–(12) were then derived using the nonlinear least square fitting. The
fitted parameters using DSD data collected in all locations, namely, urban, suburban, and
mountain areas, are listed in Table 3. As Table 3 shows, these parameters vary in different
regions of Beijing due to the DSD variability.
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Table 3. The fitted parameters for QPE estimators.

Estimator Location a b c

R(ZH)

Entire 0.1232 0.4758 \
Urban 0.1243 0.4756 \
Suburb 0.107 0.4927 \

Mountain 0.1203 0.4646 \

R(Kdp)

Entire 15.83 0.7727 \
Urban 15.87 0.7721 \
Suburb 15.97 0.8078 \

Mountain 14.99 0.7277 \

R(Kdp, ZDR)

Entire 30.31 0.9676 −1.409
Urban 29.17 0.9554 −1.309
Suburb 29.78 0.9856 −1.38

Mountain 30.04 0.9324 −1.431

Figure 5 illustrates the scatter density plots of R estimated from four estimators
(Table 3) versus R calculated directly from the 1 min DSD data. The statistical values of CC,
RMSE and RMB are also shown. As shown in Figure 5, the estimator R(ZH) performs the
worst (Figure 5a) with the smallest CC and largest RMSE and RMB. The uncertainty of QPE
increases greatly with the intensity of R. The difference between R(es)i and R(d)i can be up
to approximately 4 times (e.g., 30 mm h−1 of R(es)i versus 120 mm h−1 of R(d)i). When
polarimetric variables of ZDR and Kdp are introduced, the accuracy of QPE is much better
(Figure 5b–c). Among these three estimators, R(Kdp, ZDR) performs the best, providing the
most accurate estimation for light rain to heavy rain.
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Figure 5. Scatter density plots of R from all 11 disdrometer observations and R estimated using
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line (i.e., y = x). Statistical scores of CC, RMSE, and RMB are superimposed.

The results shown in Figure 5 can be regarded as the theoretical upper limit of the
performances of the estimators. When performing QPE estimators into operational radar,
three aspects below affect the accuracy of the QPE result: Random observational errors of
the radar variables, the systematic bias of the radar variables due to miscalibration, and the
variability of the parameters of the QPE estimators due to DSD variability. It is well-known
that the DSD variability in different climate regions significantly affects QPE accuracy.
However, for city scales such as Beijing, it is unclear how much the DSD variability affects
the QPE accuracy compared to radar variables measurement errors and bias. What is
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the dominant source of error for QPE? To find the answer, a series of experiments were
performed using these DSD data.

The actual distribution of radar observational errors can be very complicated. How-
ever, for ideal experiments using DSD data, let us assume that the errors conform to the
most general type of error distribution, the normal distribution N(µ, σ2), where µ and σ are
the mean value and standard deviation. Approximately 68% and 95% of the total samples
lie between µ− σ to µ + σ and µ− 2σ to µ + 2σ, respectively. Assuming that the radar
observational variables follow the normal distribution, then the observational variables
can be perturbed by multiplying N(µ, σ2) to simulate measurement errors and systematic
bias. For example, Z′h = Zh•N(1, 0.152) means measurement errors exist in Zh, while
approximately 95% of the measured Zh are between 0.7 and 1.3 times the theoretical Zh;
Z′h = Zh•N(1.05, 0.152) means both measurement errors and systematic bias exist in Zh,
the mean observational Zh is stronger for 5% than the theoretical Zh, and approximately
95% of the measured Zh are between 0.75 to 1.35 time of the theoretical Zh.

Table 4 shows the experiment design of R(ZH). All the DSD data collected by these
11 disdrometers are used in these experiments. In the control experiment, the rain rate is
estimated using parameters obtained for the whole region of Beijing; it is the theoretical
upper limit capability of applying R(ZH) to perform QPE. In the DSD variability experiment,
the rain rate is estimated using parameters obtained for the mountain region of Beijing.
The purpose of this experiment is to find out how much the DSD variability can affect the
accuracy of QPE when the parameters for specific regions (e.g., mountains) are used to
estimate the rain rate for the whole region of Beijing. In the measurement error experiment,
the Zh is perturbed by multiplying N(1, 0.052). This experiment aims to find out if there
are measurement errors of Zh between operational radar and disdrometer and how much
the error can affect the accuracy of QPE. Furthermore, the systematic bias experiment
is designed to find out how much the error and systematic bias (i.e., calibration issues)
can affect the accuracy of QPE, and which of these above issues affect the accuracy of
QPE the most.

Table 4. Experiment design of R(ZH) estimator.

Name Description

Control experiment
Perform R(ZH) to estimate rain rate using all the DSD
data with parameters for the whole region of Beijing

(i.e., a = 0.1232 and b = 0.4758)

DSD variability experiment
Perform R(ZH) to estimate rain rate using all the DSD

data with parameters for the mountain region of
Beijing (i.e., a = 0.1202 and b = 0.4646)

Measurement error experiment Perturb Zh by multiplying N(1, 0.052)
Systematic bias experiment Perturb Zh by multiplying N(1.05, 0.052)

Figure 6 shows the results of the R(ZH) experiment. If inappropriate parameter values
(DSD variability experiment, Figure 6b) are used in QPE, such as using the parameters
obtained in the mountain area to estimate the rain rate for the entire region of Beijing, it
will lead to systematic bias in QPE. In this case, the rain rate is underestimated, as can
be seen in Figure 6b, where more dots appear in the lower right part. The RMSE does
not change much, with the RMSE increasing from 3.75 mm h−1 to 3.88 mm h−1, and an
even higher CC. The measurement errors affect the accuracy of QPE more significantly, as
shown in Figure 6c; even if 95% of the observational Zh are within 10% measurement errors,
the QPE accuracy drops significantly, especially for heavy precipitation. With a rain rate
larger than 50 mm h−1, the dots become much more scattered than in Figure 6a, and RMSE
rises to 4.23 mm h−1. When both measurement errors and systematic bias of Zh coexist, as
shown in Figure 6d, the QPE accuracy decreases even more. The QPE overestimates the
rain rate by 38.82%, with more dots appearing in the upper right part and becoming more
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scattered, and the RMSE increases significantly to 5.26 mm h−1. This result suggests that
for a city-scale region such as Beijing, when R(ZH) is used for QPE, the variability of DSD
certainly affects the QPE accuracy, but the main influencing factors on QPE accuracy are
the measurement errors and calibration of reflectivity, and they affect the QPE accuracy to
a greater extent than the influence of the variability of DSD. Therefore, we should focus
more on improving the quality of the reflectivity when utilizing R(ZH) in operation.
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Figure 6. Scatter density plots of R in the whole region of Beijing from 11 disdrometer observations
and R estimated using estimator R(ZH): (a) Control experiment, (b) DSD variability experiment,
(c) measurement error experiment, and (d) systematic bias experiment as described in Table 4. The
black line in each panel is the perfect fit line (i.e., y = x). Statistical scores of CC, RMSE, and RMB
are superimposed.

Similarly, the experiment design of R(Kdp) is shown in Table 5. Since Kdp is immune to
calibration, the systematic bias experiment was discarded, and an additional measurement
error experiment was added. The results are shown in Figure 7. Some previous works
have suggested that the R(Kdp) estimator is relatively insensitive to the variability of DSD
compared to R(ZH) [47,59,60], but by comparing Figure 7a,b, it is clear that the variability
of DSD does affect the accuracy of QPE using R(Kdp), at least for heavy precipitation.
In this case, using parameters for the mountain region to estimate the rain rate for the
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entire region of Beijing results in the underestimation of heavy precipitation, as shown
in Figure 7b. More dots with a rain rate larger than 50 mm h−1 appear in the lower right
flank of the perfect line. The measurement errors, on the other hand, do not significantly
affect the accuracy of QPE. Perturbing Kdp by multiplying N(1, 0.052) does not degrade
the performance much (Figure 7c), with CC, RMSE, and RMB quite close to the control
experiment. Even when perturbing Kdp by multiplying N(1, 0.152), which means assuming
large measurement errors for Kdp (approximately 32% of the Kdp observation errors are
larger than 15%), the QPE accuracy does not deteriorate significantly (Figure 7d), and it is
comparable to the result of Figure 7b. This series of experiments on R(Kdp) suggest that the
variability of DSD even at the city scale could lead to systematic bias in QPE, especially for
heavy precipitation. The variability of DSD may affect the accuracy of QPE even more than
Kdp measurement errors. Therefore, when utilizing R(Kdp) to perform QPE in operational
usage, special attention should be paid to obtaining appropriate parameters.

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 7. Scatter density plots of R in the whole region of Beijing from 11 disdrometer observations 
and R estimated using estimator R(Kdp): (a) Control experiment, (b) DSD variability experiment, (c) 
measurement error experiment 1, and (d) measurement error experiment 2 as described in Table 5. 
The black line in each panel is the perfect fit line (i.e., y = x). Statistical scores of CC, RMSE, and RMB 
are superimposed. 

Experiments on R(Kdp, ZDR) are also performed using the design outlined in Table 6, 
and the results are shown in Figure 8. Similar to the R(Kdp) experiment, although R(Kdp, 
ZDR) is relatively insensitive to the variability of DSD, the variability of DSD does affect 
the accuracy of R(Kdp, ZDR), at least for heavy precipitation above 50 mm h−1. As shown in 
Figure 8b, R(Kdp, ZDR) underestimates heavy precipitation above 50 mm h−1 when inappro-
priate parameters are used. When ZDR is assumed to have observational errors (Figure 8c), 
the accuracy of QPE drops significantly, especially for heavy precipitation above 50 mm 
h−1, resulting in more scattered dots. When both observational errors and systematic bias 
coexist (Figure 8d), the accuracy of QPE becomes worse. In this case, the QPE systemati-
cally overestimates the rain rate, with more dots appearing in the upper left flank of the 
perfect line, and the dots become more scattered. These results suggest that the accuracy 
of R(Kdp, ZDR) may be more sensitive to observational errors and systematic bias rather 

Figure 7. Scatter density plots of R in the whole region of Beijing from 11 disdrometer observations
and R estimated using estimator R(Kdp): (a) Control experiment, (b) DSD variability experiment,
(c) measurement error experiment 1, and (d) measurement error experiment 2 as described in Table 5.
The black line in each panel is the perfect fit line (i.e., y = x). Statistical scores of CC, RMSE, and RMB
are superimposed.
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Table 5. Experiment design of R(Kdp) estimator.

Name Description

Control experiment
Perform R(Kdp) to estimate rain rate using all the DSD
data with parameters for the whole region of Beijing

(i.e., a = 15.83 and b = 0.7727)

DSD variability experiment
Perform R(Kdp) to estimate rain rate using all the DSD

data with parameters for the mountain region of
Beijing (i.e., a = 14.99 and b = 0.7727)

Measurement error experiment 1 Perturb Kdp by multiplying N(1, 0.052)

Measurement error experiment 2 Perturb Kdp by multiplying N(1, 0.152)

Experiments on R(Kdp, ZDR) are also performed using the design outlined in Table 6,
and the results are shown in Figure 8. Similar to the R(Kdp) experiment, although R(Kdp,
ZDR) is relatively insensitive to the variability of DSD, the variability of DSD does affect
the accuracy of R(Kdp, ZDR), at least for heavy precipitation above 50 mm h−1. As shown
in Figure 8b, R(Kdp, ZDR) underestimates heavy precipitation above 50 mm h−1 when
inappropriate parameters are used. When ZDR is assumed to have observational errors
(Figure 8c), the accuracy of QPE drops significantly, especially for heavy precipitation
above 50 mm h−1, resulting in more scattered dots. When both observational errors and
systematic bias coexist (Figure 8d), the accuracy of QPE becomes worse. In this case, the
QPE systematically overestimates the rain rate, with more dots appearing in the upper left
flank of the perfect line, and the dots become more scattered. These results suggest that
the accuracy of R(Kdp, ZDR) may be more sensitive to observational errors and systematic
bias rather than the representative parameters. It could be due to the negative parameter
c, which puts ZDR in the denominator. Given that ZDR is small in rain (generally less
than 3 dB), a small fluctuation or deviation of ZDR may lead to significant errors in QPE.
Therefore, accurate ZDR observation is crucial to the QPE accuracy for R(Kdp, ZDR) estimator.
Therefore, accurate and well-calibrated ZDR observations are crucial to ensure the accuracy
of QPE using the R(Kdp, ZDR) estimator. Introducing ZDR into QPE may not necessarily
have a positive impact, but rather a negative impact on QPE accuracy if ZDR is not measured
accurately and well-calibrated.

Table 6. Experiment design of R(Kdp, ZDR) estimator.

Name Description

Control experiment
Perform R(Kdp, ZDR) to estimate rain rate using all the

DSD data with parameters for the whole region of
Beijing(i.e., a = 30.31, b = 0.9676, and c = −1.409)

DSD variability experiment
Perform R(Kdp, ZDR) estimate rain rate using all the

DSD data with parameters for the mountain region of
Beijing(i.e., a = 30.04, b = 0.9324, and c = −1.431)

Measurement error experiment Perturb ZDR by multiplying N(1, 0.102)

Systematic bias experiment Perturb ZDR multiplying N(0.95, 0.12)
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4. Discussion

In this study, disdrometer data collected from 11 sites in Beijing in 2017 are analyzed
to reveal the city-scale spatial variability of DSD, and to investigate its impact on radar
QPE. We found that the average precipitation intensity is smaller in the mountain areas of
Beijing and more light rain occurs. It should be pointed out that this phenomenon is only
specific to the mountain areas of Beijing, not worldwide. This phenomenon is possible due
to the specific location of Beijing, that is, the mountain areas are further away from the sea
and receive less moisture than the plains in Beijing. As for other places, some previous
studies suggested that the mountains tend to enhance the precipitation [24,61]. A series
of sensitivity experiments were conducted to investigate the effect of DSD variability on
radar QPE. However, it should be pointed out that these experiments are ideal experiments
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based on DSD data and no real radar data are used yet. Utilizing real radar data to perform
QPE is more complicated, and the errors of radar observation may not simply conform
to a Gaussian distribution. In addition, the disdrometer measures DSD information at
ground level while the weather radar measures microwave electromagnetic scattering of
precipitation particles in the air. These two types of instruments do not measure precipita-
tion at the same location, and the sampling volumes of these two types of instruments are
also different, with the sampling volume of weather radar being much larger. This work
provides insights into the relative importance of the factors that affect the accuracy of QPE
with sensitivity experiments, and more work needs to be performed when applying these
results to the operational usage of weather radar.

5. Conclusions

In this study, disdrometer data collected from 11 sites in Beijing in 2017 are analyzed
to reveal the variability of DSD and to investigate its impact on radar QPE. The main
conclusions are summarized as follows:

DSD exhibits evidently different characteristics in urban, suburban, and mountain
areas of Beijing. Specifically, the average raindrop diameter is smaller in the urban area
compared to the suburban area. Additionally, the average rain rate and raindrop number
concentration are lower in mountain areas compared to both urban and suburban areas.

The convection/stratiform ratio is almost the same in urban and suburban areas,
indicating that the difference in DSD between urban and suburban areas is due to the
difference in DSD within the same precipitation types. In the urban area, both convection
and stratiform exhibit smaller average raindrop diameters compared to the suburban area.
This difference may be attributed to higher aerosol concentrations in the urban area.

The lower average rain rate and raindrop number concentration in mountain areas
is the combined effect of the convection/stratiform ratio and the DSD difference for the
same precipitation types. Convection occurs less frequently in mountain areas, and the
rain rate and raindrop number concentration are also smaller both for convection and
stratiform, resulting in the smaller average rain rate and raindrop number concentration in
mountain areas.

Among the three QPE estimators of R(ZH), R(Kdp), and R(Kdp, ZDR), R(Kdp, ZDR)
performs best, followed by R(Kdp), and R(ZH) performs worst. The R(Kdp) is more sensitive
to the representative parameters while R(ZH) and R(Kdp, ZDR) are more sensitive to the
observational error and systematic bias (i.e., calibration).

Our conclusions suggest that when performing QPE at the city scale using different
QPE estimators, special attention should be paid to different aspects to improve the accu-
racy of QPE. However, these results are based on DSD data and sensitivity experiments,
and it should be noted that this conclusion needs to be further confirmed by using po-
larimetric radar data in the future. In addition, there are also other factors that influence
the operational radar QPE, such as beam blockage by terrains, the undersampling of the
disdrometer, and the variation in DSD when raindrops are falling in the air (where the
radar samples them) and on the ground (where the disdrometer samples them). Moreover,
for other regions such as Southwest China where there are many mountains, how these
mountains affect the DSD variability is worth studying. All of these issues are crucial to
obtaining accurate QPE and will be further studied in future work.
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