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Abstract: Analysis of aerial images provided by satellites enables continuous monitoring and is a
central component of many applications, including precision farming. Nonetheless, this analysis is
often impeded by the presence of clouds and cloud shadows, which obscure the underlying region of
interest and introduce incorrect values that bias analysis. In this paper, we outline a method for cloud
shadow detection, and demonstrate our method using Canadian farmland data obtained from the
Sentinel-2 satellite. Our approach builds on other object-based cloud and cloud shadow detection
methods that generate preliminary shadow candidate masks which are refined by matching clouds
to their respective shadows. We improve on these components by using ray-casting and inverse
texture mapping methods to quickly identify cloud shadows, allowing for the immediate removal
of false positives during image processing. Leveraging our ray-casting-based approach, we further
improve our results by implementing a probability analysis based on the cloud probability layer
provided by the Sentinel-2 satellite to account for missed shadow pixels. An evaluation of our method
using the average producer (82.82%) and user accuracy (75.55%) both show a marked improvement
over the performance of other object-based methods. Methodologically, our work demonstrates
how incorporating probability analysis as a post-processing step can improve the generation of
shadow masks.

Keywords: cloud shadow detection; cloud detection; remote sensing; Global Information Systems;
satellite imagery; agriculture monitoring; precision farming; ecological and environmental monitoring

1. Introduction

Geographic Information Systems (GISs) are more prevalent today than ever before.
The rapid adoption of GIS has been fueled by the increase in the number of satellites orbiting
the Earth, which are estimated to be over 4500 [1]. These satellites are important for many
purposes, such as communications, navigation, planetary observations, military, radio,
and remote sensing. In this work, we focus on remote sensing, the scanning of the Earth
by satellite or high-flying aircraft to obtain information, due to being increasingly relied
upon in various industries. Remote sensing has many applications such as monitoring
ocean temperature, forest fires, weather patterns, growth of urban areas, and vegetation
conditions [2]. Due to climate change, monitoring vegetation conditions has become
extremely important to ensure the health of forests, wetlands, grasslands, and agricultural
sites. Leveraging the data obtained by remote sensing equipment allows us to identify
trends and intervene to maximize the health of these ecosystems.

The agriculture industry is a vital aspect of economies and societies around the world.
For example, agriculture had a total gross domestic product contribution to the Canadian
economy of over 30 billion CAD in 2020 [3]. Smart agriculture employs remote sensing
technologies for optimal setting of growing environments to maximize yield (i.e., precision
farming). It is unsurprising that remote sensing satellites have become a widely used
tool for farming by “increase[ing] production, reducing costs, and providing an effective
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means of managing land resources” [4] through the means of automated analysis of ag-
gregated farmland satellite data. With this, farmers and farming companies can generate
various metrics to estimate crop yield and guide interventions to increase crop production.
However, satellite imagery are often fully or partially obscured by clouds and their respec-
tive shadows, limiting the effectiveness of such analysis. Directly using data from these
obscured regions can produce invalid results. One way to mitigate this issue is to reject
images with non-negligible cloud cover. However, if we are able to identify clouds and
their shadows within the image data, then partial data could be salvaged and incorporated
into analysis. Moreover, the identified shadow regions could be digitally corrected for
further use after identification [5,6].

Occlusion by clouds and their shadows impedes any analysis of the underlying regions
of interest, and thus, methods identifying clouds and their shadows can improve remote
sensing analysis for many other applications (e.g., dark mining locations [7]). Recently, this
has led to satellites that provide data that greatly simplify the process of cloud identification.
For instance, the Sentinel-2 satellite launched in 2015 takes images of the Earth at a high
temporal and spatial resolution (at most 5 day intervals, with a 10 m2 pixel size for most
regions). It also produces several bands that identify cloud-obscured pixels, allowing
for their straightforward removal, while bands that can similarly facilitate cloud shadow
removal have been investigated, they produce inaccurate results due to the exclusion of
cloud shadows from the shadow mask (false negatives) and the inclusion of other structures
in the images such as bodies of water or dirt (false positives). See Appendix B, Figure A2c
for several example clouds (red) missing cloud shadows (purple) in the scene classification
layer (SCL) provided by the Sentinel-2.

There exist many image-based techniques for identifying and removing cloud shadows
from satellite images [8–10]. However, object-based methods (i.e., constructing a 3D space
consisting of the Sun, satellite, clouds, and Earth) are a promising alternative [7,11–13].
Object-based methods can infer the position of cloud shadows based on the positions of the
clouds in the image. More specifically, if the position of the Sun and the height/geometry
of the cloud are known, we can trace the light rays from the Sun through the cloud to
determine where the cloud’s shadows are located. This ray-tracing process has been
extensively developed for lighting and shading in the rendering of 3D graphics [14]. The
results from this technique are impressive, and the base principle for ray casting and ray
tracing is utilized in all popular rendering tools, such as Blender and Autodesk 3ds Max,
by both amateur and professional rendering production .

Our method uses ray-casting and probabilistic techniques to improve upon the methods
introduced by Zhu and Woodcock [11] and depends on Sentinel-2 GIS imaging. Since
Sentinel-2 provides several cloud identification processes, Sen2Cor [15] and s2cloudless [16],
we leverage these to generate the cloud mask. The generation of potential cloud shadows
builds on the image-based approach described by Zhu and Woodcock [11]. We then use
a least squares approach to solve for the optimal global position of the Sun and satellite,
relative to the image, utilizing the Sentinel-2 satellite and Sun angle bands. Our approach
uses a modified version of the object-based method outlined by Zhu and Woodcock [11]
for producing a shadow mask by considering various candidate cloud heights for each
cloud. Then, using the cloud height and shape and the view/Sun positions, we can produce
a shadow mask via efficient ray-casting methods and then shape match these projected
shadows against the image-based shadow masks produced in previous steps to find the best
match. Finally, we use a novel probabilistic approach to determine the likelihood that each
candidate shadow pixel was generated from a cloud shadow and form a final cloud mask by
thresholding the probability surface.

To evaluate our method, we selected six datasets from a chosen study area consisting
of diverse features (agriculture, villages, bodies of water, barren land, etc.). For each dataset,
we manually generated ground-truth shadow masks and compared these masks to those
created by successive stages of our method. To compare, we measured the false positive,
false negative, and total pixel error percentage normalized to both the number of pixels
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and the number of shadow pixels in the image. Our analysis showed a clear improvement
in the total error percentage for shadow pixels identified in each successive step of the
algorithm. The error metrics clearly showed an improvement when adding the novel
statistical approach when compared to the ray-casting process output alone. In addition,
we used the cloud shadow metrics employed in Zhu and Woodcock’s 2012 paper, the
producer and user accuracy [11]. Our method has an average producer accuracy of 82.82%
and user accuracy of 75.55%, which is an improvement over the results reported by Zhu
and Woodcock [11] (greater than 70% and approximately 50%, respectively). Since our
algorithm uses ideas and concepts from computer graphics, an implementation of our
algorithm is able to utilize well-established parallelization methods for a computational
speedup using commonly available commercial hardware.

Related Work

Due to their importance to problems arising in remote sensing, methods for cloud
shadow identification have been extensively studied [17]. We can categorize these tech-
niques into four main types: image processing, temporal analysis, machine learning clas-
sification, and geometric relation analysis. It should be noted that many of the processes
implemented for cloud shadow detection use more than one of the types listed. Image
processing techniques utilize various electromagnetic field (EMF) wavelengths to deduce
which pixels are cloud shadows. For example, the US Naval Research Laboratory con-
ducted a study utilizing only the red, green, and blue (RGB) channels of satellites to detect
clouds and cloud shadows over ocean water [8]. Next, temporal analysis techniques are
closely linked to image processing techniques, but a set of images taken over time are
used to compare changes between successive images to determine which pixels are likely
cloud or cloud shadows. For example, Jin et al. proposed a method for identifying cloud
and cloud shadows by utilizing two-date analysis in Landsat imagery [9]. A limitation
of temporal analysis approaches is they require a sufficiently dense temporal sampling
data and, thus, if data is sparse, the quality of the result degrades. The next approach is
machine learning classification. Leveraging the power of neural networks, algorithms have
been produced to identify cloud and cloud shadow data by training a network on previous
remote sensing imagery [10]. A recent paper details a method to detect cloud and cloud
shadows over mining areas to minimize the misidentification of cloud shadows as mining
locations, or vice versa [7]. This approach utilizes a “supervised support-vector-machine
classification to identify clouds, cloud shadows, and clear pixels” in the initial identification
step [7]. Using the classification results, the last technique of geometric relation analysis,
is used to refine the identification data [7]. More specifically, the algorithm projects the
centroid of clouds to identify which cloud shadows identified previously are true or false
positives. Machine learning can result in very accurate results; however, the system must
be trained with a large dataset, requiring substantial temporal data, and is often difficult to
fine-tune due to the weak interpretability of machine learning systems [18]. In addition
to this, training requires ground-truth data, which is currently being generated manually
for our evaluation of our method and is a time-intensive task. This limitation makes it
difficult to identify potential improvements, as opposed to geometric analysis methods,
where improving the representation of clouds and the rendering of their shadows offer a
clear path for improvement.

Zhu and Woodcock propose a series of methods that utilizes image processing and
geometric relation analysis [11–13]. Their initial method identified candidate clouds and
candidate cloud shadows via image processing techniques, then employed a cloud shadow
projection technique to eliminate false positive shadows [11].

Our method is similar but distinct from their method. We use a different process to
identify clouds, as they use various visual data metrics, such as normalized difference
vegetation index, normalized difference snow index, whiteness tests, water tests, and
temperature metrics, while our method leverages various cloud data/probability bands
provided by Sentinel-2, which is not available in the Landsat satellites, bypassing the issue
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of Sentinel-2 not having temperature bands. Likewise, the geometric relation analysis of
the clouds to their shadows are different. Their algorithm “treats each cloud as a 3D object
with a base height retrieved by matching clouds and cloud shadows, and a top height
estimated by a constant lapse rate and its corresponding base height” [11] while our method
treats each cloud as a 2D object and leverages inverse texture mapping for matching cloud
and cloud shadows. This allows our algorithm to project cloud shadows in an effective
and efficient manner by only projecting the four corners of a quadrilateral containing
the cloud. Our algorithm introduces an additional innovation by adding the probability
analysis of the geometric relation analysis output to improve the shadow mask result. Their
algorithm has a cloud shadow accuracy of >70% and 50% for producer’s accuracy, related
to false negatives, and user accuracy, related to false positives, respectively, (see Section 3
for the definitions of these metrics). Various refinements in their initial method were
outlined in subsequent papers, including adding a multi-temporal solution for land cover,
a prototype algorithm for the Sentinel-2 satellite [13]. However, the prototype algorithm
for the Sentinel-2 satellite was not used directly for our algorithm, though similarities
exist since their method is also based on their original method proposed for Landsats
4–7. Both methods treat the cloud as a flat planar object and both utilize cloud probability
metrics to generate the cloud mask. Our algorithm surpasses the prototype algorithm
by implementing the novel probabilistic method to further refine the results after the
ray-casting method.

2. Materials and Methods
2.1. Study Area, Conditions, and Data Sources

The chosen area of study is farmland located in the WGS84 region (51.256758,
−113.639145) to (51.449300,−113.329468), and was chosen due to the various types of
terrain features it contains, as highlighted in Figure 1. By using this plot of land for every
test, we can directly compare the results between different cloud cover conditions and
control errors introduced by variation in the underlying terrain. Using this area of study,
six datasets were chosen during the summer of 2020, as listed in Table 1.

(a)

Figure 1. Cont.
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(b) (c) (d) (e)

Figure 1. Image (a) is the chosen study area, detailed in Section 2.1, with clear sky captured on
21 July 2018 [19]. The following insets highlight the diverse features in this Albertan region. (b) The
town of Irricana in the upper half, with farmland in the bottom half. (c) The village of Craigdhu in
the bottom right, with a large body of water in the center. (d) The village of Beiseker. (e) Some dirt or
barren land.

Table 1. The six chosen dates to be analyzed reside in the same 22.3 km by 20.7 km patch of land
located in the region (51.256758,−113.639145) to (51.449300,−113.329468), as seen in Figure 1. Each
date reports the percentage of cloud cover, whether thin stratus or “wispy clouds” are present and
whether cirrus clouds were detected by the s2cloudless process.

Date Cloud Cover % Thin Stratus or “Wispy” Clouds Cirrus Clouds

15 June 2020 6% No No
25 June 2020 1% No Yes, light haze over the image
27 June 2020 20% Yes Yes
5 July 2020 10% No No

20 July 2020 7% No No
22 July 2020 15% No No

As the application for this paper is farmland satellite image analysis during the growth
season, the months used for the study range from May to August, with a focus on June and
July, where maximum crop growth is likely to occur. As such, images with snow and ice
were not considered. However, to facilitate discussion around the effectiveness outside the
intended seasons, additional datasets were used as examples in Section 4. Furthermore,
with farmland being the focus, any bodies of water in the scene are assumed to be small
relative to the study area size. Lastly, since the application is designed to use partial images
for additional data, cases where there were negligible usable data due to almost total cloud
cover were discarded.

Since the resulting cloud shadow mask is used to obscure corrupted data, incorrectly
identifying valid pixels as clouds (false positives) are preferred to false negative cloud
shadows, as it is better to omit correct data compared to including incorrect data as this
will bias the analysis, potentially invalidating the results.

All data used for the algorithm are sourced from the Sentinel-2 satellite, located on
Sentinel Hub’s servers [19]. The bands used were the near-infrared (NIR) band, the scene
classification layer (SCL), the cloud probability layers (CLP and CLD), and the four angle
layers (two azimuth and two zenith layers) to determine the direction of the Sun and
satellite relative to the pixel. For clarity, we will be referring to the cloud probability layers
CLP and CLD as CLP1 and CLP2, respectively. More information on the bands can be
found in Sentinel Hub’s documentation [19].

2.2. Methodology

Our approach first generates a broad set of potential cloud shadows, stored in a
shadow mask, and then geometrically prunes the set of false positive shadows until only
the correct cloud shadows remain in the mask, after which we apply post-processing
methods to further refine the result. Our method can be broken down into several steps,
as detailed in Figure 2. First, we generate our cloud mask and partition it into individual
cloud objects (Section 2.2.1). Second, we generate our potential shadow candidate mask,
which identifies which pixels are likely to be clouds (Section 2.2.2). Third, we form a 3D
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scene by solving for the global positions of the satellite and Sun with respect to the images
(Section 2.2.3). Fourth, each cloud is tested to find its respective shadow, if visible, by using
ray-cast projection onto the Earth’s surface for shape matching between projected shadows
and shadows in the candidate mask (Section 2.2.4). The final step is to generate a statistical
model that improves the final generated cloud shadow mask (Section 2.2.5).

Figure 2. Overall process for our cloud shadow detection algorithm. Using Sentinel-2 data, we can
generate the potential shadow candidate mask, cloud mask, and solve for the best fit Sun and satellite
positions. Since the generation of potential shadows depends on detected clouds in the image, the
cloud mask is generated first. Before the ray-casting process, we need to partition the cloud mask
into distinct cloud objects to individually ray-cast. The ray-casting process is applied to each cloud in
the scene to prune the shadow mask of false positives, which is then processed in a statistical model
to refine the final shadow mask.

2.2.1. Cloud Detection

To utilize the geometric relation between clouds and cloud shadows, the clouds in the
scene must be first identified and partitioned into separate cloud objects. Sentinel-2 has
two processes to detect clouds. One process is the s2cloudless system [16] that generates
two bands: the cloud probability (CLP1), which is a grayscale image with larger values
indicating a higher probability of a cloud being present, and the cloud mask (CLM), which
is a binary mask indicating if the pixel in question should be considered to be obscured by
a cloud [20]. These bands have a resolution of 160 m and are far too coarse to be directly
utilized for high-precision analysis, particularly the CLM. Furthermore, the CLM generated
by the s2cloudless system [16] can have a high degree of error due to the exclusion of
small clouds or severely overestimate the size of clouds and, thus, is not used. The second
process for detecting clouds in the Sentinel-2 system utilizes the Sen2Cor processor [15].
The Sen2Cor processor [15] generates two relevant bands: the scene classification mask
(SCL), which categorizes the pixels into various categories including clouds, and the cloud
probability (CLP2), which is different from the CLP1 mask discussed before. These bands
have a resolution of 20 m, which is much better than the resolution of 160 m; however,
these bands tend to underestimate the amount of cloud in the scene, particularly for semi-
transparent clouds. As such, we developed an alternate method specifically for Sentinel-2
utilizing both processes’ outputs to generate the cloud mask.
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Our method uses the CLP1, CLP2, and SCL bands generated by Sentinel-2, which we
further process and combine to generate the cloud mask, as seen in Figure 3a. The idea is
to generate a cloud mask from the two probabilities where they agree. More specifically,
if both are above a certain threshold, then the likelihood of a cloud in the region is high,
thereby producing a higher confidence cloud mask. Since the CLP1 has a 160 m resolution,
it is first passed through a Gaussian filter. Next, the CLP2 and smoothed CLP1 are passed
through a threshold filter to produce two binary cloud masks and subsequently combined
by taking the conjunction between the results. This combined result indicates where the two
processes agree; thus, the confidence of the mask is increased. Since the SCL mask appears
to be more conservative with respect to cloud detection and, thus, more reliable when
they are indicated as clouds, the cloud pixels in the SCL mask are added to the previous
result. To finalize the cloud mask, the previous result is passed through a Gaussian filter
and threshold filter to smooth any harsh edges resulting from combining the three bands,
producing the final cloud mask.

(a) (b)

Figure 3. Process flow for generating the cloud mask (a) and the potential shadow candidate mask (b).
In the diagrams, the slanted parallelograms indicate image data, the rectangles represent processes
applied to the inputs, and the ellipses represent a logical or mathematical operation indicated by the
symbol (-) or word (OR, AND, NOT) they contain. The selected mask generation processes applied
to the SCL mask indicate which pixel values (IDs indicating a certain pixel type; see Sentinel-2’s
documentation [19] for further details) are considered to be true, while all others are considered to
be false.



Remote Sens. 2023, 15, 3955 8 of 31

Since the clouds captured in the scene are likely to be at varying altitudes, each cloud
is projected and tested separately to identify its shadow. Individual clouds are defined by
separating cloud pixels into connected components. We apply a flood-fill algorithm [21]
using the eight neighbors of each valid cloud pixel to identify all the clouds in an image.
Any cloud that is extremely small (only a few pixels) is removed from the individual cloud
list used to identify cloud shadows, as clouds of these sizes are typically errors or are too
small to generate visible shadows at the resolution captured by satellites.

2.2.2. Candidate Shadows

Sentinel-2 does not provide ready-to-use data on cloud shadows as it does for clouds,
while there is a pixel value reserved for cloud shadows in the SCL mask, most shadows
in the scene are missing or poorly identified, as seen in Appendix B, Figure A2c. As
noted by Zhu and Woodcock, the near-infrared band (NIR) is related to cloud shadows
via longer wavelengths in cloud shadow regions [11]. Therefore, areas with low NIR
intensities with a high contrast compared to their surroundings are more likely to be cloud
shadows. Treating the NIR band as a height map, local minima or pits relative to their
surroundings correspond to potential cloud shadows [11]. Following this intuition, Zhu
and Woodcock [11] leveraged the morphological pit-filling algorithm [22], also known as
the morphological flood-fill transformation, to deduce the relative pit depths to identify
potential shadows by comparing the pit-filled result to the original. Our method uses a
modified version of this approach.

Our modified method utilizes the NIR band, the cloud mask generated previously,
and the SCL mask (see Figure 3b). To perform the pit-filling algorithm, a boundary value
surrounding the NIR band must be defined to propagate the morphological drainage
simulated by the algorithm. When pits intersect with the boundary of the NIR-band image,
the boundary value replaces the edge of the cloud that was cutoff by the image boundaries.
Therefore, the fill level for boundary intersecting pits is heavily influenced by the boundary
value chosen, as this essentially defines the depth of these pits. This value should represent
standard NIR values not obscured by cloud shadows in any given NIR band. The effect
the boundary value has on the resulting pit-fill can be seen in Figure 4, in the first row.
Due to the variation in the unobscured (by cloud or shadow) NIR values between datasets,
the boundary value must be determined per dataset. A fixed boundary value will either
miss smaller impact cloud shadows near the border or many false positive shadows will be
included and reduce the accuracy of the subsequent shape-matching procedure, depending
on if the fixed value is too low or too high, respectively. This can be seen in Figure 4. By
assuming most of the unclouded portions are not covered in water, we can compile a list of
NIR values from pixels in the image not obscured by a cloud in the derived cloud mask
or labeled as cloud shadows, dark areas, or water in the SCL mask and take a value as
a percentile directly. As we do not know which pixels are cloud shadows, we obtain an
appropriate clear-sky NIR value by leveraging the fact that the clear-sky NIR percentile
depends on the amount of cloud shadow, which, in turn, is roughly proportional to the
amount of clouds. Using the cloud cover percentage from the generated cloud mask, we
apply a sigmoid function to these values to obtain a smooth transition from cloud cover
to clear-sky NIR percentile. Consequently, as cloud cover increases, the clear-sky NIR
percentile likewise increases to compensate for the increase in cloud shadows present.
Unlike Zhu and Woodcock [12], our algorithm does not require or utilize temperature
information (as Sentinel-2 does not provide this information). As such, this method for
determining cloud shadows would work for other satellites that do not include temperature
data.
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Figure 4. Example demonstrating the impact of boundary conditions on the potential shadow mask.
To the left is a manually created example of a grayscale NIR-band image. Inside the image, there are
4 cloud shadows at various strengths. Three cloud shadows intersect with the border, and the last
one does not. Each pixel level is indicated by the numbers in the white squares and are in the range
[0, 1]. Neighboring cells with the same grayscale intensity share the same value. To the right of the
image are three rows containing results at various stages, depending on the chosen boundary value,
as seen along the top. In the first row, we have the pit-filled NIR result. Note that to illustrate the
boundary level better, an additional column to the right of the images is inserted with the intensity
of the boundary value. In the middle is the difference between the pit-filled NIR and original. At
the bottom is the result of applying a threshold of 0.12 to the difference band. As the boundary
value is increased, more pixels are added to the threshold result. If the threshold is too low, many
non-shadow pixels of clouds intersecting with the boundary are missed; however, note that the cloud
in the middle of the image is identified correctly, even with a boundary value of 0. If the boundary
value is too high, many pixels will be added to the shadow mask, highlighted when the boundary
value is 0.95. Comparing the original NIR to the shadow mask, a boundary value of 0.7 produces the
best result as it is closest to the clear-sky value of the NIR band, 0.8.

Using the calculated boundary value, the pit-filling algorithm [22] can be performed,
and the difference between the filled and original NIR band is passed through a threshold
filter to produce an intermediate result. In Figure 4, the effect of the boundary value on
the pit-filled, difference, and threshold result can be seen. With the intermediate result and
a shadow mask generated from pixels labeled as shadow and dark areas in the SCL, we
perform a disjunction between the intermediate result and the generated shadow mask and
pass it through a Gaussian filter and threshold filter to smooth the result. Lastly, to clean
up the result, any pixel labeled as a potential shadow in the smoothed result and a cloud in
the cloud mask is cleared of its shadow status to generate the candidate mask. An example
candidate mask result, along with the cloud mask generated before, can be seen in Figure 5.
As seen in Figure 5, there are many potential shadows identified, many of which are not



Remote Sens. 2023, 15, 3955 10 of 31

cloud shadows, such as lakes and dark areas. These false positives are removed in later
steps.

(a) (b)

Figure 5. Example output for the cloud and potential candidate shadow. (a) The original RGB band.
(b) Combined cloud and candidate mask overlaying RBG band. Candidate shadows are shown in red,
clouds are shown in white, and all other pixels retain their original RGB values. The dataset is from
20 July 2020.

2.2.3. Satellite View Point and Sun Position

In order to correctly project shadows from clouds onto the candidate mask, we first
need to find the view (satellite) position and Sun position relative to the image data. These
points define two perspective projections of the cloud, relative to the satellite and Sun,
respectively, and are vital to correctly identify the correlation of clouds with their respective
shadows (Section Ray-Casting Scene). Sentinel-2 provides four angle bands to determine
these relative locations: the Sun zenith angle, the Sun azimuth angle, the view zenith angle
mean, and the view azimuth angle mean. For each pixel, two direction vectors can be
calculated, one for each projection. Using the pixel locations as the origin of the vectors,
two grids of direction vectors, each pointing to the Sun and satellite, can be generated.
However, as depicted in Figure 6, due to the 5000 m resolution of the angle bands, the
resulting direction grids do not converge at a single point and, thus, do not represent a
global perspective projection. Surveying the existing literature, this problem does not
appear to have been addressed in previous works. As such, we introduce a method to
approximate the Sun and satellite as global points determined by using the least squares
method. More specifically, the global point X minimizes the squared distance to all the lines
defined by the direction vector and position pairs. Through experimentation with the data,
it was found that the direction vectors generated were too coarse to consistently generate a
reasonable height for our optimal position. Consequently, a height constraint was added
to restrict the height (z component of X) based on measured values of 150,000,000 km for
the Sun and 785 km for the satellite. We used the Lagrange multiplier method to form
the corresponding constrained least squares problem [23] (Equation (1)), from which we
derived, and the linear system of equations that is solved to obtain X (Equation (2)).

Proceeding more formally, we will use the notation “·̂” to denote a unit vector, “~·” to
denote a vector, capitalized non-bold letters to denote points, and capitalized bold letters
to denote matrices. Given a set of 3D direction vector and position pairs, each denoted as
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(d̂i, Pi), on the plane, z = 0, and the specified height constraint of value, h, we need to solve
the minimization problem:

f (X) = min
X

∑
i
‖(X− Pi)− ((X− Pi)

T d̂i)d̂i‖2,

subject to g(X) = XT

0
0
1

− h = 0.
(1)

Equivalently, we solve ∇X f (X) − λ∇X g(X) = 0, subject to the preceding height
constraint. This yields the following augmented linear system of equations: AX∗ = ~b,
where

X∗ =
[

X
λ

]
, A =

2 ∑
i
[I− d̂i d̂T

i ]
0
0
1

0 0 1 0

, ~b =

[
2 ∑

i
[Pi − (Pi d̂T

i )d̂i]

h

]
. (2)

Figure 6. An example least squares problem (Equations (1) and (2)) on a 4 by 3 grid (image). Each
cell, with Pi at the center, has a direction vector, d̂i, that defines a line connecting the convergence
point and Pi defining a perspective projection. The optimal convergence point, X, that minimizes the
distance to all perspective lines at a given height, h.

To verify that the Sun and satellite position were correctly determined, we tested the
results from the six datasets from Table 1. For each scene, the mean dot product between the
direction vector at each pixel and the direction pointing from each pixel to the calculated
positions was calculated. The results of this analysis can be seen in Table 2, and it showed
the Sun’s mean dot product was 0.99999994 and the satellite’s mean dot product was at least
0.99999 in all tested cases. Through testing, it was found that increasing the height of the
satellite had a negligible effect on the mean dot product. However, decreasing the height
of the satellite had a non-negligible effect on the mean dot product only when decreased
below 100 km. Above 100 km, the mean is within 0.1% of 1. As such, the alternate method
of orthogonal projection used in other methods [7] could be used instead.
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Table 2. Results determining the accuracy of the Sun and satellite position in the six datasets described
in Table 1 using the mean dot product.

Date Sun Satellite

15 June 2020 0.99999994 0.99999785
25 June 2020 0.99999994 0.99999809
27 June 2020 0.99999994 0.99999231
5 July 2020 0.99999994 0.99999851

20 July 2020 0.99999994 0.99999791
22 July 2020 0.99999994 0.99999321

Average 0.99999994 0.99999631
Angle 1 0.02◦ 0.16◦

1 Obtained using the inverse cosine function.

2.2.4. Ray-Casting Scene

Geometrically, determining the location of a cloud’s shadow requires knowledge of the
cloud’s height from the surface. However, this information is lost when the satellite’s bands
are projected on the satellite’s camera lens. We determine the cloud’s height by iterating
over a range of heights and computing the resulting 2D shadow using ray casting [13]. We
then use the height that maximizes the similarity between the projected shadow and the
candidate mask [13].

Repeatedly ray casting for each cloud pixel to identify the optimal height, h, is com-
putationally expensive. We simplify this computation by representing each cloud as a
planar quadrilateral (the 2D bounding box of the cloud), Qc, and assume the surface below
is relatively flat. Under these simplifications, for a given h, the projected shadow can be
determined by two perspective projections, as seen in Figure 7. The corners of Qc are pro-
jected from the Earth’s surface to the plane situated at h, with the view (satellite) position
being the focal point producing the quadrilateral, Qi. Next, the quadrilateral is projected
back onto the Earth’s surface using the Sun as the focal point producing the quadrilateral,
Qs. Using these projections, we find the transformation mapping Qc to Qs, M = Pi→sPc→i,
where Pc→i and Pi→s are the first and second perspective transformations, respectively.

Using Qs, we can iterate through the pixels in the shadow map that are contained
within Qs to compare the similarity between the candidate mask to Qs, the shadow. The
projected shadow, Qs, may not be exactly pixel-aligned with the candidate mask. Inverse
texture mapping using M−1 is applied to transform the pixel coordinates in the candidate
mask to pixel coordinates in the cloud mask, the source of the projected shadow. To
determine the similarity, a series of tests are applied to each pixel in the shadow mask
that are contained within Qs. First, if a pixel in the shadow mask (before applying inverse
texture mapping) is labeled as a cloud in the cloud mask, the pixel is ignored since it cannot
be both a cloud and a cloud shadow. Next, M−1 is applied, and the following tests are
performed:

1. If the transformed pixel indexed into the cloud mask does not belong to the desired
cloud, then it is ignored. If so, then increment the total projected shadow pixel count,
T, and move to the next test.

2. If the transformed pixel indexed into the shadow mask is labeled as a potential
shadow, then increment the total number of correctly identified shadow pixels, C.

Once complete, the similarity can be determined by the ratio S = C
T . The metric

S ranges from zero to one, with zero being no similarity and one being perfect similarity.
It should be noted that the similarity comparison omits any pixels that fall outside the
image boundaries, and as mentioned before, pixels that are labeled as cloud pixels before
applying M−1 are not included in C or T, thereby removing biases related to shadows
being obscured by clouds.

By applying this process, we can apply the iterative method presented by Zhu and
Woodcock [13]. That is, we iterate h starting at 200 m, and ending at 12 km. Progressing
through the iterations, the result that maximizes the similarity is saved. After completion,
if the max similarity found is below the minimum threshold similarity of 0.3 [11], the result
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will be discarded, as it is assumed that the cloud shadow is not visible in the image data.
This often occurs when the angle between the Sun and the satellite is small, another cloud
is obscuring the shadow, or the cloud is thin enough to not produce a detectable shadow.
Once the iteration process has been completed for all clouds, the object-based shadow mask
(shadow mask resulting from the ray-casting process) is generated by all the pixels that are
both in the potential shadow mask and under one or more cloud shadows, resulting in the
exclusion of pixels determined to be false positive shadows in the potential shadow mask.
Figure 8 is the resulting object-based shadow mask from the results depicted in Figure 5.

Figure 7. Visual depiction of the ray-casting process in a single iteration. The lower plane represents
the ground. The upper plane is parallel to the ground, situated at height h. The Sun and Sentinel-2
satellite are seen at the top in green and red, respectively. Following the projection lines to Sentinel-2,
Qc is projected onto the height plane to produce Qi. Following the projection lines from the Sun, Qi is
projected to the ground to produce Qs.

(a) (b)

Figure 8. Example output for the object-based shadow mask. (a) The original RGB band. (b) The
object-based shadow mask overlaid into the RGB band. Red pixels represent cloud shadows and white
pixels represent clouds. Around several selected example clouds and their respective shadows are boxes
representing Qc (yellow) and Qs (turquoise), respectively. The dataset is from 20 July 2020.
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2.2.5. Statistical Improvements

While the method in Section 2.2.4 correctly identifies many cloud shadow pixels,
it tends to introduce false negatives at the edge of cloud shadows. By leveraging the
cloud probability bands provided, we can correlate the cloud probability to the cloud’s
shadow to construct a shadow probability for improving the shadow detection accuracy.
To do this, we analyze non-cloud shadow pixels and determine if they should be added
to the shadow mask based on their probability values. In this technique, we model a
conditional probability surface, P(α|β) : the probability that a pixel with a shadow value
of α is classified as shadow given that it has a shadow projected probability of β. This
probability surface is constructed and utilized for the entire image, taking the surrounding
regions unaffected by clouds or cloud shadows into account.

The shadow value, α, is derived from our potential shadow candidate mask generation
process. More specifically, using the difference between the pit-filled and original NIR
band, we can derive the shadow value, α, while the direct difference provides an indicator
of the shadow’s probability, the data are heavily biased toward 0, rather than being evenly
distributed between 0 and 1, resulting in a poor probability surface quality as most of
the data will be concentrated in a subsection of the surface. To correct this, the shadow
value used is derived by passing the difference through a normalized sigmoid function
(Equation (3)) to redistribute the values more evenly.

S(α) = f (α−0.5)− f (−0.5)
f (0.5)− f (−0.5) , where f (x) = 1

1+0.007e−17x . (3)

The shadow projected probability, β, is derived from the provided cloud probability
and the ray-casting process. Using the same optimal M transformation used to project each
cloud to their respective shadows (defined in Section 2.2.4), we project the smoothed CLP1
layer (from Section 2.2.1) for each M to generate the shadow projected probability map.
However, simply projecting and writing the probability values to our new probability map
using Qs (only pixels contained in Qs) is not sufficient, as this will introduce edge artifacts.
Furthermore, since the cloud mask inherently contains some error, some cloud probability
values in the smoothed CLP1 are not contained in Qs, which are mostly distributed around
the edge of the cloud, thereby limiting the improvement in the shadow mask. If we project
the entire smoothed CLP1 layer, however, cloud probability artifacts from other clouds will
be projected along with the desired cloud for each M, introducing errors into the shadow
projected probability map.

To solve this, we implemented a method where the entire smoothed CLP1 is projected,
but the probabilities are weighted by distance to the projected shadows determined in
Section 2.2.4. More formally, a maximum influence distance, D, for each cloud is defined,
where every probability outside this distance has a 0 weight. Correctly selecting D allows
the surrounding probabilities for a cloud to be considered but will exclude other clouds for
the given M. Through experimentation, it was determined that as the area of a cloud, A,
increases, D should increase as well to adequately recover missed pixels. After testing a
D ∝ A relationship, it was determined that the increase in D was too large for larger cloud
sizes. As such, a D ∝

√
A relationship was considered and produced much better results,

particularly when we clamped D to an appropriate interval. Any pixel inside the projected
shadow from Section 2.2.4 will have a weight of 1. Between the edge of the projected
shadow and the distance equals the D boundary, and the weights will be calculated by
a quadratic radial basis function that decreases as the distance increases. Note that this
function is continuous, so adjacent pixels will have similar weights.

Using the above process, we project the smoothed CLP1 using every M and write the
projected cloud probability (multiplied by the appropriate weight) to our shadow projected
probability map. In some cases, projected probabilities will overlap. As such, the value
in the map will retain the maximum value. An example output of the shadow projected
probability map can be seen in Figure 9.
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(a) (b)

Figure 9. Example output for the shadow projected probability map: (a) The original RGB band;
(b) The projected shadow probability mask generated for the 20 July 2020 dataset. Like in Figure 8,
we can see several Qc (yellow) and Qs (turquoise). In addition to this, there is a purple box indicating
the valid evaluation zone as a result of the boundary clouds identified during the ray-casting process
( Section 3). The whiter the pixels are, the higher β is. As seen in the figure around each cloud, there
is a smooth falloff due to the distance scaling and the probabilities do extend past the Qs bounding
boxes.

Now that we have the shadow value and projected shadow probability for every pixel,
we construct the conditional probability surface of the form f (α, β) : [0, 1]× [0, 1] −→ [0, 1].
For more detail, the following algorithm is outlined in Appendix A. The surface is modeled
as a bi-linearly interpolated surface with the height, f (α, β), defining P(α|β) for a given
α and β. Using the object-based shadow mask generated from Section 2.2.4, we assign a
binary value indicating if a pixel is in a shadow or not. This value represents a collapsed
state of f (α, β) for the pixel sample and will be 0 and 1 for non-shadow and shadow pixels,
respectively, (see Figure 10a). We can generate the probability surface by approximating
the value of f (α, β) at any given α and β value (see Figure 10b). To do this, α and β values
are partitioned into regular grids with each grid cell storing the average of all the pixels
located in the cell boundary. These average values are used to generate a piece-wise linear
probability surface. However, if the grid partition is too coarse, many fine details will be
missed. On the other hand, if the grid partition is too fine, then the quality of the resulting
surface could suffer by the degradation of the cell averages as a result of having little or
no samples contained in cells. To address this, we construct multiple surfaces at various
levels of partition resolution and aggregate them to produce a single probability surface.
Through experimentation, the chosen partition resolutions are 8, 16, 32, 64, and 128. Finally,
to construct our final surface, we regularly sample (we chose 256 by 256 samples) each
surface and take the weighted sum of the results. To preserve the overall shape of the
surface while including fine details, the chosen weights are biased towards the coarse
surfaces. More specifically, the values are the normalized weights of 16

31 , 8
31 , 4

31 , 2
31 , and 1

31 .
To resolve cells on the intermediate surfaces with no pixels contributing to the cell’s average,
a 3× 3 average kernel is applied over the missing pixels until a value is determined. The
final surface is dominated by low-resolution surfaces, which rarely has missing cells, so the
approximation of the averages at higher resolutions is sufficient to generate a high-quality
probability surface. For a visualization of an example of the resulting probability surface,
see Figure 11.
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(a) (b)

Figure 10. Construction of the probability surface f (α, β). Image (a) is a 3D view of the probability
surface construction problem. We have α and β along the horizontal axes, with f (α, β) along the
vertical axis. The red and blue data points correspond to pixels with their α and β values from
the shadow value map and the shadow probability projection map, respectively. Red data points
correspond to pixels not in shadow in the object-based shadow ( f (α, β) = 0), while blue data points
correspond to pixels in shadow ( f (α, β) = 1). Image (b) is a cross section of the desired probability
surface. Note that the surface is approximating and not interpolating the given data points.

Figure 11. The probability surface visualized as a triangular mesh from the 20 July 2020 dataset.
Along the bottom are the α and β axes ranging from 0 to 1. Along the left side is the f (α, β) axis, again
ranging from 0 to 1. At the f (α, β) = 0.15 height, we have a semitransparent plane that indicates the
probability cutoff to determine if a pixel should ( f (α, β) ≥ 0.15) or should not ( f (α, β) < 0.15) be
added to the final shadow mask.

Using this surface, we can test every pixel in the data and use their α and β values to
obtain the probability of a cloud shadow being present. A minimum threshold is set, 0.15
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(Figure 11), and every pixel with a sufficiently high probability according to the minimum
threshold will be added to the cloud shadow mask to produce the final shadow mask, as
seen in Figure 12.

Considering false negatives and false positives in more detail, the ray-casting algo-
rithm that generates the object-based shadow mask removes many false positives at the
expense of increasing the number of false negatives. This is an expected result, as eliminat-
ing potential shadow pixels will inevitably remove true shadow pixels in error as well, and
may be a consequence of errors in the cloud mask or shape-matching algorithm. Applying
the probability analysis, the false negatives are decreased by adding the missed pixels back
into the image; however, some false positives are likely to be generated.

(a) (b)

Figure 12. Example output for the final shadow mask. (a) The original RGB band. (b) The final
shadow mask generated for the 20 July 2020 dataset. The color scheme is the same as Figure 8. Note
that the shadows are extending past the original Qs bounding boxes.

3. Results

For evaluating our method, we chose a study area with diverse features (Figure 1), en-
suring we have variation in the underlying surface in a controlled manner for comparisons
between datasets. Using the test datasets described in Table 1, we evaluated the shadow
masks generated by our method to determine their suitability. Our method produces three
different shadow masks, and in order to understand how well each phase of the method
was affected our results, we evaluated the shadow masks produced at each stage, including
the candidate shadow mask, object-based shadow mask, and final shadow mask. For each
mask, we compared it to a baseline ground-truth image manually generated by the authors.
Figure 13b shows one of these manually generated images. When creating the baseline,
there is inherent ambiguity regarding the state of each pixel (shadow or not shadow),
leading to some human error. This ambiguity was particularly notable around areas where
cloud edges intersected underlying shadows, resulting in increased uncertainty. In this
situation, pixels that could not be definitively classified as either shadow or cloud were
assigned as shadow pixels. We did this without effecting the error metric calculations
because either the pixel is truly a shadow pixel or is a cloud pixel and removed from the
metric calculations.



Remote Sens. 2023, 15, 3955 18 of 31

(a) (b)

Figure 13. Example shadow baseline used for method evaluation (a) with the RBG image (b) for
comparison. The baseline is displayed on the NIR band provided by Sentinel-2 with green pixels
indicating shadows. The dataset is from 20 July 2020.

Using this ground-truth shadow baseline, we evaluated the predictive accuracy error
of the three shadow masks, for each of the six datasets, based on the six metrics in Table 3.
Each metric was normalized to yield a pixel percentage, with 0% indicating that no errors
were found and the shadow mask perfectly reproduces the ground-truth shadow baseline.
Finally, to facilitate a direct comparison between our results and those reported by Zhu
and Woodcock [11], we also report the cloud shadow producer accuracy and cloud shadow
user accuracy (Equations (4) and (5)). These metrics represent the predictive accuracy
of our masks with regard to missed shadow pixels (false negatives) and the inclusion
of non-shadow pixels (false positives). For both, a percentage of 100% means no false
negatives exist or no false positives to exist. Lastly, since some cloud shadows in the data
are a result of clouds outside the image bounds, we added a restriction to the evaluation
region. An example of this can be see as a purple line in Figure 9b, which indicates that the
bottom and right edges of the image were not included. Without this restriction, the false
negative number would increase, reducing the quality of our quantitative error metrics.
This can be observed in Appendix B, Figure A3c–f, where the cloud clipping the lower right
side is projected properly but with a harsh edge bisecting it due to the harsh edge in the
corresponding projected shadow probability (β) values (Figure A2f). The restricted region
is determined by averaging the middle 80% of cloud heights in the scene determined in
Section 2.2.4 and performing the ray-casting process on the image boundaries. Any pixel
outside this transformed image boundary will be ignored.

AProducers =
∑ CorrectShadow

∑ CorrectShadow + ∑ FalseNegative
=

1− EF,SP

1− EFP,SP
, (4)

AUsers =
∑ CorrectShadow

∑ CorrectShadow + ∑ FalsePositive
=

1− EF,SP

1− EFN,SP
. (5)
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Table 3. Error metric calculations used to compare various stages of our shadow detection algorithm.
False positive pixels are classified as shadow pixels according to the mask, but not in the shadow
baseline. Likewise, false negative pixels are classified as shadow pixels in the baseline image, but not
according to the mask. False pixels are identified as either false negative or false positive. AllPixels
is the number of pixels in the evaluation region and ShadowPixels is the number of pixels that are
labeled as shadows in either the shadow mask or shadow baseline in the evaluation region.

Metric Name Function

False Positive Error Relative to Image Size EFP,I =
∑ FalsePositives

∑ AllPixels

False Negative Error Relative to Image Size EFN,I =
∑ FalseNegatives

∑ AllPixels

False Pixels Relative to Image Size EF,I =
∑ FalsePixels
∑ AllPixels

False Positive Error Relative to Shadow Pixels EFP,SP =
∑ FalsePositives
∑ ShadowPixels

False Negative Error Relative to Shadow Pixels EFN,SP =
∑ FalseNegatives
∑ ShadowPixels

False Pixels Error Relative to Shadow Pixels EF,SP =
∑ FalsePixels

∑ ShadowPixels

The results for our metrics are detailed in Tables 4–6. To assist in comparison and
discussion, Table 7 details the mean of each metric per shadow mask stage and the percent-
age changes in these mean values between stages. As discussed before, while ideally all
metrics should be low, false negatives are more problematic in the case of shadow pixel
identification, and their respective metrics should be slightly prioritized for minimization.

Table 4. The candidate shadow mask results of the six datasets for the error metrics outlined in
Table 3, Equations (4) and (5). The table is split into three sections, one for each normalization factor
is used (number of pixels in the entire image or number of shadow pixels in the baseline) and the
producer/user accuracy. Under each normalization factor, we have three types of errors used in the
metrics, false positives, false negatives, and false pixels.

Date AUser AProducers EFP,I EFN,I EF,I EFP,SP EFN,SP EF,SP

15 June 21.53% 89.87% 10.09% 0.31% 10.40% 76.61% 2.37% 78.98%
25 June 4.24% 99.75% 9.88% 0.00% 9.88% 95.75% 0.01% 95.76%
27 June 37.55% 96.32% 19.04% 0.44% 19.48% 61.57% 1.41% 62.98%

5 July 31.31% 91.72% 16.34% 0.67% 17.02% 66.80% 2.75% 69.55%
20 July 25.34% 96.47% 15.94% 0.20% 16.14% 73.98% 0.92% 74.90%
22 July 26.14% 98.78% 21.92% 0.10% 22.01% 73.62% 0.32% 73.94%

Table 5. The object-based shadow mask results of the six datasets for the error metrics outlined in
Table 3, Equations (4) and (5). Format of this table is the same as Table 4.

Date AUser AProducers EFP,I EFN,I EF,I EFP,SP EFN,SP EF,SP

15 June 68.57% 63.12% 0.89% 1.14% 2.03% 22.44% 28.60% 51.04%
25 June 75.68% 85.92% 0.12% 0.06% 0.18% 21.64% 11.03% 32.67%
27 June 87.46% 57.14% 0.97% 5.09% 6.07% 7.57% 39.61% 47.18%

5 July 83.42% 62.15% 1.00% 3.07% 4.08% 11.00% 33.69% 44.69%
20 July 80.17% 73.41% 1.02% 1.49% 2.51% 15.37% 22.50% 37.87%
22 July 81.69% 65.80% 1.16% 2.69% 3.84% 12.85% 29.81% 42.66%
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Table 6. The final shadow mask results of the six datasets for the error metrics outlined in Table 3,
Equations (4) and (5). Format of this table is the same as Table 4.

Date AUser AProducers EFP,I EFN,I EF,I EFP,SP EFN,SP EF,SP

15 June 69.69% 80.15% 1.07% 0.61% 1.68% 25.85% 14.72% 40.57%
25 June 67.30% 93.88% 0.20% 0.03% 0.23% 31.33% 4.20% 35.53%
27 June 84.41% 74.50% 1.64% 3.03% 4.67% 12.09% 22.42% 34.51%

5 July 80.41% 78.71% 1.56% 1.73% 3.29% 16.09% 17.87% 33.96%
20 July 74.48% 86.81% 1.67% 0.74% 2.41% 22.93% 10.17% 33.10%
22 July 77.02% 82.88% 1.94% 1.34% 3.29% 19.83% 13.73% 33.55%

Table 7. The mean absolute accuracy and mean percentage change in accuracy of each mask for our
six datasets. The first three rows represents the mean absolute accuracy for each mask. Per-dataset
results can be found in Tables 4–6. The last three rows represents the percentage change in the mean
accuracy between two shadow masks (specified in the left column) for the data in the first three
columns. For conciseness in the table, the mask names of Candidate Shadow Mask, Object-based
Shadow Mask, and Final Shadow Mask are shortened to Candidate, Object, and Final, respectively.

Mask(s) AUser AProducers EFP,I EFN,I EF,I EFP,SP EFN,SP EF,SP

Mean Absolute Accuracy (Tables 4–6)

Candidate 24.35% 95.48% 15.54% 0.29% 15.82% 74.72% 1.30% 76.02%
Object 79.50% 67.92% 0.86% 2.26% 3.12% 15.14% 27.54% 42.68%
Final 75.55% 82.82% 1.35% 1.25% 2.59% 21.35% 13.85% 35.20%

Percentage Change in the Mean Accuracy

Candidate to Object 226% −29% −94% 679% −80% −80% 2018% −44%
Object to Final −5% 22% 60% −45% −17% 41% −50% −18%

Candidate to Final 210% −13% −91% 331% −84% −71% 965% −54%

4. Discussion

As shown by the results reported in Table 7, the overall accuracy of the masks improves
through the three stages. The percentage change relative to the total number of pixels and to
the shadow pixels in the baseline both decrease. On average, the object-based shadow mask
offers an 80% improvement over the candidate mask. The final shadow mask provides a
further improvement of 17% compared to the object-based shadow mask. Overall, from
the candidate mask to the final mask, there was an improvement of 84%. The total error
improvement when metrics were normalized by the number of shadow pixels was similar,
being 44%, 18%, and 54%. According to either metric, the total error of the overall image
decreases, and thus, the resulting shadow mask quality is increased at every stage.

Comparing the candidate and the object-based results in Table 7, the false positives
are significantly lower with a percent change of false positives of 94% and 80% for the total
number of pixels and shadow pixels, respectively. These numbers align with expectations,
as the candidate mask is deliberately designed to significantly overestimate the number
of shadow pixels. During the ray-casting process, we remove shadow pixels from the
candidate mask, leading to the elimination of many false positives. However, this action
inadvertently results in the removal of some true positives as well. Consequently, there
is a modest increase in the absolute number of false negatives (~2%). However, their
relative values increase drastically by 679% and 2018% for the total and shadow normalized
metrics, respectively. This is primarily due to the over-representation of false positives in
the candidate mask. These errors can come from several sources including errors in the
cloud mask, incorrectly matching cloud shadows, or a byproduct of our assumptions in the
ray casting process, mainly clouds being restricted to a 2D object.

When comparing the object-based and the final results in Table 7, the false negatives
in the final results are much lower than in the object-based shadow mask with a drop
of 27.54% to only 13.85% on average, a 50% decrease, which is expected. Even though
our preference is to minimize the false negatives, this should be obtained without unduly
increasing the number of false positives, striking a balance between the two. The total false
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positives in the final shadow mask are much lower than the original candidate mask with a
drop of 74.72% to 21.35% on average, a 71% decrease, as expected. This is slightly worse
than the object-based result of 15.14%, an 80% decrease, but given the false negative error
of 27.54% at this stage, the result did not fit our criteria of prioritizing false negatives over
false positives, and thus, the post-probability mask offers the best result out of the three
masks analyzed.

We compared our results to those reported by Zhu and Woodcock in their 2012 paper,
where the producer and user accuracy metrics were used [11]. Their method achieved an
average producer accuracy of over 70% and an average user accuracy of approximately
50%. Their algorithm is designed for a much larger set of potential scenes with snow and
water detection integrated in the algorithm; however, our post-probability shadow mask
significantly improves upon their method. This is demonstrated by our algorithm having
an average producer and user accuracy of 82.82% and 75.55% respectively. To evaluate
the improvement due to the probability analysis, we evaluated the progression of pixels
that were added to the final shadow mask and shadow pixels that were not added to the
final shadow mask (Figure 14). We found that the probability analysis correctly added
1.13% of the image’s pixels to the final shadow mask, whereas 0.53% of the image’s pixels
were incorrectly added, resulting in a net increase in shadow mask accuracy. However,
1.71% of the image’s pixels were shadow pixel and were not added to the final shadow
mask (~60% of possible shadow pixels to add). Looking at the these pixels in Figure 14,
0.34% of the image pixels were incorrectly skipped by the probability analysis were also
not present in the potential shadow mask. Since the potential shadow mask overestimates
the shadow pixels, these 0.34% pixels are likely to contain pixels that were incorrectly
labeled as shadows in the baseline due to human error. Additionally, if we compare our
object-based shadow mask to Zhu and Woodcock’s results, we notice that our producer
accuracy is similar, being only 67.92%. However, our object-based shadow mask user
accuracy is much better at 79.50% already and only reduces about 5% in the final shadow
mask. The disparity between the user accuracy may be a result of their algorithm buffering
their Fmask, which includes their resulting shadow mask, “by 3 pixels in 8 interconnected
directions for each of the matched cloud shadow pixels to fill those small holes” [11]. This
results in a low user accuracy due to all the extra pixels added to the edges of detected
cloud shadows. Due to the improvement in both the producer and user accuracy of our
final result, we conclude that replacing Zhu and Woodcock’s shadow pixel buffer with our
proposed statistical model improves the accuracy of the shadow mask output.

Examining the output of our algorithm, it is evident that thin stratus or “wispy” clouds
are a conspicuous source of error, as they often produce faint shadows that are difficult to
detect for our algorithm. An example of missing cloud shadows for these types of clouds
can be seen in Figure 15. The metrics for this scene contains the lowest producer accuracy in
Tables 5 and 6 compared to the other test scenes. Zhu and Woodcock encountered similar
issues with their method and noted that their algorithm “may fail to identify a cloud if it
is both thin and warm” [11]. Fortunately, often the shadows of these clouds tend to have a
smaller impact on the data when missed when compared to thicker and less “wispy” clouds.

Since we use a wide range of heights to test each cloud, clouds will sometimes incor-
rectly identify the optimal shadow projection and attribute them to other cloud shadows,
particularly when the incorrect shadow is larger than the correct shadow. However, as a
consequence of the influence distance, the probability analysis often corrects such issues
since nearby clouds being correctly projected will inadvertently project the incorrect cloud’s
projected shadow probability (β) values. An example of this is included in Appendix B,
Figure A3d, on the left side, where a cloud was missed (seen in red), and Figure A3f, where
the cloud was recognized (seen in mostly blue).
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Figure 14. Bar graph illustrating the impact of the probability analysis on shadow pixel classification.
Pixels used for the plot fall in three categories: shadow pixels that were missed by the object-based
shadow mask, but added to final the shadow mask (left); shadow pixels that were missed by the
object-based shadow mask and are also absent from the final shadow mask (middle); and non-shadow
pixels that were omitted from the object-based shadow mask but were added to the final shadow mask
(right). Each bar is divided into two groups depending on whether the object-based shadow mask
changed the pixel’s classification. Percentages indicate the average percent of all pixels. Labels of the
form B-XYZ use 4 binary labels (T/F) to indicate the classification of each pixel in the shadow baseline
(B), potential shadow mask (X), object-based shadow mask (Y), and final shadow mask (Z, following
probability analysis). For example, a shadow pixel that was incorrectly classified in the potential and
object shadow masks and corrected by our probability analysis would be labeled T-FFT.

Figure 15. Image of scene depicted in the 27 June 2020 dataset. See the bottom right side of the image
for the high volume of thin stratus or “wispy” clouds, causing a decrease in the producer accuracy as
seen in Tables 5 and 6.
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Our method works well in the time periods critical for farmland analysis, the focus
of our research; however, evaluating our method outside these times helps to determine
the viability or our method for year round analysis, particularly when snow is present,
and highlight possible directions for future work. As such, several alternate sets outside
the growth season were chosen to qualitatively assess the method’s effectiveness in other
seasons. It was found that in the spring/fall season with no snow and dominated by
brown vegetation, the result sometimes yields satisfactory results. Specifically, the sets that
effectively generated a cloud and shadow mask were 16 April 2020 (Figure 16b) and 1 May
2020 (Figure 16c). However, the proposed method is less successful for datasets 11 April
2020 (Figure 16a) and 15 October 2020 (Figure 16d). In these two examples, the generated
cloud mask is poor with excessive false positive cloud pixels, and thus, further processing
generates poor shadow masks. In analyzing the snow dataset (11 April 2020), we found
that errors in the cloud mask are likely due to poor cloud probability values (too high)
generated by Sentinel-2 in CLP2 (Figure 17b) in the bottom half of the image. However,
CLP1 (Figure 17a) seems correct. The same issue persisted in the 15 October 2020 dataset,
though to a lower degree. There may also be a slight problem with CLP1 (Figure 17c) by
inspection. As such, errors in out-of-season data processing are mainly attributed to cloud
mask generation.

(a) (b)

(c) (d)

Figure 16. Off-season examples of the method’s performance. Each panel depicts an RGB image for a
different date, overlaid with the final shadow mask (red) and cloud mask (green for (a) and white for
others). The data for each panel are as follows: (a) 11 April 2020, a landscape with significant snow
cover (especially top right region); (b) 26 April 2020, an early spring season conditions with mostly
brown vegetation; (c) 1 May 2020, which has similar characteristics to (b); and (d) 15 October 2020, fall
season conditions with mostly brown vegetation.
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(a) (b)

(c) (d)

Figure 17. In images (a,b), we have CLP1 and CLP2 from 11 April 2020 dataset (Figure 16a). Similarly,
(c,d) are from the 15 October 2020 dataset (Figure 16b). For all images, the brighter the pixel is, the
larger probability of a cloud being present is.

One assumption made in the methodology similar to Zhu and Woodcock’s method [13]
was that clouds are considered as 2D objects. However, for larger cumulus and cumulonim-
bus clouds, this representation could be less accurate due to the vertical profile of the clouds.
Therefore, when the 2D representation is projected, it is missing the elongated portion of
the shadow corresponding to the vertical profile. This is evident in Figure 18 from the 27
June 2020 dataset. Through visual inspection, it becomes evident that the subject cloud
exhibits a non-negligible vertical component, as observed from the fact that the shadow
profile extends beyond the cloud profile. In the potential shadow mask, this extended
portion is appropriately identified, which is consistent with expectations. However, in the
object-based shadow mask, this extended section is absent due to the lack of overlapping
pixels within the projected shadow from the 2D representation, which is absent of a vertical
contribution. Although the final shadow mask partially addresses this concern, it remains
insufficient in fully rectifying the issue. The other simplifications of zero Earth curvature
(flat surface), single view/Sun position, and fixed height of the view/Sun position had no
noticeable effects at the given scale.
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(a) (b) (c)

Figure 18. A set of images demonstrating the effect of representing clouds as 2D objects. Each of
these images are taken from a subset of the 27 June 2020 dataset, focusing on a particular cloud in
white and its corresponding shadow in red. Each image is from a shadow mask: (a) the potential
shadow mask, (b) the object-based shadow mask, and (c) the final shadow mask.

Limitations and Future Work

The results reported in the previous section illustrate the potential of our method for
cloud shadow detection. Nonetheless, manually generating baselines is time-consuming,
limiting the number of tests performed. A further study using larger sample size would in-
crease the confidence of the result and possibly allow for further algorithmic optimizations,
in particular, the choice of method parameters. We also note that manually generating
baselines is a potential source of error.

As discussed previously, this method was developed for a subset of the total possible
images Sentinel-2 produces and excludes scenes containing large amounts of water, snow,
ice, and dense urban areas. Since water has a low NIR reflectivity, water is included in the
potential shadow mask during the pit-filling process, thereby introducing false positives
into the candidate mask. As a result, the ray-casting process may select the wrong region
as a cloud’s shadow, introducing false negatives by missing the correct shadow. As for
snow, ice, and dense urban areas, further testing is required to identify the efficacy of the
algorithm for these conditions. Directly incorporating the snow/ice band provided by
Sentinel-2 would provide a means to account for images containing snow and ice in our
method. For more persistent features, such as bodies of water and urban areas, modifying
the method to utilize prior knowledge has the potential to improve the results for data
containing such features. Our qualitative analysis suggests that one problem is generating
an accurate cloud mask from the cloud probability bands in out-of-season contexts. It
appears that improving the cloud mask generation process may substantially reduce the
current errors in these contexts. Such extensions are appealing, as they would allow this
method to be applied in other contexts aside from farmland analysis.

An extension of the probability analysis could be to use the final shadow mask as
input to the ray-casting process for further improvement. This would facilitate an iterative
approach, where repeating the ray casting could be used to further improve the results.
Similarly, a more complex design of the shadow probability distance factor function, such
as utilizing eigenanalysis of the cloud contour (shape), could improve the quality of the
generated shadow probability. A further study on the sampling process for the conditional
probability function to generate a more accurate statistical model may also be beneficial.
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One simplification made by our method was the assumption that clouds can be repre-
sented as a planar object to integrate the inverse texture mapping technique for speeding
up the ray-casting process. However, clouds with larger vertical components produce a
shadow that extend past the shape of the cloud captured from the satellite’s perspective
and are often missed. Improving the accuracy of the geometric representation of the cloud,
by introducing a 3D representation of the cloud, would increase the accuracy of the results
from the improved projected shadows in the ray-casting process. Representing clouds as 3D
objects using voxel data has the added benefit of allowing the ray-casting process to consider
the density of the cloud to determine its optical transparency. Such a representation would
better capture the projected shadow of clouds, especially those that are thin and produce
faint shadows. One method to generate 3D clouds by utilizing a “deep learning-based
method [that] was developed to address the problem of modelling 3D cumulus clouds from
a single image” [24]. Alternative methods have been developed for generating 3D cloud
shapes by generating opacity and intensity image to generate volumetric density data for
a voxel representation [25]. Other methods using sketch-based techniques for generating
volumetric clouds could be automated to generate our cloud objects [26].

Finally, our algorithm depends heavily on the processes developed by Sentinel Hub
to produce the CLP1, CLP2, and SCL bands. As such, alternative methods for identifying
clouds and the cloud probability map are required to apply the proposed method to data
originating from other satellites without equivalent data bands. One possible method is to
use Sentinel-2’s data to train a neural network to automatically estimate the CLP1, CLP2,
and SCL bands given data from a different source.

5. Conclusions

In this paper, we proposed a method for determining cloud shadows via geometric
refinement using a fast inverse texture mapping ray-casting process with an additional
step using a statistical model to refine the shadow result. Evaluating our results in Table 7,
it clearly shows an improvement in pixel classification due to the proposed geometric
refinement and the statistical model process. When comparing our producer and user
accuracy values with those of Zhu and Woodcock’s related method, we can clearly see an
improvement. As such, we can conclude our process successfully refines and produces a
higher accuracy cloud shadow mask and improves upon Zhu and Woodcock’s method.
With the advancement of our algorithm, agriculture companies in Canada and worldwide
can leverage our approach to better recover GIS data from partially cloud- and cloud-
shadow-obscured images to increase crop yield. Similarly, our algorithm can be used
to identify cloud and cloud shadows in many other applications. With the additional
processes described in future work to broaden the effective scenes, our algorithm could be
used widely for improving business profits, ecological concerns, and more in many other
monitored environments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//github.com/JeffreyLayton/Cloud-Shadow-Detection, accessed on 24 July 2023.
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Abbreviations
The following abbreviations are used in this manuscript:

GIS Global Information System
EMF Electromagnetic Field
RGB Red Green Blue
WGS84 World Geodetic System 1984
NIR Near Infrared
SCL Scene Classification Layer
CLP1 S2cloudless Cloud Probability (CLP)
CLP2 Sen2Cor Processor Cloud Probability (CLD)
CLM Cloud Mask

Appendix A. Algorithm for Generating the Probability Surface

Algorithm A1 Generating the Conditional Probability Surface
Input:

OBSM: Object-Based Shadow Mask of dimensions (W, H), binary values.
CM: Cloud Mask of dimensions (W, H), binary values.
SVM: Shadow Value Map of dimensions (W, H), values between 0 and 1.
SPM: Shadow Projected Probability Map of dimensions (W, H), values between 0 and 1.

Constant Variables:
RESS: Sample Resolutions of 8, 16, 32, 64, 128.
WEIGHTS: Sample Weights of 16

31 , 8
31 , 4

31 , 2
31 , 1

31 .
Important Intermediate Variables:

SS: Sample Surfaces at resolutions in RESS and described by a set of regularly sampled
vertices, so that for each, α, β, f (α, β) ∈ [0, 1] and initialized to ( i+0.5

res , j+0.5
res , 0) where

i, j are the α, β indices. The number of contributing samples to each vertex will be
tracked.

Output:
SURFACE: Conditional Probability Surface described by a set of regularly sampled
vertices of dimension (64, 64) in the αβ direction so that for each, α, β, f (α, β) ∈ [0, 1]
and initialized to ( i+0.5

256 , j+0.5
256 , 0) where i, j are the α, β indices.

for each resolution level, r, in RESS coresponding to sr in SS do
for each pixel pi,j /∈ CM(i, j) so that i ∈ [0, W) and j ∈ [0, H), do

Calculate the sample index (k, h) = (br · SVM(i, j)c, br · SPM(i, j)c)
Add 1 to count at vk,h in sr
if pi,j ∈ OBSM(i, j), then

Add 1 to vertex vk,h.z in sr
end if

end for
for each vectex v in sr , do

Calculate the average value v.z = v.z
v.count

Clamp v.z between 0 and 1.
end for
while there exists a vertex v in sr with no contributing pixels do

for each of these vectices vi in sr , do
if vi has a neighbor vertex with contributing pixels then

Calculate the average value vi .z of neighbor vertices with contributions
Mark vi as having a pixel contributing to it artificially

end if
end for

end while
end for
for vertex v in SURFACE do

for each surface s in SS and corresponding weight w in WEIGHTS, do
Add w · BilinearSample(s, v) to v.z

end for
end for

https://docs.sentinel-hub.com/api/latest/api/process/
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Appendix B. Selected Visual Results of 20 July 2020 Dataset

(a) (b)

(c)

Figure A1. Images belonging to the upper right portion of the 20 July 2020 dataset. For all images,
the blue bar on the side indicates the boundary edge. (a) The input RGB image (scaled by 2.5 to
enhance features). (b) The input NIR band. (c) The manually generated shadow baseline, with black
indicating no shadow and white indicating shadow.

(a) (b)

Figure A2. Cont.
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(c) (d)

(e) (f)

Figure A2. Images belonging to the upper right portion of the 20 July 2020 dataset. For all images,
the blue bar on the side indicates the boundary edge. (a) The input CLP2 image with lighter pixels
indicating higher cloud probability. (b) The input CLP1 band with lighter pixels indicating higher
cloud probability. (c) The input SCL (scene classification) assigned colors per value. Notable colors
seen are 3 shades of red indicating levels of cloud probability (lighter for higher probability), yellow
indicating cirrus clouds, purple indicating cloud shadows, green indicating vegetation, and dark
green indicating soil. (d) The generated cloud mask from Section 2.2.1, white indicating clouds.
(e) The generated shadow value (α) map from Section 2.2.5. (f) The generated projected shadow
probability (β) map from Section 2.2.5. In (f), there is a harsh edge in the middle of the β values.
This is a result of a cloud to the bottom right of the image that is clipping the edge being incorrectly
projected to the shadow in that location.
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(a) (b)

(c) (d)

(e) (f)

Figure A3. Images belonging to the upper right portion of the 20 July 2020 dataset. For all images,
the blue bar on the side indicates the boundary edge. For each row, there is a shadow mask (left)
and an evaluation of the shadow mask (right). In the evaluation image, there are 5 colors indicating
the shadow identification state: true negative (green), true positive (blue), false negative (red), false
positives (pink), and clouds (white). (a,b) The candidate shadow mask. (c,d) The object-based shadow
mask. (e,f) The final shadow mask.
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