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Abstract: The diurnal variation characteristics and basic statistical features of summer precipitation
(from June to August) in the Ili region from 2015 to 2019 were investigated based on 4 km resolution
Weather Research and Forecasting model simulation data from Nanjing University (WRF_NJU). The
results show that the overall diurnal variation characteristics of precipitation (DVCP) reflected by
the WRF_NJU data were consistent with respect to the observations and reanalysis data. The total
precipitation pattern exhibited high (low) values on the east (west), with higher (lower) values over
the mountainous (valley) area. Hourly precipitation amount (PA), precipitation frequency (PF), and
precipitation intensity (PI) show similar diurnal variation characteristics, with peaks occurring at
around 1700 LST in the mountainous area and around 2000 LST in valleys. Furthermore, moderate to
intense precipitation contributes up to 87.88% of the total precipitation. The peaks in the mountainous
area occur earlier than the valleys, while the peaks in western part of the valleys occur earlier than the
eastern part. The PA peaks over the valleys and slopes occurred from the evening to early morning
and from the afternoon to evening, respectively. In addition, the rotated empirical orthogonal
function (REOF) analysis implied that the DVCP exhibits distinct differences between mountainous
and valleys, and peak precipitation occurs during the evening in basin– and wedge–shaped areas,
while the mountain peaks and foothill regions exhibit semi–diurnal variation characteristics. Among
several basic meteorological factors, the vertical velocity (VV) and water vapor mixing ratio (WVMR)
provided major contributions to the DVCP in both areas with high and low coefficients of variation,
and the WVMR (VV) probably played a more significant role in mountainous (valleys) areas.
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1. Introduction

Precipitation is the result of complex processes in the atmosphere and is an important
component of the global water cycle [1,2]. With global climate warming, there is an
increasing trend in both the intensity and frequency of extreme precipitation events in
many parts of the world [3,4]. The Fifth Assessment Report of the Intergovernmental Panel
on Climate Change (IPCC) has repeatedly noted that knowledge of future climate change
continues to be heavily influenced by uncertainties in precipitation estimates [5,6]. Intense
precipitation often leads to disastrous events such as flash floods, landslides, mudflows, and
dam failures, which have tremendous impacts on agriculture, transportation, the ecological
environment, daily life, and the economy [7–9]. Thus, enhancing the understanding of the
characteristics of occurrence, development, causal factors, and other tempo–spatial features
of precipitation has become one of the hotspots and focal points in the field of meteorology
and climatology, as well as in some other broader fields of geography [10–12].

The diurnal variation of precipitation (DVP), as an important regional weather and cli-
mate characteristic [13–16], is a periodic variation that is mainly induced by solar radiation
directed toward the Earth’s atmospheric system [11,17]. The diurnal variations of tempo–
spatial distribution, occurrence and development characteristics, intensity, frequency, and
duration of precipitation have significant impacts on ecological balance, water cycle, and
human production and life [11,18]. Enhancing in–depth research on DVP has multiple
benefits. On the one hand, it helps to accurately understand the tempo–spatial distribution
characteristics and variation patterns of regional precipitation, and further comprehend the
formation mechanisms of precipitation. On the other hand, it provides a scientific basis for
evaluating numerical models and serves as a reference for improving the modeling and
forecasting of regional precipitation [19,20].

Significant research achievements have been attained in the field of DVP. The studies
generally employ natural units or administrative divisions to investigate diurnal varia-
tions from top to bottom [17,21]. Previous research studies were primarily conducted
using ground–based observational data. Sen Roy and Balling [22] studied the diurnal
variation characteristics of precipitation (DVCP) in India using data from 2000 stations.
They found that different regions in India exhibited distinct characteristics in terms of
precipitation frequency, peak timing, and the influence of coastal and inland locations as
well as topography. In Europe, Twardosz et al. [1] studied the peak values and phases of
precipitation frequency and total amount, revealing pronounced seasonal differences in the
DVCP in southern Poland. In the United States, Wootten et al. [23] conducted statistical
analyses using summer precipitation data in North Carolina, and they identified significant
statistical differences between the daytime and evening precipitation amount (PA).

In a research study on DVP in Taiwan, it was found that precipitation amounts
and peak timing exhibit significant east–west differences due to the influence of the
Central Mountain Range [24]. Furthermore, studies on the diurnal variation and phase
of daily precipitation peak timing in different regions of mainland China have revealed
distinct local characteristics in terms of seasonality and regional variations [11]. In the
central and eastern parts of China, which are primarily composed of plains and hills
with relatively gentle terrain and automatic weather stations (AWSs), it was shown
that summer precipitation in South China and Northeast China reaches its peak in the
late afternoon [25–28]. In contrast, precipitation in Southwest China and North China
reaches its peak around midnight [18,29,30], while in the middle and lower reaches
of the Yangtze River, precipitation is mainly concentrated in the late afternoon [31,32].
In most areas of the Qinghai–Tibet Plateau, precipitation exhibits two diurnal peaks:
one in the early morning (midnight) and the other in the late afternoon [33]. With
the rapid development of high–tempo–spatial–resolution meteorological data, many
scholars have conducted in–depth studies on the tempo–spatial distribution of DVCP in
complex terrain areas [34]. Chen et al. [35] found that convective features appear most
frequently in the southern coastal and eastern mountainous areas of the Pearl River Delta
(PRD) region based on analyses of Doppler radar data for a duration of 3 years over the
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PRD region, with the highest frequency in June and the lowest frequency in September.
Liu et al. [36] used TRMM to analyze the hourly precipitation in the summer of 2008–2014
in this region, and found that the hourly precipitation and precipitation frequencies in
the eastern and central regions were greater than those in the western regions. There
are obvious differences between high precipitation intensity (PI) and high precipitation
frequency (PF).

Due to the complex terrain and relatively sparsely distributed observation sta-
tions, previous studies on precipitation in Xinjiang have mainly focused on individual
case studies, and some other long–term tempo–spatial distribution characteristics of
precipitation [37–39]. Previous research on DVCP in Xinjiang mainly relied on station
data, reanalysis data and satellite precipitation data with coarse spatial resolution (e.g.,
Cao et al. [40]). Li et al. [41] analyzed the DVCP and its influencing factors in the
central Tianshan Mountains using satellite and AWS data. Jing et al. [42] conducted
a statistical analysis of the main meteorological factors affecting winter precipitation
in the Ili River Valley (IRV) using reanalysis data and AWS data. However, previous
studies on DVCP in Xinjiang lacked high–tempo–spatial–resolution data to explore
the DVCP in complex terrain areas during the summer, and the quantitative statistical
relationship between small–scale meteorological factors, local terrain, and precipitation
in Xinjiang have also not been explored to date.

The Ili region is located in the center of Eurasia continent, and surrounded by moun-
tains (Tianshan Mountain Range) on three sides, with an open flat terrain on its western
boundary, forming a trumpet–shaped terrain. The convergence and updraft of water vapor
carried by the westerly flow make it the wettest region in Xinjiang, known as the “Cen-
tral Asian Wet Island” [43]. With global climate warming, the tempo–spatial distribution
characteristics of precipitation over the IRV exhibit significant inhomogeneity. Moreover,
the region is considered to be one of the most frequent heavy rain areas in Xinjiang in
summer [39], and exhibits significant diurnal variation characteristics influenced by the
mountain–valley terrain, underlying surface, atmospheric circulation patterns, and thermo-
dynamic mechanisms [12,44]. In addition, the extreme precipitation events in the Ili region
also exhibited an increasing trend, for instance, a single rainstorm process on 16 June 2016,
caused severe economic losses of nearly 600 million CNY, with the disaster–affected popu-
lation exceeding 70,000 [37,45]. Previous studies on the DVCP in the Ili region relied mainly
on observation data from a few scattered and sparsely distributed stations, which cannot
accurately distinguish the surrounding areas with mountainous or other steep terrains.
Therefore, previous findings can not be considered as representative of the surrounding
areas of the stations, and they cannot provide a clear understanding of the distribution of
precipitation and DVCP in the Ili region and surrounding mountainous regions.

However, high–tempo–spatial–resolution numerical model data are considered an
important tool for in–depth research on DVCP characteristics, precipitation forecasting,
and simulation [16,20,46,47]. The real–time forecasting model Advanced Research Weather
Research and Forecast (WRF_ARW), improved by Nanjing University, has frequently been
used by scholars in recent years in the study of summer precipitation in the central and
eastern parts of China. Zhu et al. [48] compared the simulation performance of WRF_NJU
with other global models for summer precipitation in China in 2013 and found that the
WRF_NJU’s performance was even better. Cai et al. [49] found that the WRF_NJU model
could reasonably reproduce the diurnal cycle of summer precipitation, including peak
timing, duration, and amplitude, in the Qinghai–Tibet Plateau and Sichuan Basin. In
an evaluation of the summer precipitation forecast from WRF_NJU in Xinjiang, Xu and
Ming [50] stated that the diurnal variation in the precipitation forecast from WRF_NJU
exhibited a consistent trend with observations, with the peak values occurring at a similar
time, and the WRF_NJU simulation performed well for the majority of precipitation events.
Consequently, WRF_NJU simulation data can be considered reliable for further studies on
summertime precipitation, with a high tempo–spatial resolution.
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In this study, ground–based AWS data, Multi–Source Weighted–Ensemble Precipi-
tation (MSWEP), and ERA5–Land were used to evaluate the ability of the hourly 4 km
resolution WRF_NJU model to simulate precipitation in the Ili region (i.e., IRV and its
nearby mountainous area). Then, the DVCP in the Ili regions was studied, and a preliminary
investigation was conducted on the quantitative relationship between main meteorological
factors influencing the occurrence and development of precipitation and DVCP as the first
investigation of DVCP, based on hourly 4 km resolution data in Xinjiang. The aim of this
paper is to fill the gap in the in–depth exploration of the DVCP in the IRV and nearby
mountainous areas due to the lack of high–tempo–spatial–resolution data. It contributes to
an improved understanding of the DVCP in the Ili region and provides important insights
that can be used to further explore the diurnal variation mechanisms of precipitation over
complex terrain conditions [2,51].

This paper is organized as follows. Section 2 provides an overview of the study
area and describes the information regarding the data and methods used in this research.
Section 3 evaluates the capability of the WRF_NJU data in the region and presents the
results of the analysis of DVCP and explores the correlation between the elevation, major
meteorological factors, and DVCP in the Ili region. Finally, Sections 4 and 5 present the
discussions and conclusions of the study.

2. Data and Methodology
2.1. Dataset

This paper utilizes automatic weather station (AWS) data provided by the China
Meteorological Administration for the period from 1 June to 31 August 2015–2019,
totaling 460 days. Data–quality control work was strictly conducted, taking into account
data continuity, consistency, repetition rate, and missing rate [52]. The distribution
of the stations is shown in Figure 1a. Besides, the Multi–Source Weighted–Ensemble
Precipitation (MSWEP) V2 3–hourly 0.1◦ resolution dataset was used, which combines
various remote sensing precipitation data, station data, and reanalysis data to obtain the
highest quality precipitation estimates for each location [53,54]. This dataset has been
widely used in studies on regional precipitation characteristics [55]. The ERA5–Land
hourly 0.1◦ resolution precipitation data from the European Centre for Medium–Range
Weather Forecasts (ECMWF) were also used [56]. They performed well in the DVCP
studies over mountainous regions with complex topography [57].
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Figure 1. (a) Overview of the study area: the red line represents the administrative boundary of Ili
region, the shaded area represents the topography, black dots represent automatic weather stations,
and the blue lines represent rivers in the Ili region; the blue dashed box is an edge–shaped area. The
inset map in the bottom right corner shows the location of the study area in China. (b) Summer
average accumulated precipitation from June to August during the period of 2015–2019: the shaded
colors represent precipitation, overlaid with the same averaged horizontal wind fields (arrows,
units: m s−1) at 750 hPa, and the topography is depicted by gray contour lines.
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The 4 km resolution WRF_NJU forecast system has been providing real–time fore-
casts for China twice daily during the summer since 2013 [48]. The model domain has
1409 × 1081 horizontal grid points at a 4 km grid spacing with 51 vertical levels. Pivotal
physics schemes used include the Morrison two–moment microphysics [58], the CAM
short– and long–wave radiation schemes [59], the Pleim–Xiu land surface and surface
layer schemes [60], and the Asymmetrical Convective Model Version Two Planetary
Boundary Layer Scheme [61]. Considering the low quality of the simulation results dur-
ing the model’s spin–up period, the results of the 12–36 h forecast period were selected
for the next day in each day’s simulation.

The AWS data were used to evaluate the performance of the WRF_NJU data in flat
areas below 1.5 km altitude (above sea level), while the MSWEP data were used to validate
the performance of the WRF_NJU data in the entire study area, especially in regions lacking
AWSs. The ERA5–Land were used to evaluate the precipitation simulation performance of
the WRF_NJU under different terrain conditions.

2.2. Methods

The Coefficient of Variation (CV), represents the degree of variability of precipitation
and is used to analyze the stability of precipitation over different time periods. A larger
CV indicates a greater variation in precipitation over time, which increases the chances
of droughts and heavy rainfall. Conversely, a smaller CV indicates better stability in
precipitation. The formula used to calculate the CV is as follows:

CV =
σ

x
× 100%, (1)

σ represents the standard deviation of hourly precipitation, and x represents the mean
of hourly precipitation.

Rotated Empirical Orthogonal Function (REOF) is often used to study possible spatial
modes (ie, patterns) of variability and how they change over time in climatology. REOF can
effectively capture local features within a region and reveal the interrelationships among
different areas. Additionally, REOF tends to have reduced sampling errors. Its significance
testing is often performed using the North test [62]; for the derivation of the formulas,
please refer to the referenced literature [63,64].

The Correlation Coefficient (CC) is a statistical measure used in meteorology and cli-
matology to assess the degree of correlation between station–based observed precipitation,
blended precipitation data from multiple sources, and reanalysis or forecast data. A higher
absolute value of the CC indicates a stronger correlation between the datasets. The results
are often subjected to an R correlation test; the formula for calculating the CC is as follows:

CC =
∑ (xi − x)(yi − y)√
∑ (xi − x)2(yi − y)2

, (2)

Root Mean Square Error (RMSE) is a meteorological statistical measure used to quan-
tify the deviation between reanalysis data, forecast data, and observed precipitation. It
is sensitive to outliers or extreme values in the data. A smaller RMSE value indicates
a smaller deviation or error between the analyzed or forecasted precipitation and the
observed precipitation [65]. The formula for RMSE is as follows:

RMSE =

√
1
n

n

∑
i=1

(xi − yi)
2, (3)
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The relative bias (BIAS) is used to reflect the relative deviation between reanalysis
and forecast data compared to observed data. It quantifies the degree of relative deviation
between these datasets. The equation for calculating BIAS is as follows:

BIAS =

n
∑

i=1
(xi − yi)

n
∑

i=1
yi

× 100%, (4)

In the equation, xi represents the reanalysis data or forecast data, and yi represents the
observed data or merged precipitation data from multiple sources.

Hourly average precipitation amount (PA):

PA =
n

∑
day=1

prcp(hour, day)/n, (5)

Hourly average precipitation frequency (PF):

PF =
n

∑
day=1

pf(hour, day)/n × 100%, (6)

Hourly average precipitation intensity (PI):

PI =
PA
PF

, (7)

In the equation, prcp(hour, day) represents the PA at every hour of each day.
pf(hour, day) represents the number of occurrences for the precipitation at each hour is
greater than or equal to 0.01 mm. PI represents the total PA at a specific moment divided
by the total number of occurrences of precipitation at that moment.

Taking full account of the geographical location of Ili region, the time division is as
follows (Table 1):

Table 1. Time slot names and their corresponding time ranges used for DVCP analysis in this paper.

Time Slot Name Time Range (LST = UTC + 6)

Midnight 2300–0100
Early morning 0200–0400

Dawn 0500–0700
Morning 0800–1000

Noon 1100–1300
Afternoon 1400–1600
Nightfall 1700–1900
Evening 2000–2200

3. Results
3.1. Precipitation Data Evaluation

Observational and gridded data are often used to evaluate the weather and climate
models. However, due to the high tempo–spatial variability in precipitation and
measurement errors, precipitation data are prone to errors. Previous studies have
found that, in mountainous areas, data are scarce, and this can cause errors of about
60% [66]. Therefore, multiple precipitation datasets from different sources (such as
AWS, MSWEP, and ERA5–land) were considered to evaluate the WRF_NJU data in
this study. At the same time, we also selected AWS data in the station’s relatively
densely distributed areas (valley plain area below 1.5 km ASL) to minimize the impact
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of under–sampling precipitation. We used precipitation averages and larger scale
statistics to increase confidence.

Figure 2a shows the temporal distribution of four sets of precipitation data. From
the graph, it can be seen that the hourly precipitation in the Ili region exhibits a clear
unimodal structure, which is consistent with previous studies on diurnal peaks in sum-
mer precipitation [67]. They utilized hourly precipitation data from three meteorological
stations in western Ili and one station in eastern Ili to study the DVCP and found that
the maximum precipitation occurred at 2000 LST and the minimum precipitation oc-
curred at 1100 LST. By employing the Cressman interpolation method to interpolate the
data from AWSs across the entire study area, it was discovered that the peak precipita-
tion for the entire study area was 0.125 mm h−1 at 2000 LST, and the minimum value
was 0.058 mm h−1 at 1200 LST. This finding is consistent with the results obtained by
Yang et al. [68], who conducted a study using data from 10 meteorological stations in
the Ili River Valley (IRV). They found that summer precipitation exhibited an unimodal
pattern, with the peak occurring at 2000 LST. On the other hand, the peak precipitation
values for MSWEP, WRF_NJU, and ERA5–Land were 0.132 mm h−1, 0.164 mm h−1,
and 0.297 mm h−1, respectively, appearing at 1600 LST, 1700 LST, and 1600 LST. The
minimum precipitation values were 0.049 mm h−1, 0.063 mm h−1, and 0.086 mm h−1,
respectively, occurring between 0200 and 0600 LST. From Figure 1a, it can be seen that
the AWSs are mainly located in flat IRV below an altitude of 1.5 km. Therefore, for
the evaluation of precipitation data in the entire study area, MSWEP data were used
as the reference for comparison. Figure 2b shows the standard deviation (SD), correla-
tion coefficient (CC), root mean square error (RMSE), and relative bias (BIAS) between
WRF_NJU, ERA5–Land, and MSWEP as 1.04, 2.36, 0.89, 0.99, 0.03, 0.08, 33.55%, and
93.08%, respectively. Taking full account of the geographical location of the Ili region, the
time division is as follows. It can be seen that, for the temporal variation in precipitation
in the entire study area, WRF_NJU is close in magnitude to the reference data MSWEP
and exhibits a consistent temporal trend. This is similar to previous evaluation results
where the diurnal variation and peak values of WRF_NJU precipitation data closely
align with the observations [50]. Due to the limitations regarding the number and spatial
distribution of AWSs, the data from the stations located below 1.5 km in altitude and
on flat terrain were used as a reference. Similarly, the WRF_NJU precipitation values in
Figure 2a are close to the observations, and the trends are relatively consistent. Figure 2b
reveals that the SD, CC, RMSE, and BIAS are 1.17, 0.65, 0.01, and −0.6%, respectively,
which are significantly better than the results from the other three datasets.
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Figure 2. (a) The diurnal variation curve of average hourly characteristics of precipitation during
summer. (b) The Taylor diagram illustrates the comparison between WRF_NJU data and ERA5–Land
with AWS and MSWEP. The red color indicates the comparison between reanalysis data and forecast
data below 1.5 km with the data from AWSs. The blue color represents the comparison between
WRF_NJU data and ERA5–Land within the entire study area with MSWEP.



Remote Sens. 2023, 15, 3954 8 of 29

Figure 3 presents four sets of precipitation data (0200, 0800, 1400, 2000 LST) depicting
the PA levels in the IRV and its surrounding mountainous areas. The areas above an
elevation of 1.5 km use the MSWEP precipitation data as a reference, while the areas
below 1.5 km use data from AWSs as a reference. A comparison is made between the
WRF_NJU model and ERA5–Land data. Based on the four sets of precipitation data and
time division method (Table 1), it can be found that, in the morning, at 0800 LST, there is a
strong distribution of precipitation in the southern mountainous region of the IRV, with
precipitation amounts ranging from 0.2 to 0.3 mm. The lowest precipitation values are
found in the northwest part of the study area, with an average precipitation amount of less
than 0.05 mm (Figure 3a–d). In the afternoon at 1400 LST, the precipitation range expands in
the mountainous areas near the IRV, and the magnitude increases. The precipitation pattern
is consistent with the orientation of the mountains, with a northwest–southeast trend in
the northern part and a southwest–northeast trend in the central and southern parts. The
highest precipitation occurs near the Ketman Mountain in the central region, while the
lowest precipitation distribution range was found in the northwest valley, which expands
towards the east (Figure 3e–h). In comparison to the earlier time period, the precipitation
range and magnitude in the mountainous regions diminish in the evening at 2000 LST,
especially in the northern mountainous region. The precipitation amount increases within
the valley area (Figure 3i–l). In the early morning, at 0200 LST, the precipitation range
and magnitude in the mountainous areas further diminish, while the lower–altitude valley
area experienced an expansion in the precipitation range. Through a comparison of the
observational data and the reanalysis data, it can be concluded that the WRF_NJU model
accurately simulated the temporal distribution characteristics of precipitation in the IRV
and its surrounding mountainous areas. Therefore, these data can be considered credible,
and used for future studies on the DVP and related meteorological factors within the
research area (Figure 3m–p).
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3.2. The Diurnal Variation Characteristics of Precipitation in the Ili River Valley
3.2.1. The Diurnal Variation of Precipitation Frequency (PF) and Precipitation Intensity (PI)

Because Xinjiang has a much lower density of distribution of conventional and auto-
matic weather stations than the mid–eastern part of China due to its sparse population,
along with a slower economic development, complex topography, and harsh environment
such as the desert and gobi, the WRF_NJU data with relatively high tempo–spatial reso-
lution can offer a good opportunity to investigate much more detailed characteristics of
DVCP in Xinjiang.

It can be seen from Figure 4 that the spatial distribution characteristics of PF at
0200 LST in the early morning are similar to those of PA (Figure 2a). The overall PF
ranges from 10% to 20%, with southern regions having higher values than northern
regions, and eastern regions having higher values than western regions. The maximum
PF is located in the southern mountainous area, whereas the minimum PF is found
in the northwest valley of the study area (Figure 4a). At 0500 LST in the dawn, little
has changed in PF. The PF range slightly widens in the southern portion of the valley
while it decreases in the northern part (Figure 4b). By 0800 LST in the morning, the PF
significantly decreases. With the exception of the southern mountainous area, where the
frequency typically falls below 10% at this time, there is a substantial decrease in the
occurrences of precipitation across the study area. (Figure 4c). From 1100 LST at noon
to 1700 LST at nightfall, the PF increases significantly, consistent with the trend shown
in the precipitation distribution map. The southern mountainous area exhibits a clear
band–shaped pattern, with PF increasing from 20% to over 60%. The eastern part has a
higher frequency compared to the western part, while the magnitude and range of PF
within the valley do not change significantly, remaining below 20%. Additionally, it is
evident that the PF in the northern mountainous area is below 40%, lower than in the
central and southern mountainous areas, with a small range of minimum PF occurring
in the Boluokenu Mountains (Figure 4d–f). From 2000 LST in the evening to 2300 LST at
midnight, the PF gradually decreases to below 20% in the northern mountainous area,
and the central and southern mountainous areas also show a reduced frequency and
range. Conversely, within the valley, there is a slight increase in the magnitude and range
of PF. The PF in the IRV and its surrounding areas shows distinct diurnal variations. The
highest PF, exceeding 60%, occurs around 1700 LST, while a small region of the western
Ili River basin near (44◦N, 80.5◦E) contains areas with a PF below 5%. Overall, the lowest
PF occurs at around 0800 LST.

Similar to PA and PF, the PI in the nearby mountainous areas is generally higher
than 0.5 mm h−1 compared to the valley areas. The PI gradually increases in the western,
central and southern parts of the northern mountainous area from 0500 to 1400 LST
(Figure 5b–e), reaches its maximum value around nightfall, near 1700 LST, and grad-
ually decreases thereafter (Figure 5f). The maximum PI in the western mountainous
area exceeds 2 mm h−1 and occurs during the evening period, from 2300 to 0500 LST
(Figure 5a,b,h), while it is relatively weaker during the daytime. In the valleys, the
evening PI is greater than during the daytime. In the western part, the PI exhibits larger
daily variations, ranging from 0.01 to 0.75 mm h−1, compared to the eastern part, which
ranges from 0.25 to 0.75 mm h−1. In the northern mountainous area, the maximum PI in
the eastern section occurs at around 1100 LST (Figure 5d). Yang et al. [68] investigated
the hourly average PI and shows significant differences in the timing of peak PI based
on observations from five meteorological stations in the western part of the IRV, which
indicate that the peak in PI occurrs between 18:00 and 19:00 LST. However, observations
from several stations cannot solely accurately reflect the tempo–spatial distribution
characteristics of precipitation in the region, as the data are not representative of the
entire or wider region.
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According to previous studies, DVP is usually determined by PF and PI [69,70]. In
order to further investigate the diurnal variation characteristics of PI in the IRV and
its adjacent mountainous areas, the hourly PI is divided into 10 categories, following
the method of Karl and Knight [70]. It can be seen from Figure 6 that moderate and
heavy precipitation contribute to over 80% of the total precipitation in each time period.
Combining the characteristics of the PI in Figure 5, the frequency of occurrence and
the contribution rate of moderate and heavy precipitation levels are higher during the
midday–to–evening periods than during the evening–to–morning periods. PI exceeds
90% at 1500 LST, and contributes to approximately 50% of the total precipitation. This
indicates that there are differences in the diurnal variation at different PI levels, with
moderate and heavy precipitation being predominant. To further quantitatively analyze
the contribution of the different PI levels to the total precipitation in the summer in the
IRV, Table 2 shows that the accumulative hourly precipitation of PI levels 5–10 accounts
for 87.88% of the total precipitation, with an average PI of 1.62 mm h−1. The PI level 10
has a contribution rate of 27.25%, which is the highest among the 10 PI levels. In accor-
dance with other research that discovered a high frequency of heavy precipitation in the
mountainous regions of the IRV using case data (Figure 5), extreme heavy precipitation
primarily occurs in steep mountainous areas and at the confluence of valleys [39,71].
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Figure 6. During summer (from June to August) in the Ili region from 2015 to 2019, obtained from
WRF_NJU data. The percentage of total precipitation for each time period contributed by different PI
levels of precipitation (unit: %).

Table 2. Contribution rate (unit: %) and average precipitation intensity (PI) (units: mm h−1) of
different intensity levels of summer rainfall in the Ili region.

PI Levels 5 6 7 8 9 10 5–10

PI (mm h−1) 0.48 0.68 0.98 1.48 2.48 3.62 1.62
Contribution rate (%) 5.82 8.32 12.25 19.32 14.93 27.25 87.88

3.2.2. Diurnal Variation in Precipitation Based on REOF and CV Analysis

In order to clearly represent the DVCP under complex topographic conditions, a REOF
analysis was employed to provide a tempo–spatial decomposition of the characteristics
of PA. The North test was also employed for a significance analysis. Following the REOF
decomposition, the cumulative contribution rate of the first three modes was achieved
at 85.2% (Figure 7), and all three modes met the requirements of the significance test.
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The first mode, which was substantially more dominant than the other modes and had
a variance contribution rate of 61.2%, was able to explain the tempo–spatial distribution
characteristics of precipitation in the Ili region, as well as a significant portion of the
precipitation distribution. In the central and southern mountainous regions, the first
mode’s spatial distribution showed the presence of numerous high–value centers. Negative
value areas were found along the valleys in a northwest–southeast direction, indicating
variations in precipitation amounts with changes in terrain height. Negative value areas
were found along the valleys in a northwest–southeast direction, indicating differences in
precipitation amounts with changes in terrain height. The northern mountainous region,
central and southern mountainous regions correspond to areas of high precipitation. Due to
the presence of the Tianshan mountain range, the mountainous areas experience consistent
precipitation characteristics. The areas with negative values correspond to the regions with
low precipitation values in the IRV (Figure 7a). The second mode accounted for a variance
contribution rate of 16.2%, with positive precipitation centers found in the Zhaosu Basin
and near the vertex region of the wedge–shaped area, while a low–value center was found
near the peak of Ketman Mountain (Figure 7b). The third mode accounted for a variance
contribution rate of 7.8%, and the high–value center corresponded to the low–value area
in the second mode (Figure 7c). According to a study on PA, PF, and PI, described above,
the results showed that the highest values of precipitation in mountainous areas were
primarily found between noon and 1200 LST and around nightfall, at 2000 LST, with the
maximum value being attained at 1600 LST. According to Figure 7d, the peak precipitation
in the valleys was between 2100 and 1100 LST in the evening, which is consistent with
the characteristics of diurnal variations in precipitation noted in previous studies in the
IRV [68]. The second mode captured the tempo–spatial pattern of a peak precipitation
period from nightfall 1700 LST to early morning 0200 LST in the Zhaosu Basin and Labakou
terrain area, showing differences from the mountainous and valley areas (Figure 7e). In
contrast, the third mode exhibited the presence of two maximum peaks and two minimum
peaks within the diurnal cycle (Figure 7f), which can be attributed to a mode related to the
semidiurnal variation [24].
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Figure 7. During summer (from June to August) in Ili region from 2015 to 2019 obtained from
WRF_NJU data. REOF analysis of hourly precipitation in the Ili region during the summer season.
Distribution of feature vectors for the first three dominant modes, (a) REOF1; (b) REOF2; (c) REOF3.
(d–f) Amplitude of the weight time series is shown in the bottom panels.
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To further elucidate the spatial distribution of abnormal DVCP, as shown in Figure 8,
the CV was calculated for the PA in the IRV and adjacent mountainous areas, as shown
in Figure 8. It can be seen that the CV of precipitation is higher in the western region
compared to the eastern region. The western parts of the northern mountainous areas,
the western parts of the IRV, the central mountainous areas, and southern mountainous
areas all exhibit CV values exceeding 60%, with the maximum variation center located in
the northwestern and southwestern parts of the study area exceeding 80%. In contrast,
the CV in the eastern region, except for the southeastern mountainous area, is generally
below 40%. Previous studies have found that high–value centers of CV reflect the degree
of precipitation variability, corresponding to regions with significant differences in
diurnal precipitation and frequent occurrences of heavy rainfall disasters [72]. According
to the statistical research of Zhang et al. [73] on heavy rainfall events in Xinjiang from
1960 to 2018, the mountainous areas in the Ili region accounted for over 95% of the total
strong precipitation events. Based on the previous analysis, we can infer that the IRV
and nearby mountainous areas exhibit significant tempo–spatial differences in DVCP,
which is consistent with the findings of Li et al. [74] using hourly precipitation data from
automatic observation stations. The IRV shows significant spatial variability in summer
PA and PF along the valley and towards the mountainous areas.
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Figure 8. During summer (from June to August) in Ili region from 2015 to 2019, obtained from
WRF_NJU data. Spatial distribution of the coefficient of variation for summer hourly average
precipitation. The color shading represents the coefficient of variation (unit: %). The red (a1–b4) and
blue (c1–d2) dashed lines indicate the locations of the vertical profiles in Figure 10. The black boxes
represent the positions of the sub–regions in Figures 13 and 14.

Based on the results of the analysis of PA, PF, PI, REOF, and CV, five sub–regions were
selected for further investigation (Figure 8): Western Valley (WV), Eastern Valley (EV),
Ketman Mountains (KM), Northern Slope of Ketman (NK), and Haerk Mountains (HM).
These sub–regions will be used for further regional analysis in the following sections.

3.2.3. Spatial Distribution Characteristics of Diurnal Variations in Precipitation

Figure 9a shows the spatial distribution of the diurnal variations in the peak time of
PA obtained from the WRF_NJU data. To highlight the spatial distribution characteristics of
the peak precipitation occurrence time, the precipitation data are masked by administrative
boundaries. From Figure 9a, it can be seen that the peak precipitation shows clear north–
south differences. The peak precipitation in the northern part occurs from evening to noon,
while in the southern part, it occurs from noon to evening. Figure 9a shows that the peak
values in the western part of the valley mostly occur from 2000 to 2200 LST, gradually
shifting to the eastern part from 0800 to 1000 LST in the morning. It is evident that there is
a gradual delay in the occurrence of peak precipitation. This result is similar to the findings
of Li et al. [74] regarding the eastward movement of precipitation in summer regional
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rainfall events in the IRV. Moving from the valley towards the mountains in the north
and south, it can be shown that the peak precipitation in the mountainous areas generally
occurs from 1400 LST to around 1900 LST, and there is also a time lag in the occurrence of
peak precipitation from the mountains to the valley.
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Figure 9. During summer (from June to August) in Ili region from 2015 to 2019, obtained from WRF_NJU
data. (a) Spatial distribution of diurnal variations in hourly precipitation peak time (LST) in the Ili
region during summer, with color representing time and gray contour lines representing topography.
(b) Diurnal variations in hourly precipitation distribution at different elevations. (c) Time–longitude and
(d) time–latitude hovmöller diagram of average hourly precipitation in summer.

Previous studies have found that, among the various topographical factors, eleva-
tion has a significant impact on the spatial distribution of climatological precipitation [11].
In order to investigate the characteristics of precipitation variations with altitude under
complex terrain conditions in the Ili region, the study fully considers the topographic
features of the research area in Figure 9b. The altitude is divided into intervals that are
0.5 km above and 0.25 km below. The corresponding PA is calculated for each height
range. The results show that precipitation generally increases with increasing eleva-
tion, and there are significant differences in DVP at different elevations. The maximum
precipitation occurs at around 1600 LST in the mountainous areas above 4 km, and the
difference in DVP in the mountainous areas is significantly larger than that in the IRV at
lower elevations. The peak precipitation in the IRV at lower elevations is concentrated
from the evening to the early morning period.
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The averaging is carried out along the meridional direction using the boundaries
of the Ili region (Figure 9c), taking into account the topographic profile of the research
area, which is wider in the west and a narrower in the east. It can be seen that there is
a significant spatial variation in precipitation at around 1400–1700 LST. Precipitation
decreases from south to north, indicating a transition from the southern mountainous
areas to the IRV and northern mountainous areas. The center of maximum precipitation
is in the southern mountainous areas, while the lowest value of 0.05 mm occurs in
the morning in the IRV. Figure 9d represents the zonal average. The DVP is greater
than the meridional average. Between 80.06◦E and 82.08◦E, the maximum precipitation,
0.3–0.4 mm, is dispersed. From west to east, precipitation increases and then decreases.
Between 82.08◦E and 83.03◦E, there is a secondary center of precipitation, ranging from
0.15 to 0.2 mm, spanning from 1200 to 1900 LST.

To clearly understand the DVP in the Ili region, it is necessary to understand the
spatial pattern, especially in mountainous areas. Johansson and Chen [75] pointed out in
their study that, even in mid–latitude regions, the relationship between precipitation and
elevation is not a simple linear increase but exhibits significant regional variations. One
of the most important processes that takes place is topographic enhancement, which is
influenced by factors such as wind speed and direction. In the following, a more compre-
hensive analysis is conducted on the spatial distribution patterns of diurnal variations in
precipitation peaks, and variations in precipitation with respect to zonal, meridional, and
elevation changes in the Ili region. Figure 9 shows that topography has a significant impact
on the centers with high precipitation values. In order to better analyze the DVCP due to
topographical changes, six profiles were selected.

On the southern slope of the Alatau Mountains, at the northern end of the profile,
as shown in Figure 10a, the maximum hourly rainfall reaches 0.15 mm. The peak occurs
at 1700 LST, and the minimum precipitation value is seen at 0800 LST. From the slope’s
elevation of 2.2 km to the southern part of the valley, precipitation shows a decreasing
trend during different time periods. The rainfall peak occurs at 2300 LST, and the lowest
value is found at 1700 LST. In the middle part of the profile, the central part of the Ketman
Mountains, the rainfall peak on the northern slope occurs at 1400 LST, while on the southern
slope towards the southern end of the profile, the peak occurs at 1700 LST. In Figure 1,
the average 750 hPa horizontal wind field during the summer indicates that the southern
slope is a lee slope, and the peak precipitation time lags behind the northern slope. On the
southern slope of the Haerk Mountains, the maximum hourly rainfall surpasses 0.5 mm,
and afternoon and evening hours contain significantly more precipitation than other times
of the day. In Figure 10b, the profile terrain resembles that in Figure 10a. The northern
part is the southern slope of the Boluokenu Mountains, and the precipitation during some
time periods is close to that of the valley. When combined with Figure 1, it can be seen
that the average annual precipitation in the mountainous area is much lower than that
of mountainous areas at the same latitude. From the transition zone from the valley to
the mountainous area, the precipitation peak occurs between 2300 and 0500 LST. The
central part is the eastern part of the Ketman Mountains, and the precipitation peak is
smaller than the central part (Figure 10a). The Zhaosu Basin, from the depression to the
south, experiences peak precipitation slightly later than the surrounding mountainous
regions, between 1700 and 2000 LST. The western part of the Haerk Mountains has a lower
precipitation peak of 0.34 mm, occurring at 1700 LST, compared to the eastern part. In
Figure 10c, the profile is high at both ends and low in the middle. Rainfall peaked in the
northern mountainous region at 0.28 mm, and in the southern Nalati Mountain region
at 0.35 mm. The peak times in the mountainous areas are allt1700 LST, while the peak
precipitation times from the mountainous area to the valley occur sequentially at 1700,
2000, 2300, 0200, and 0500, showing a delayed trend. In the western part of the study
area, represented in Figure 10d, it can be seen that the northern mountainous area has an
elevation exceeding 3 km, with a rainfall peak of approximately 0.2 mm occurring from
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2300 to 0200 LST. This peak time differs significantly from the other mountainous areas.
The southern mountainous area has a peak precipitation time of 1400–1700 LST.
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In Figure 10e, the precipitation profile extends northwest–southeast along the valley.
The average elevation from the northwestern region up to the foothills of the Nalati
Mountains is below 1 km, and the precipitation during these different time periods is below
0.1 mm. The diurnal variation in precipitation is much smaller than that in the mountainous
areas. The peak precipitation occurs from west to east at 2300–0500 LST, and there is a
significant difference in the peak time depending on the location. The precipitation peak in
the foothills of the Nalati Mountains to the mountain slopes reaches 0.15 mm, and occurs at
the same time as that in the valley region. In Figure 10f, the precipitation profile represents a
southwest–northeast direction from the depression in the southern mountainous area to the
Zhaosu Basin. This figure makes it clear that the Zhaosu Basin’s depression has its highest
precipitation at about 1700–2000 LST, slightly later than the surrounding mountainous
areas. The peak precipitation exceeds 0.2 mm in the basin, while it is approximately 0.1 mm
in the central and western parts.

Upon comparing the aforementioned findings, it becomes apparent that the diurnal
variations in precipitation near the mountain summits display a considerably greater
disparity than those in the slopes, valleys, and basin regions. In the valleys and basins,
the hourly precipitation generally remains below 0.1 mm, whereas the slopes observe
precipitation levels above 0.1 mm and, near the mountain summits, the precipitation
exceeds 0.3 mm. In addition, with regard to the peak precipitation, the influence of terrain
and wind patterns results in a slight delay in precipitation on the lee side of certain
mountainous areas, compared to the windward side. In contrast, the valleys and basins
experience even later peak precipitation, typically occurring between 2300 and 0500 LST.

3.3. Statistical Characteristics of Factors Related to Precipitation in the Ili River Valley
3.3.1. The Diurnal Variations in Precipitation and Their Correlation with Different Altitudes

In complex terrain areas, mountains themselves modify local airflow and correspond-
ing weather systems through dynamic and thermal effects, thereby causing localized
precipitation and changes in cloud patterns. Existing observational studies have confirmed
the close relationship between terrain–induced precipitation and meteorological condi-
tions [11,29,68]. Referring to the previous case study on heavy precipitation and analyzing
the statistical characteristics of meteorological factors related to precipitation, we made
initial investigations into their contributions to precipitation.

Figure 11a shows the average dispersion profiles plotted at intervals of 0.1 km, from
0.5 to 4.5 km. It clearly illustrates that the dispersion increases with altitude, being below
2 km during the 2000–0800 LST period, with significantly higher dispersion values. There
is a large difference in dispersion between the upper and lower levels, and the dispersion
values are negative during this period, contributing to low–level convergence and upper–
level divergence in the valley and basin areas. From 1100 to 1700 LST, the dispersion
values are positive, indicating upper–level divergences in the mountainous regions, which
facilitates precipitation and corresponds to the peak precipitation period in the mountainous
areas mentioned earlier.

Before and after 0800 LST, the equivalent potential temperature (θe) from the surface
to near 3 km shows an increase with altitude (Figure 11b). Between 1400 and 2000 LST, this
phenomenon is found only below 1 km altitude. Around 1700 LST, the highest values of
the θe occur above 1 km, indicating that the air masses during this period are more heated
and contain more energy. Under such conditions, the air masses are relatively unstable and
prone to uplift, leading to cloud formation and precipitation.

Except for the 0800 LST profile, the water vapor mixing ratio (WVMR) dramatically
drops above 1 km of altitude, indicating a higher water vapor content in the valley region
compared to the mountainous areas (Figure 11c). The minimum values occur around
0800 LST, while the maximum values occur around 2000 LST, corresponding to the peak
precipitation period in the valley region.
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Figure 11. During summer (from June to August) in Ili region from 2015 to 2019, obtained from
WRF_NJU data. Vertical profiles of mean (a) divergence, (b) equivalent potential temperature,
(c) water vapor mixing ratio, (d) horizontal wind speed, (e) relative humidity, and (f) vertical velocity
at different times. The vertical profiles depict the variation with height, and the different colored
curves represent the changes corresponding to different times from 0200 to 2300 LST.

In Figure 11d, the average horizontal wind speed (HWV) increases significantly with
altitude between 1400 and 2000 LST, indicating a rapid increase in HWV that enables the
faster movement and accumulation of water vapor from the valley to the mountainous
regions. Other times, the HWV exhibits a characteristic of initially increasing and then
decreasing between 0.5 and 2 km. The low–level HWV ranges from 1 to 3 m s−1, while the
upper–level HWV ranges from 6 to 8 m s−1.

The relative humidity (RH) increases with altitude from 0.5 to 3.5 km at all time
intervals (Figure 11e). The maximum RH exceeds 60% at 3.5 km, indicating a higher RH in
the high–altitude areas compared to the valley and basin regions, which is more conducive
to saturated precipitation. In the valley and basin regions below 1 km, the RH reaches its
maximum value during the dawn period from 0500 to 0800 LST.

In Figure 11f, the vertical velocity (VV) increases rapidly from the surface to 3.5 km
between 1100 and 1700 LST, reaching its maximum value around 1400 LST, which coincides
with the peak solar radiation during the summer. This increase in solar radiation leads to
an increase in surface temperature, causing heated air to ascend. At other times, the VV
shows less variation with altitude.

In previous studies, researchers have found that the mechanisms influencing the
occurrence and development of heavy precipitation are complex [39,76,77]. In this paper,
six relevant meteorological factors are selected. The previous analysis discussed their
diurnal variations at different elevations in the Ili region. In order to explore the correlation
between meteorological factors at different elevations and precipitation, Figure 12 illustrates
the results. Except for some heights of HWV, VV, and WVMR, all other meteorological
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factors at different heights pass the significance test at the 0.05 level. Comparatively, the
CC between θe and precipitation is the highest within the range of 1–4.5 km, with all
values above 0.88. The CC for divergence ranges from 0.44 to 0.83, and shows a strong
positive correlation with precipitation. The maximum CC appears at an altitude of 4 km,
corresponding to low–level convergence and high–level divergence. The CC between HWV
and precipitation below 1 km ranges from −0.62 to −0.58, indicating a negative correlation.
Above 1 km, only the heights of 2 km and 2.5 km pass the significance test, with CCs of 0.54
and 0.51, respectively, showing a strong positive correlation. VV passes the significance
test at all heights except 4.5 km, and the CC decreases with increasing altitude, with a
maximum value of 0.88 at 1 km. RH shows a negative correlation below 4 km, with CCs
ranging from −0.92 to −0.61, except for a positive correlation at 4.5 km with a CC of 0.8.
The correlation of WVMR exhibits a fluctuating trend of increasing and then decreasing
with increasing altitude, with a maximum CC of 0.95 occurring at an altitude of 4.5 km.
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Figure 12. During summer (from June to August) in the Ili region from 2015 to 2019, obtained from
WRF_NJU data. The correlation coefficients between six variables at different altitude levels and
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for not passing the test of significance.

Based on the statistical analysis of meteorological factors at different altitudes and
their relationship with precipitation, a strong correlation has been found between the
six meteorological factors and precipitation. In order to better understand the contributions
of various meteorological factors to precipitation in different complex terrain areas, multiple
linear regression equations were constructed for five regions identified in Figure 8. The
fitted coefficients and adjusted R–squared values presented in Table 3 have passed the
significance test at a 95% confidence level. Based on the specific locations and characteristics
of the coefficient of variation (CV) of precipitation, these regions can be further investigated
as high–CV and low–CV areas.

Table 3. The coefficients of multiple linear regression fitting and the adjusted R–squared values.

Div. θe WVMR RH HWV VV Adj. R2

WV −0.0018 −0.0319 0.1718 −0.0158 0.0055 0.2606 0.7380
NK −0.0010 0.0775 −0.3964 0.0342 −0.0007 0.8899 0.7721
EV −0.0009 0.0606 −0.3145 0.0318 0.0065 0.5321 0.8537
KM 0.0016 0.3505 −1.7853 0.1346 −0.0110 −0.3946 0.9758
HM −0.0022 −0.1245 1.0494 −0.0657 0.0938 −0.8355 0.9311
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3.3.2. Regression Analysis and Verification of Precipitation Factors in the High–Value
Area of CV

This region includes WV, KM, and HM. From Figure 13, it can be found that, al-
though all three areas are high–value areas in CV, there are significant differences in the
temporal distribution and magnitude of precipitation. WV, located in the western part
of the valley, exhibits a clear characteristic of more evening rainfall and less afternoon
rainfall, which is different from Figure 13b,c. The hourly precipitation is the smallest
among the five areas. The temporal distribution of various factors above the surface
at 0.5 km reveals a unimodal structure for all six meteorological factors except HWV.
Before the peak precipitation in the WV region, HWV and VV increase significantly,
indicating an increased upward motion and maximum negative values of divergence,
corresponding to low–level convergence. KM and HM, located in mountainous areas,
show peak precipitation at 1700 LST and 1600 LST, respectively. HW has more precipita-
tion, and HWV, VV, and divergence, reach their peaks 1–2 h before and after the peak
precipitation, indicating favorable dynamic and thermal conditions for precipitation
occurrence and development. RH and WVMR also show strong consistency with the
daily variation trend of precipitation, providing necessary water vapor for precipitation
to occur. According to Table 3, VV makes the largest contribution to the daily variation in
precipitation in WV, showing a negative correlation. WVMR makes the largest contribu-
tion to the daily variation in precipitation in KW and HW, showing negative and positive
correlations, respectively. Comparing the fitted equation results with the precipitation
values of WRF_NJU, the scatter points cluster near the 1:1 line. The determination
coefficients (R2) for all three areas exceed 0.8; the RMSEs are less than 0.03, and BIASs
are −0.59%, 0.63%, and 0.29%, respectively. This indicates that the multivariate linear
equation results from the three regions have a small deviation from the precipitation
values of WRF_NJU and can be used for the prediction of average summer precipitation
in this area.

3.3.3. Regression Analysis and Verification of Precipitation Factors in the Low–Value
Area of CV

This region includes the EV and NK areas, as shown in Figure 14a. PA are mostly
below 0.1 mm, with the peak occurring from the evening to early morning hours. There
are minimal variations in precipitation throughout the day, with the difference between
peak and valley values being less than 0.05 mm. HWV reaches its maximum value three
hours after the precipitation peak, while VV shows a declining trend before the peak.
During the evening, the valley’s divergence shows strong negative values, indicating low–
level convergence, and there is good consistency between RH, WVMR, and precipitation.
In contrast to the mountainous regions, the area shown in Figure 14b is located in the
zone from valley to foothills. Precipitation exhibits a distinct bimodal structure, reflecting
the diurnal characteristics of both valley and mountain precipitation. The two peaks
occur at 1600 and 0100 LST, respectively. HWV rapidly increases before the afternoon
precipitation peak, and the precipitation peak aligns with the peaks or secondary peaks in
other meteorological factors, showing good consistency. The negative divergence reaches
its maximum during the evening peak, aiding in the uplift of convergence in the valley,
leading to precipitation formation. Table 3 shows that VV contributes the most to EV and
NK, exhibiting a positive correlation with the DVP in that area. In Figure 14c,d, we can
observe that the coefficient of determination (R2) exceeds 0.8, the root mean square error is
0.005, and the relative deviation is 1.36% and −1.03%, respectively. These results indicate
that the multivariate linear equations predict precipitation, with minimal differences from
the reference values, demonstrating good predictive abilities.
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Figure 13. During summer (from June to August) in Ili region from 2015 to 2019, obtained from
WRF_NJU data. Hourly evolution plots of horizontal wind speed (blue dashed line), vertical velocity
(pink dashed line), equivalent potential temperature (red solid line), divergence (black solid line),
relative humidity (yellow bars), average precipitation (blue bars), and specific humidity (green bars)
for the (a) WV (b) KM (c) HM region in Figure 8. Scatter plot showing a comparison between the
simulated precipitation data from the multiple linear regression in the (d) WV (e) KM (f) HM region
and the WRF_NJU precipitation data. The red solid line represents the linear fit, and the dashed line
represents the 1:1 line.
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In summary, through hourly findings of meteorological factors at different altitudes,
we find different diurnal variation characteristics. Except VV, the diurnal variation differ-
ence between other factors at low levels is greater than that at high altitudes. By analyzing
the correlations between six meteorological factors and precipitation at each altitude, we
found significant positive correlations for divergence, VV, and WVMR at all altitudes.
Below 1.5 km, HWV shows a negative correlation with precipitation, while above 1.5 km, it
shows a positive correlation. RH is negatively correlated with precipitation. By performing
multiple regression analyses to determine the contributions of each factor to the DVP, we
found significant local variations among different regions. In mountainous areas (KM and
HM), WVMR contributes the most to DVP, while in valleys (WV and EV) and slopes (NK),
VV contributes the most to DVP. There is a good correspondence between the peak values
of DVP and the various meteorological factors. The more complex the terrain, the greater
the differences in DVP.

4. Discussion

The paper evaluates the applicability of 4 km WRF_NJU data and then conducts
a detailed investigation of the DVCP based on the high–tempo–spatial–resolution data
from WRF_NJU during the summer of 2015–2019 for the first time in the Ili region, filling
the gap left by previous studies due to the lack of high–tempo–spatial–resolution data to
understand the DVCP in the Ili region [39,67,68]. The WRF_NJU data can clearly reveal the
tempo–spatial evolution characteristics of PA, PF, PI, and peak values in the longitudinal,
latitudinal, and altitude dimensions, which can facilitate a detailed analysis of the DVCP in
various complex terrains in the region. By utilizing these data, significant differences were
found compared to previous studies that only used observations from a few stations to
analyze the DVCP [78,79]: the peak values in the eastern valley occurred from the evening
to early morning, the peak values in the central valley occurred from the early morning to
dawn, and the peak values in the western valley and mountainous areas were found from
the afternoon to evening, clearly identifying the regional differences in precipitation peak
delays caused by terrain.

Some of the DVCPs in the Ili region are noticeably different from those in other
mountainous areas of China, such as Sichuan Basin, although the Ili region is also
considered a mountainous region, with surrounding mountains and a rugged ter-
rain [29,44,80]. For instance, in the Ili region, the areas with a high PA, PF, and PI are
located in the high–altitude mountainous regions, and there are significant differences
between the eastern and western parts of the valley. In contrast, the Sichuan Basin
exhibits a precipitation peak center located in the western part of the basin and moun-
tain slopes, with a peak time of around 0200 LST [78]. The mountainous regions have
a higher PA compared to the slopes and valleys due to terrain differences, and the
timing of precipitation peak occurrence shows a delayed characteristic influenced by
the terrain in the Ili region.

Furthermore, the decomposition of precipitation into three major modes using
REOF clearly demonstrates the tempo–spatial variation patterns of diurnal changes
in the Ili region for the first time and reveals the existence of semi–diurnal structures
in the central mountainous and foothill areas. The CV results indicate that the areas
with high values are located in the mountains, with maximum values exceeding 80%,
much higher than in the Sichuan Basin and South China [69], reflecting the instability
of weather conditions in arid regions. In addition, this study further investigated the
correlation between some basic meteorological factors and diurnal precipitation, and
their possible contributions to precipitation, by utilizing the characteristic values of the
CV. The correlation between meteorological factors and precipitation at various altitudes
is mostly in the range of 0.6–0.9, while previous studies in South China reported similar
correlation coefficients below 0.5 [77]. Regression analysis revealed that VV and WVMR
make significant contributions to the temporal variation in precipitation, providing
preliminary insights into the possible mechanisms of precipitation diurnal variation.
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This work can be considered a great breakthrough in the research on DVCP in Xinjiang,
because previous studies on DVCP in this region were restricted by their low–tempo–
spatial–resolution data. Furthermore, many previous studies on precipitation in Xinjiang
mainly focused on individual cases of heavy precipitation, which allowed for an in–depth
analysis of the mechanisms behind single cases, but lacked generality in their findings.

5. Conclusions

This paper evaluates the performance of the WRF_NJU precipitation data and
investigates the diurnal variation characteristics of precipitation (DVCP) based on
hourly precipitation data from the WRF_NJU during the summer (from June to August)
of 2015–2019 in Ili region, Xinjiang, Northwest China. The evaluation includes an
analysis of precipitation amount (PA), peak values, and spatial distribution, and utilizes
correlation coefficients (CC), standard deviations (SD), root mean square errors (RMSE),
and relative biases (BIAS) for comparison. The main conclusions are as follows:

(1) WRF_NJU model effectively reproduces the precipitation in terms of quantity, spatial
distribution, and peak values in the Ili region. The PA in the valleys and mountainous
areas is close to that of the automatic weather stations (AWS) and Multi–Source
Weighted–Ensemble Precipitation (MSWEP) data, but lower than that of ERA5–Land.
WRF_NJU exhibits characteristics such as a low RMSE, similar SD, high CC, and small
BIASs throughout the study area. Therefore, WRF_NJU model data can be considered
credible data and be used for a statistical analysis of DVCP and the features of related
meteorological factors.

(2) The PA, precipitation frequency (PF), and precipitation intensity (PI) exhibit similar
diurnal variations. The maximum values occur in the evening near the summit of
Ketman Mountains (KM) and Haerk Mountains (HM). The DVCP is more pronounced
in the central and southern mountainous areas compared to the valley areas. The
average value of moderate to intense precipitation is 1.62 mm h−1, contributing to
over 80% of the hourly precipitation and total precipitation, with the most prominent
values being found from noon to evening.

(3) The precipitation in the Ili region was decomposed into three modes by the Rotated
Empirical Orthogonal Function (REOF). Both the first and second modes exhibited
distinct differences in diurnal variation peaks between the mountainous areas, valleys,
Zhaosu Basin, and wedge–shaped area, attributed to variations in topography. The
valley experiences peak precipitation from 2100 to 1100 LST, while the mountainous
areas observe peak precipitation from 1200 to 2000 LST. The peak precipitation in the
Zhaosu Basin and wedge–shaped area occurs between 1700 and 0200 LST. The third
mode reveals semidiurnal variation characteristics near the peak of Ketman Mountain.
The CV further reflects the maximum differences in DVCP in the western valleys and
southwestern mountainous areas of the study area.

(4) The temporal distribution of peak precipitation clearly demonstrates earlier peaks in
the mountainous areas compared to the valleys, with the western segment of the river
valley experiencing earlier peaks than the eastern segment. Along the longitudinal and
latitudinal directions, as well as in terms of elevation, the mountainous areas exhibit
greater precipitation than the valleys, probably due to the enhanced topographical
forcing. Precipitation peaks slightly earlier on downwind slopes than on upwind
slopes. The differences in precipitation amount gradually increase from valleys,
foothills, slopes, to mountain peaks. The peak precipitation on slopes and mountain
peaks occurs from the afternoon to evening, while in valleys, it appears from late
night to early morning. Foothills exhibit a bimodal pattern. Zhaosu Basin, despite
its low topography, exhibits diurnal variation characteristics similar to mountainous
areas due to its higher elevation.
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(5) The precipitation is influenced by multiple meteorological factors, and there is a strong
correlation between meteorological factors and precipitation at different heights and
different times. The multiple linear regression equation effectively captures the di-
urnal variation characteristics of summer precipitation in various places in the Ili
region. In the areas with high values and low values of the coefficient of variation
(CV), water vapor mixing ratio (WVMR) and vertical velocity (VV) contribute signif-
icantly to precipitation. The WVMR (VV) seemed to play a more significant role in
mountainous (valleys) areas. The meteorological factors within the region exhibit a
good correspondence with the peak values of precipitation, as they change over time.

However, the understanding of complex terrains, local valley wind circulation,
precipitation propagation mechanisms, weather circulation background, and the forma-
tion mechanism of DVCP in this region remains unclear. Further research is needed to
investigate the relationship between DVCP and large–scale circulation patterns, complex
terrain, and its dynamic and thermal mechanisms, as well as other influencing factors in
the Ili region.
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