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Abstract: This work creates a fish species identification tool combining a low-cost, custom-made
multispectral camera called MultiCam and a trained classification algorithm for application in the
fishing industry. The objective is to assess, non-destructively and using reflectance spectroscopy,
the possibility of classifying the spectra of small fish neighborhoods instead of the whole fish for
situations where fish are not completely visible, and use the classification to estimate the percent-
age of each fish species captured. To the best of the authors’ knowledge, this is the first work to
study this possibility. The multispectral imaging device records images from 10 horse mackerel,
10 Atlantic mackerel, and 30 sardines, the three most abundant fish species in Portugal. This results in
48,741 spectra of 5 × 5 pixel regions for analysis. The recording occurs in twelve wavelength bands
from 390 nm to 970 nm. The bands correspond to filters with the peculiarity of being highpass to keep
the camera cost low. Using a Teflon tape white reference is also relevant to control the overall cost.
The tested machine learning algorithms are k-nearest neighbors, multilayer perceptrons, and support
vector machines. In general, the results are better than random guessing. The best classification
comes from support vector machines, with a balanced accuracy of 63.8%. The use of Teflon does not
seem to be detrimental to this result. It seems possible to obtain an equivalent accuracy with ten
cameras instead of twelve.

Keywords: classification; fish; machine learning; multispectral; spectroscopy

1. Introduction

The seafood industry has been a considerable part of Portugal’s culture and economy
for a long time [1,2]. With the goal of sustainability, caution is necessary regarding over-
fishing. Therefore, the continuous development of ways to monitor the fishing process
is of significant importance. Information regarding a fishing ship’s intake is essential for
tracking species fishing quotas to avoid overfishing and depletion of wild fisheries. Given
the nature of fishing methods, each sweep of the fishing nets can contain different amounts
of fish and a different number of fish species. Separating the fish by species and measuring
their quantity are two steps that are currently conducted mainly through simple manual
labor. The present work is the first step in automating the fish accounting per species using
low-cost spectroscopy and machine learning. In the future, the system can be used inside
fishing vessels or soon after fish unloading, or at the fish market.

Previous studies have applied hyper- and multispectral imaging in the seafood in-
dustry, and some use machine learning methods to extract the desired information from
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imaged data [3–6]. Spectroscopy allows obtaining information from recorded objects over
a more comprehensive selection of wavelengths than traditional cameras that only record
information for three wavelengths, the red, green, and blue wavelengths from the visual
spectrum [7,8]. Since different materials and substances absorb and reflect light differently
at various wavelengths, collecting this information may allow one to discern recorded
objects in a non-destructive and rapid manner. The direct collection of light from objects is
called reflectance spectroscopy, the method used in the present study.

Menesatti et al. [4] used partial least squares (PLS) instead of machine learning to
analyze hyperspectral data; PLS is a popular and effective regression method [4,5]. Cheng
and Sun [5] provided a good review of hyperspectral data to obtain information on the
quality of imaged seafood, such as freshness and microbiological, physical, and chemical
attributes. By contrast, the present study uses multispectral data to identify fish species.
Jayasundara et al. [3] used a custom-developed multispectral camera and convolutional
neural network algorithm to grade the quality of fish, which is a different purpose from
ours. Their camera uses LEDs of various wavelengths instead of multiple cameras with
various optical filters, which was our option. Using hyperspectral imaging methods,
Kolmann et al. [6] aimed to characterize/distinguish different fish species from within
the family Serrasalmidae taxonomic group. They identified and showed each species’
distinct spectrum profiles without building a species classifier. Benson et al. [9] and Ren
et al. [10] used machine learning and spectroscopy to identify fish species. Ren et al. used
a convolutional neural network to individually classify one-dimensional spectra—the
present work also classifies spectra separately. However, Benson et al. and Ren et al. used
destructive methods, the former by analyzing fish otoliths and the latter by using fish
homogenates; our approach is non-destructive. Benson et al. and Ren et al. used Fourier
transform, laser-induced breakdown, and Raman spectroscopy, which are more complex
than reflectance spectroscopy.

The present study uses a newly developed low-cost multispectral camera, MultiCam,
to record light intensity at specific wavelengths reflected from the three most fished species
in Portugal, horse mackerel, Atlantic mackerel, and sardines [11,12], and applies machine
learning algorithms to the recorded image’s information to discriminate the species auto-
matically. The fish is left whole for image capture with MultiCam, making our approach
non-destructive. The species separation is possible by analyzing the differences in the
intensities of light reflected from the fish at the recorded wavelengths. The species are
identified using small 5 × 5 pixel regions, not the whole fish image. Each of the 5 × 5 pixel
regions originates a spectrum that is classified with machine learning tools. The reason for
using small fish regions instead of the whole fish is to study the possibility of distinguishing
overlapping fishes, which applies to fishing scenarios when the fish are still in the fishing
net or soon after the fishing net’s unloading. In total, the work classifies 48,741 spectra from
5 × 5 pixel regions. To the best of the author’s knowledge, there are no reports on either
reflectance spectroscopy or whole fish for species separation in the scientific literature. The
use of reflectance spectroscopy is important for having low-cost equipment because the
intensity of the collected signal is orders of magnitude larger than for Raman, for example.

In the long run, the authors want to use the information on the percentage of spectra
of each species present in the gathered images to estimate each species’ captured amount.
If the total amount of fish caught is known, the percentages of spectra of each species are
all needed to calculate the amount of the individual species. To estimate the captured
weight without any human intervention, one would need to have a calibration factor of
the fish weight per spectra, which is outside the scope of the present article. The current
article’s purpose is to start the discussion on how to proceed to estimate the percentage of
spectra of each species in the gathered images. Only a non-destructive approach is useful
for determining the amount of captured fish, if possible at 100%, and still commercializing
the fish afterward.

The present article contains a study on which of three machine learning algorithms,
k-nearest neighbors (KNN), multilayer perceptron (MP), or Support Vector Machine (SVM),
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is the best for fish spectra classification. It provides the confusion matrix for each case.
The classification trust is reported for the best classifiers to understand the classification
robustness and if it makes sense spatially. Minimizing the number of MultiCam cameras
is attempted to reduce the costs of constructing MultiCam. The article also reports the
possibility of using low-cost white references without loss in classification results, which is
fundamental for a possible future widespread application of the developed methods. Fi-
nally, a simple method is given to estimate the number of spectra of each species considering
that misclassified spectra exist but at a rate known to us.

2. Materials and Methods
2.1. Camera Description and Experimental Setup

The custom-built MultiCam (see Figure 1) comprises twelve cameras equipped with
transparent filters at different wavelengths. The cameras are placed side-by-side in
a 4 × 3 matrix. Figure 2 shows the transmittance of the filters for wavelengths from
300 to 1060 nm. A total of 9 cameras have a highpass filter, while the 1st, 11th, and
12th cameras have a bandpass filter. Using highpass filters whenever possible reduces
the overall camera cost. The camera lenses have a 2.8 mm focal length. The images of
the twelve cameras had to be corrected for distortion and, afterward, overlapped. Each
of the twelve cameras comprises an integrated board developed by INOV (Instituto de
Engenharia de Sistemas e Computadores Inovação, Portugal) and a 1280 × 800 pixel CMOS
sensor. A Raspberry Pi computer controls the cameras and acquires the images. Between
the cameras and the Raspberry Pi, a multiplexer developed by INOV allows connection to
each one of the cameras sequentially. Raspberry Pi uses I2C for controlling camera gain
and exposure time and MIPI for image transmission. The MultiCam camera collects the
images at 72 cm from the fish samples held by a tripod. Two twenty Watt halogen lamps
operating at twelve Volts illuminate the setup, the picture of which is shown in Figure 3.
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Figure 2. The transmittance of filters for each MultiCam camera versus wavelength.
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Figure 3. Experimental setup.

2.2. Sample Description

A first batch of five fish from each of three species, horse mackerel, Atlantic mackerel,
and sardines, were bought at a local food market. A second batch, comprising five horse
mackerel, five Atlantic mackerel, and 25 small sardines, was purchased to enlarge the
dataset and give it increased diversity. The first and second batches are from 22 July and
4 November 2023, respectively, and were imaged on the day of purchase. Since the two
batches were imaged on different days, subtle lighting and camera position variations exist,
introducing more realism to the dataset. Figure 4 shows examples of fish imaged with
camera number one from the MultiCam. Each fish was imaged separately, except in the
second batch of sardines, where five were imaged together to minimize the pixel count
imbalance affecting the pixel-wise classification process. This imbalance comes from the
differences in size between the various fish. For each fish or group of five sardines, the
MultiCam acquired twelve sets of ten images in rapid succession, each set for one of the
twelve image sensors in the MultiCam. The ten images were then averaged into one image
to reduce the effect of noise in the measurement. This process occurred twice to capture
both sides of the fish. After eliminating background and saturated pixels, the final dataset
contained 546,354 horse mackerel, 425,075 Atlantic mackerel, and 371,999 sardine pixels.
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Figure 4. Examples of images from camera number one: (a) horse mackerel; (b) Atlantic mackerel;
(c) sardine; (d) sardine. Cases (a–c) are from the 2nd batch, while (d) is from the 1st.

2.3. Reflectance Calculation

The sample’s reflectance indicates the percentage of the incident light reflected by the
sample and captured by the MultiCam. Reflectance was determined by wavelength (λ)
and pixel-wise, or in small pixel neighborhoods (x) through:

R(x, λ) =
SI(x, λ)− DI(x, λ)

WI(x, λ)− DI(x, λ)

where SI was the light intensity reflected by the sample, DI was the value output by the
camera when the lens was blocked, called the dark intensity, and WI was the intensity of
light incident on the sample as measured over a Teflon or Spectralon white reference/target.
DI is the hardware’s baseline noise, so it is subtracted from SI and WI to obtain their actual
value. The white references can diffusively reflect close to 100% of the light that hits them,
providing an approximate measurement of the total intensity of light emitted toward the
fish. Figure 5 shows the reflectances of a horse mackerel for cameras 1, 2, 10, and 12.
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The present work tests the differences in classification results due to using a relatively
small Spectralon target, Sp, and a wide-area reference strip covered in Teflon tape, Te0, as
seen in Figure 6. While Spectralon has a better diffuse reflectance than the Teflon strip, it
is significantly more expensive, making it unusable in widespread applications. The area
covered by the Spectralon target does not encompass the whole fish, so the reflectance
calculations use an averaged value from the Spectralon area instead of the Teflon strip,
which covers the entire fish, allowing the determination of reflectances with direct pixel-by-
pixel measurements. To compare the Teflon and the Spectralon references more equitably, a
target of equal size to the Spectralon was selected from the large Teflon strip in a region not
overlapped by any fish, exemplified in Figure 6 in purple and labeled as Te1. The smaller
Teflon reference matches Spectralon’s conditions in two regards: (1) the same number of
pixels is averaged; (2) the position of the selected pixels did not overlap with any fish. Not
all conditions could be simulated for both materials as the images contained the Teflon
strip and Spectralon target side-by-side for the total incident light measurement. This
circumstance made it impossible to have the same light conditions in the small Teflon
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target and at the Spectralon target due to the impossibility of placing the two targets at the
same location.

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 21 
 

 

Te1. The smaller Teflon reference matches Spectralon’s conditions in two regards: (1) the 
same number of pixels is averaged; (2) the position of the selected pixels did not overlap 
with any fish. Not all conditions could be simulated for both materials as the images 
contained the Teflon strip and Spectralon target side-by-side for the total incident light 
measurement. This circumstance made it impossible to have the same light conditions in 
the small Teflon target and at the Spectralon target due to the impossibility of placing the 
two targets at the same location. 

 
Figure 6. Objects for reference of the total intensity of light, WI: Te0—Teflon strip; Sp—Spectralon 
target; Te1—Teflon target. 

2.4. Fish Pixel Selection 
The desired output of the present work is a machine learning algorithm that performs 

classifications, pixel-wise or in small pixel neighborhoods, so each of the spectra from 
these is treated as an input of a classifier. Only the individual pixels corresponding to the 
fish surface and resulting in proper reflectance values are chosen from each image. First, 
the images were segmented to select the subset of pixels corresponding to the fish, 
excluding the background from the final dataset. Subsequently, saturated pixels were 
filtered out, as some fish displayed areas of high reflectivity, resulting in saturation. Lastly, 
probably due to the fish not being flat and some specular reflection, some image pixels 
resulted in reflectance values outside the expected [0;1] interval and were filtered out from 
the final subset for the classification models. The subsets of data used for training the 
classifiers underwent an oversampling process to overcome the imbalance in the number 
of pixels or pixel neighborhoods between species. The spectra also underwent a standard 
normal variate transformation of the samples for each camera to equalize the inputs of the 
classifiers.  

2.5. Classification Models 
Classifiers with different methodologies, namely, k-nearest neighbors, multilayer 

perceptron, and support vector machines, are employed. 

2.5.1. k-Nearest Neighbours (KNN)  
The k-nearest neighbors methodology employs a popular vote to predict the class of 

a new instance. The classifier uses a set of correctly labeled instances as the pool from 
which it draws the neighbors of a new unknown instance for its classification. The nearest 
labeled instances, or neighbors, are determined according to their distance from the 
unknown instance in the feature space. The unknown instance’s classification occurs 
through a popular vote by its neighborhood, with the chosen class being the majority class 
in the nearest labeled instances. The training phase for this classifier consists of generating 
trees that optimize the selection of the closest labeled instances to the unknown instance. 
Classification can occur between the neighbor’s classes through a simple majority or 

Figure 6. Objects for reference of the total intensity of light, WI: Te0—Teflon strip; Sp—Spectralon
target; Te1—Teflon target.

2.4. Fish Pixel Selection

The desired output of the present work is a machine learning algorithm that performs
classifications, pixel-wise or in small pixel neighborhoods, so each of the spectra from
these is treated as an input of a classifier. Only the individual pixels corresponding to
the fish surface and resulting in proper reflectance values are chosen from each image.
First, the images were segmented to select the subset of pixels corresponding to the fish,
excluding the background from the final dataset. Subsequently, saturated pixels were
filtered out, as some fish displayed areas of high reflectivity, resulting in saturation. Lastly,
probably due to the fish not being flat and some specular reflection, some image pixels
resulted in reflectance values outside the expected [0;1] interval and were filtered out from
the final subset for the classification models. The subsets of data used for training the
classifiers underwent an oversampling process to overcome the imbalance in the number
of pixels or pixel neighborhoods between species. The spectra also underwent a standard
normal variate transformation of the samples for each camera to equalize the inputs of
the classifiers.

2.5. Classification Models

Classifiers with different methodologies, namely, k-nearest neighbors, multilayer
perceptron, and support vector machines, are employed.

2.5.1. k-Nearest Neighbours (KNN)

The k-nearest neighbors methodology employs a popular vote to predict the class of a
new instance. The classifier uses a set of correctly labeled instances as the pool from which
it draws the neighbors of a new unknown instance for its classification. The nearest labeled
instances, or neighbors, are determined according to their distance from the unknown
instance in the feature space. The unknown instance’s classification occurs through a
popular vote by its neighborhood, with the chosen class being the majority class in the
nearest labeled instances. The training phase for this classifier consists of generating
trees that optimize the selection of the closest labeled instances to the unknown instance.
Classification can occur between the neighbor’s classes through a simple majority or
weighted vote. A commonly used weighing method is to apply an inverse proportionality
between the neighbor’s weight and its distance to the unknown instance.

2.5.2. Multilayer Perceptron (MP)

A multilayer perceptron is a neural network composed of layers of neurons intercon-
nected by weights. Neural networks are based on the way the human brain processes
information. The MP starts with an input layer consisting of one neuron for each feature
that comprises the reflectances, and it ends with an output layer with a neuron for each
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possible class; in between, there are hidden layers with a variable number of neurons.
This classifier is trained based on backpropagation mechanisms. A batch of inputs moves
through the neuron connections layer by layer in the input-to-output direction. Afterward,
the algorithm calculates the error by comparing the obtained outputs with the ground
truth. The weights/connections are then adjusted with the gradient-based optimizer, to
minimize this error, starting at the output layer and moving back toward the input layer.
The algorithm keeps iterating through these steps for each batch of inputs until stopped by
a specified criterion. In the present case, using the early stopping criterion concludes the
training when the model fails to improve the error for a given validation dataset separate
from the training dataset for ten consecutive iterations.

2.5.3. Support Vector Machine (SVM)

SVMs use a set of known samples to determine the equation for a multidimensional
surface in the features space that best separates the samples into their respective classes.
This surface is called a hyperplane; the training data points that allow us to define it are the
support vectors. The training process aims to maximize the hyperplane’s margin, meaning
the distance between the hyperplane and the closest support vectors of each class. A larger
margin means that a hyperplane is more likely to perform well for unseen data. While in
binary classification, an SVM algorithm would determine one hyperplane that separates
the classes, in multiclass classification, the algorithm takes a one-vs-one approach to each
class, determining one hyperplane for each case.

2.6. Feature Selection

The MultiCam records images using twelve cameras, each with a distinct filter. The
information captured by each camera serves as a feature for the machine learning models.
Given that several cameras have highpass filters, their coverage overlaps, leading to a high
correlation between features: this might allow discarding redundant features without sig-
nificant loss of information. If a model trained with fewer features can perform reasonably
well compared to one trained with all the features, the MultiCam device can contain fewer
cameras. The most relevant features were selected using two distinct methods: (1) sequen-
tial feature selection and (2) univariate feature selection. Sequential feature selection is a
greedy method that starts with an empty set of features and sequentially trains the specified
model type to find the next best feature, referred to as sequential forward selection. The
univariate feature selection consists of two steps: filtering out features with a correlation to
another feature higher than a given threshold and selecting the desired number of features
based on their score on the chosen metric, the ANOVA F-value between class and feature.
Sequential feature selection uses the classifier to evaluate features; therefore, its results vary
depending on the algorithm used to create the classifiers, and it must be performed for
KNN, SVM, and MP. On the other hand, since the univariate feature selection process does
not use the classifier at any stage of its feature evaluation, it only needs to be applied to the
data once, and its results apply to all the classifier types.

2.7. Cross-Validation

The classifier validation consisted of 10-fold cross-validation. This process splits the
data for the model’s training to maximize the use of the limited data available. It optimizes
the limited dataset usage by splitting it evenly into ten subsets and training ten instances
of the same model in parallel. For each model’s instance, a different subset is set aside for
testing, using the remaining nine subsets for training. After training, each instance classifies
its respective testing subset. Since each model test set corresponds to a different fold, the
entire dataset tests the models. Using all the data for testing allows a more comprehensive
model evaluation. In the 10-fold cross-validation, all pixel or pixel neighborhood spectra
from the same fish were always part of the same fold due to their high correlation. Each
fold contained one sample of each fish species.
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2.8. Balanced Accuracy

Given the imbalance in the data, a balanced accuracy metric is appropriate to evaluate
the model’s predictions. Balanced accuracy averages the true positive rates of each class, as
seen in the equation below for N classes:

Balanced Accuracy =
∑N

i=1 TruePositiveRatei

N

The true positive rate per class corresponds to the following:

TruePositiveRate =
Number o f Correct Predictions
Number o f Pixels in the class

3. Results

This section starts by showing the reflectance spectra and analyzing the best image
resolution to create spectra for classification, followed by comparing the results for the
three types of classifiers selected, KNN, MP, and SVMs. A possible selection of cameras and
the impact of the white target composition and size on the results are also studied. Finally,
a method is proposed to estimate the percentage of spectra from each species present
in the obtained images, not only the percentage corresponding to true detections plus
false positives of another species but an overall approach considering the misdetections
of each species. All calculations were performed in Windows 11 and Python 3.10.7 on an
i7-11700@2.5 GHz machine with eight cores and 16 MB of RAM. The machine learning
algorithms are from Sklearn, version 1.1.3.

3.1. Reflectance Spectra

Figure 7 shows line plots of the reflectance spectra across the measured wavelengths
for fifteen random regions with 5 × 5 pixels. The following section shows that spectra
from areas of this size provide the best results. Most spectra are heavily entangled across
all species, leaving no discernable method of separating them easily. This impossibility
is reaffirmed by Figure 8, where the line plot of the averaged reflectances by wavelength
for each species with the respective standard deviation shows a near-complete overlap
between all species. It is important to note that the reflectances determined with highpass
filters provide the same relevant information as the bandpass filters, but this information is
organized differently.
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3.2. Image Resolution Downscaling Effect

Pixel-wise analysis of the images resulted in an extensive dataset with a high cor-
relation between neighboring pixels. This high correlation allows the application of a
downscaling step to the data without significant loss of the overall information present
in the dataset. The downsample averaging was processed by sweeping an N × N mask,
without overlapping, through the images, averaging the spectra of the pixels. The tested
masks were squares whose sides had an odd number of pixels, ranging from 3 × 3 to
15 × 15. The main benefit of this downscaling step is that it reduces the variance of the
resulting average spectra as the mask size increases. An additional benefit is a decrease
in the computational cost of the training processes since downsampling results in a much
smaller dataset than the original set. Too much downscaling may destroy the features
required for proper classification.

The trained models used hyperparameters that were reasonable according to prelimi-
nary tests. KNN uses neighborhoods composed of five elements with a uniform weight
function; the MP comprises two hidden layers of twenty and ten neurons employing an
Adam solver for weight optimization with an initial learning rate of 0.002; and SVM uses a
regularization parameter of one. The results for all models are organized in Table 1, where
the balanced accuracies are given for different pixel neighborhood sizes.

Table 1. Balanced accuracies, in percentages, for spectra resulting from various pixel neighborhood sizes.

Classifier
Balanced Accuracy (%) for Various Pixel Neighborhood Sizes

1 × 1 3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

KNN 55.7 55.5 55.2 54.5 53.3 54 54.3 53.1
MP 58.5 61.4 61.7 61.8 61.1 60.4 60.8 57.7

SVM 58.5 59.5 59.9 59.3 58.4 58.1 57.6 57.7

The best pixel neighborhood size for downsampling for SVM is 5 × 5 by at least
0.4 percentage points (p.p.), relative to the second best. For MP, the value of 7 × 7 is the
best but only with a difference of 0.1 p.p. for 5 × 5. With KNN, the best option is 1 × 1. At
this point, it was necessary to choose if one would select the best value for each algorithm,
leading to considerable variation in the reflectances being input into the algorithms. To
avoid this, the same downsampling was used for all algorithms. The value of 5 × 5 seems
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adequate for at least MP and SVM. Even though it is not the best for the former, it still leads
to better results than for SVM. For KNN, 5 × 5 still provides good results since the decay
is not very pronounced. When performing a downscaling with a 5 × 5 mask, one obtains
a dataset at least 25 times smaller than the original set while maintaining the quality of
information. The downscaled dataset contains 20,473, 15,653, and 12,615 spectra for horse
mackerel, Atlantic mackerel, and sardines. Comparing batches one and two, as shown in
Table 2, indicates that the latter has more spectra for all species. The increases for horse
and Atlantic mackerel are 31% and 25%, respectively, but the number more than doubles
for sardines.

Table 2. Number of spectra for 5 × 5 pixel neighborhood.

Batch One Batch Two Total

Horse mackerel 8849 11,624 20,473
Atlantic mackerel 6960 8693 15,653

Sardine 4075 8540 12,615

3.3. Hyperparameter Optimization

After establishing the downsampling, the hyperparameters were thoroughly opti-
mized. For KNN, several models with various-sized neighborhoods, 5, 10, 20, 40, 80, 160,
and 320, were trained and tested with the value of 20 returning good results. For MP,
the configurations tested consisted of a single hidden layer with 6, 10, 20, 30, 40, 50, 60,
and 70 neurons and two layers where the first had 8, 12, 20, 30, 40, 50, 60, and 70 neurons
with the second layer containing half the number of neurons of the first layer. Using two
hidden layers with 60 and 30 nodes was the best option. The neural model can use the
Adam solver to adjust the learning rate with each epoch of the training process or the
stochastic gradient descent solver with a constant learning rate. Models with each solver
and with various initial learning rates, namely 0.001, 0.01, 0.1, 1, and 10, were trained to
find the best solver and initial learning rate. Models tested with the Adam solver showed
that the desired initial learning rate lies between 0.001 and 0.01. Further testing with learn-
ing rates between 0.001 and 0.01, with a step of 0.001, resulted in the best value of 0.004.
Models tested with the SGD solver showed that the desired initial learning rate lies between
0.01 and 0.1. Further testing between those values resulted in the best value of 0.015. The
best models scored balanced accuracies of 63.8% and 64.4% with the Adam solver and SGD,
respectively. For SVM, the analyzed values of the regularization parameter were between
1 × 10−4 and 1 × 104, varying in powers of ten. The balanced accuracy steadies after a
regularization parameter of 1000, making this value a good choice.

3.4. Tuned Classifier Comparison

Three classifiers, the best from each algorithm, are compared using confusion matrices,
balanced accuracy, and training time. Table 3 shows balanced accuracies and training times.

Table 3. Balanced accuracy and training time by classifier.

Classifier Balanced Accuracy (%) Training Time

KNN 56.7 1 s
MP 64.4 3 min 2 s

SVM 65.3 8 h 29 min 36 s

The balanced accuracies for KNN, MP, and SVM are 56.7%, 64.4%, and 65.3%, respec-
tively. Although smaller than one would like, these values are far from the 33% expected
for a random three-class classifier, confirming that the data have enough information to
separate the classes. The training times are, in the same order as before, 1 s, 3 min and 2 s,
and 8 h, 29 min, and 36 s. SVM, the best classifier, presents the most considerable training
time. Nevertheless, one must note that the classification with SVM is significantly faster
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than its training. Table 4 shows the confusion matrices of the classifier’s predictions for
ten-fold cross-validation.

Table 4. Confusion matrices for ten-fold cross-validation using three types of classifiers. Values are
percentages. H, A, and S stand for horse mackerel, Atlantic mackerel, and sardine, respectively.

KNN MP SVM

True
Label

H 50.7 25.6 23.7 61.2 22.2 16.6 65.5 19.0 15.5
A 22.7 56.9 20.4 24.0 60.3 15.7 25.4 58.9 15.7
S 18.6 18.9 62.5 14.2 14.1 71.7 15.6 12.9 71.5

H A S H A S H A S
Predicted label

For KNN, the sardine spectra’s true positive percentage is 62.5%, significantly above
the horse and Atlantic mackerel’s true positive percentages of 50.7% and 56.9%, respectively.
While the sardine spectra’s incorrect classifications are split relatively evenly between the
other species, with 18.5% and 18.9% for horse and Atlantic mackerel, respectively, the horse
and Atlantic mackerel spectra are incorrectly classified as each other at a slightly higher
percentage than as sardines. KNN incorrectly classified horse mackerel spectra at 25.6%
and 23.7% rates as Atlantic mackerel and sardines, respectively, and Atlantic mackerel
spectra at 22.8% and 20.4% as horse mackerel and sardines, respectively.

The correct classifications/true positive percentages for the MP are 61.2%, 60.3%,
and 71.7% for horse mackerel, Atlantic mackerel, and sardines, respectively. Incorrect
classifications of sardine spectra are split evenly between horse and Atlantic mackerel but
at a lower percentage than with the KNN, at 14.2 and 14.1%. MP classifies horse mackerel
spectra as Atlantic mackerel and sardines at 22.2% and 16.6%, while the Atlantic mackerel
spectra’ corresponding percentages are 24.0% and 15.7% for horse mackerel and sardines.

SVM true positive percentages are 65.5%, 58.9%, and 71.5% for horse mackerel, At-
lantic mackerel, and sardines, respectively. SVM classification of horse mackerel is better
than with the other two classifiers, and it is slightly worse for sardines than MP but sub-
stantially better than KNN. There is a 1.4 p.p. decrease with SVM for Atlantic mackerel
compared to MP and a 2 p.p. increase compared to KNN. Horse mackerel classification
with SVM is 4.3 and 14.8 p.p. larger than with MP and KNN, respectively. The SVM
classifies sardines incorrectly as horse mackerel more than as Atlantic mackerel, with
15.6% and 12.9%, respectively, as opposed to other models, which misclassified sardines
more evenly between the other two classes. As before, horse and Atlantic mackerel spectra
are incorrectly classified as each other more so than as sardines, with 19.0% and 15.5% of
horse mackerel spectra classified as Atlantic mackerel and sardines, and 25.4% and 15.7% of
Atlantic mackerel spectra classified as horse mackerel and sardines, respectively. With SVM,
compared to MP, the decrease in 1.4 and 0.2 p.p. of the Atlantic mackerel’s and sardines’
true positive percentages is compensated for by the better results for horse mackerel. All
classifiers show a higher discernment for sardines than any other species.

3.5. Models Classification Trust

This section analyses the outcome of the best SVM created. While a significant percent-
age of classifications are correct, the certainty of those classifications varies significantly
between species and locations on the fish body. For each spectrum, the classifier determines
the probability of that spectrum being from a horse mackerel, an Atlantic mackerel, or a
sardine. Calculating the difference between the correct class probability and the highest
probability of the incorrect classes returns a value indicating the strength of the decision.
This difference shows how far from, or how close the classifier was to the correct prediction.
Figure 9 shows histograms created by applying the described difference of probabilities
to all spectra. Positive values indicate correctly classified spectra, shown in green, and
negative values correspond to incorrectly classified spectra, shown in red. The histograms
contain data from all spectra together and separated by species.
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Figure 9. Histogram for the difference in SVM prediction probabilities: (a) all species; (b) horse
mackerel; (c) Atlantic mackerel; and (d) sardine. Green and red bars correspond to correctly and
incorrectly classified spectra.

Figure 9a indicates that the correctly classified spectra in green spread across the range
of possible confidence values between zero and one, with a slight peak at the highest
confidence. One would like to have a single bar at the value of one. With the wrongly
classified spectra, there is a decay toward the more wrongly confident values, those closer to
minus one, which is good. The optimal case would be to have no red bars in the histograms.
When considering each species separately, the sardines (Figure 9d) are more confidently
classified and with a good slope on the green bars towards the highest confidence values.
The main difference between horse and Atlantic mackerel is that although the former has
an overall better classification percentage, 65.5% in Table 4 versus 58.9% for the latter, the
Atlantic mackerel has more spectra at larger confidence values. For example, compare the
size of the bar for a confidence value of 0.9 in Figure 9b,c.

Figure 10 shows the same results as in Figure 9 but allows one to see the distribution
of correct spectra at the fish position where they come from. Image construction has
the following rules: spectra that were not classified, such as ruled-out background and
saturated or noise-affected spectra, are shown in grey; incorrectly classified spectra that
originated the red bars in Figure 9 are now displayed in white; and the correctly classified
spectra are depicted through a color gradient based on the difference of probabilities. This
difference is again between the probabilities of the correct and most probable incorrect
classes. Above each image appears the percentage of spectra classified as being from each
species, in the following sequence: horse mackerel, Atlantic mackerel, and sardines. The
rows appear in pairs, corresponding to different sides of the same fish/fishes.

When analyzing the figure, the most striking characteristic is the tendency of various
classification confidence values to show up all over the fish, visible by the colors mixing
randomly. Next, the number of correctly classified spectra varies significantly, even between
individuals of the same species. This characteristic is visible from the variation in the
size of the white regions between various fish. It is also noticeable when analyzing the
percentage of correct spectra, which is the opposite of the white spaces. The first batch’s
(Figure 10a) second horse mackerel (counting from the left) shows 90% and 81% of spectra
correctly classified for each imaged side, with 8% and 15% incorrectly classified as Atlantic
mackerel, showing very good discernment. Meanwhile, the first batch’s fourth sardine has
52% and 43% of spectra correctly classified, with 29% and 33% incorrectly classified as
Atlantic mackerel, showing less discernment while yet classifying most spectra as the
correct species. Still, in the first batch, the third Atlantic mackerel presents even worse
values, with 46% and 37% of correctly classified spectra on both fish sides. Side two of this
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fish would be wrongly classified when using a majority vote, as the most significant number
of spectra, namely 47%, are attributed to horse mackerel. When looking for differences
between the first and second batches of fish, the average of correctly classified spectra,
as shown in Table 5 for horse mackerel, is 64.2% for the former and 63.3% for the latter,
which are close values. With Atlantic mackerel, these values change to 57.4% and 61.4%,
indicating a slightly better outcome in the second batch. For sardines, the values are
56.4% and 78.8%, with a clear advantage for the second batch.
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Figure 10. Difference in SVM prediction probabilities: (a) first batch; (b) second batch. For each batch,
the first two rows are horse mackerel (H), the next two are Atlantic mackerel (A), and the last two are
sardines (S). Above each image is the percentage of spectra classified as horse mackerel (H), Atlantic
mackerel (A), and sardines (S), in this sequence. The fish side is the number, one or two, in front of
the species letter (H, A, S).

Table 5. Average of the percentage of correctly classified spectra per batch.

Fish Species
Correctly Classified Spectra (%)

Batch 1 Batch 2

Horse mackerel 64.2 63.3

Atlantic mackerel 57.4 61.4

Sardine 56.4 78.5
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The horse mackerels in the first batch, displayed in the first pair of rows in Figure 10a,
show differences from sample to sample, with some fish having 39% of spectra correctly
classified and others having 90%. This variability is also present in the trust values, as a
rainbow of colors fills the fish in Figure 10a. Within the fish with the highest percentage
of correct classifications in the first batch, the second one, the trust strength seems to be
higher in the middle section of the fish and reduces as one moves away from this section.
However, in the second batch, seen in the first pair of rows in Figure 10b, the behavior
is more uniform between samples. The percentage of correct classifications is between
42% and 73%, and the trust in these classifications is random but still shows slightly higher
trust towards the middle section of the fish.

The Atlantic mackerels in the first batch, displayed in the second pair of rows in
Figure 10a, show discarded spectra, color-coded in grey, concentrated in the middle portion
of the fish. The correctly classified spectra offer varying levels of trust seen with brown/red
and blue patches clustered together in different regions of the fish, revealing no identifiable
pattern and varying between samples. In the second batch, seen in the second pair of
rows in Figure 10b, a pattern emerges with the bottom half of the fish correctly classified
with a high trust level, seen in brown/red. By contrast, the upper half of the fish shows a
lower level of trust and more incorrect classifications, as seen in white. The percentages
of correctly classified spectra vary between 37% and 69% in the first batch and between
41% and 72%, an identical variation between batches.

Lastly, sardines, displayed in Figure 10a,b, in the last pair of rows, behave uniformly
within batches but vary significantly between these batches. While the first batch of sardines
has between 43% and 64% correctly classified spectra, the second batch has 70% to 85%.
While the trust values vary within each fish, the overall strength of sardine classifications
is usually higher than for the other species, visible by the higher presence of yellow to
red/brown color-graded regions in the figure. The only exception to this trend is the
Atlantic mackerel in the second batch. In the first batch, sardines have the broadest areas,
between species, of fish with the highest classification confidence. Nevertheless, they do
not have the greatest percentages of correctly classified spectra.

On average, as seen in Table 5, Atlantic mackerel and sardines have the largest per-
centages of correctly classified spectra in the second batch. With horse mackerel, the first
and second batches are only slightly different, with an advantage for the first.

3.6. Feature/Camera Selection

This section reports a study on the possibility of using less than twelve cameras to
classify fish species. Tests were performed using one to twelve cameras. The results of this
analysis are shown in Table 6. The values for the KNN and MP with twelve cameras are
those from Table 3. For SVM, a slightly different gamma was used, but for twelve cameras,
the result is the same as in Table 3. The univariate feature selection generally leads to worse
outcomes than the sequential feature selection (SFS) for the three types of classifiers studied.
That is why some results are not given for univariate selection, and the following analysis
will focus solely on SFS.

KNN returns a balanced accuracy of 56.7% using all twelve cameras. With eleven, ten,
and nine cameras, one obtains improvements of 0.5, 0.7, and 0.5 p.p., respectively. The best
result is achieved with ten cameras, at 57.4%. This is good since it could allow reducing the
MultiCam size and cost. With six cameras, which would mean a significant downsizing,
the balanced accuracy drops 1.6 p.p to 55.8%. The MP returns a balanced accuracy of
64.4% using all features. Even though the results improve when going down from eleven
to eight cameras, reaching 63.3%, after that, they drop below 62%, never surpassing the
case with twelve cameras. With six cameras, the balanced accuracy is 55.3%. SVM with
twelve cameras shows the best results using all features, with 65.3%. However, obtaining
the same balanced accuracy is possible with ten cameras, even though it means discarding
cameras number 3 and 6, whose cut wavelengths are 495 nm and 630 nm, respectively, and
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gathering, supposedly, less information. With SVM and six cameras, the balanced accuracy
drop is 6.4 p.p.

Table 6. Balanced accuracies for various classifiers and different numbers of input features/cameras.

Classifier

Balanced Accuracy (%)

Number of Cameras

12 11 10 9 8 7 6 5 4 3 2 1

KNN 56.7
Seq. 57.2 57.4 57.2 56.5 56.0 55.8 54.1 51.9 48.8 45.9 38.5
Uni. 55.1 53.8 53.8 53.2 51.3 50.8 49.2 48.4 46.7 41.3 34.9

MP 64.4
Seq. 62.8 62.6 63.0 63.3 61.6 55.3 57.0 54.6 52.1 50.0 39.9
Uni. 61.6 58.7 57.3 57.6 54.9 53.5 52.4 51.0 49.5 44.5 39.9

SVM 65.3
Seq. 65.2 65.3 64.9 63.5 61.4 58.9 57.4 54.5 50.5 48.3 38.5
Uni. - 60.2 58.5 - - 53.0 50.4 50.1 48.2 42.8 -

3.7. Teflon vs. Spectralon Performance

This experiment employed a large white Teflon strip covering the entire area of the fish
positions, allowing the reflectance calculation to use pixel-wise measurements. The second
white target analyzed was Spectralon. It covers only a small area compared to the fish area.
It is not in the same position as the fish, requiring the reflectance calculation for all pixels to
use a single averaged value of Spectralon’s spectra. The third target is a small region of
the Teflon strip with the same area as the Spectralon target and outside the fish position.
This third target allows the comparisons to be more equitable. Nine classifiers, three for
each of the three machine learning algorithms used, and one for each dataset of reflectances
determined with the three different white targets were created. The hyperparameters used
are those described in Section 3.2. The balanced accuracies obtained from these models
are shown in Table 7. The results for the Teflon strip are those from Table 3. For the MP
and the SVM, when changing from the Teflon strip to the Teflon target, there is a drop of
0.7 p.p. and 0.2 p.p., respectively, to 63.7% and 65.1%, which is expectable since the
latter white has a smaller area than the former. Surprisingly, for the Teflon strip and the
Spectralon target, although the latter is usually a more accurate reference, the drop is
1.9 and 1.7 percentage points, to 62.5% and 63.6%. The KNN classifier follows a different
trend, with the Teflon target having the best result of 57.7%, but the Spectralon target again
yields the worst result, 56.0%.

Table 7. Balanced accuracy per spectra for different white targets. The Teflon strip values are the
same as in Table 3.

Classifier

Balanced Accuracy (%)

Teflon Strip Teflon
Target Spectralon Target

KNN 56.7 57.7 56.0
MP 64.4 63.7 62.5

SVM 65.3 65.1 63.6

3.8. Estimation of the Number of Spectra of Each Species

The classification algorithms do not offer a 100% correct classification ability. Conse-
quently, the direct classification results are not an immediate measure of the number of
spectra available for each species in the captured images. In addition, the spectra of one
species can be wrongly classified as belonging to another species. To resolve this issue, one
can use the confusion matrix results to estimate the real number of spectra, considering the
misclassification probabilities. With the confusion matrix given by:
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True label

Horse mackerel PHH PHA PHS

Atlantic mackerel PAH PAA PAS

Sardine PSH PSC PSS

Horse mackerel Atlantic mackerel Sardine

Predicted label

PXY represents the probability of a spectrum of species X being classified as being
from species Y. As previously, H, A, and S stand for horse mackerel, Atlantic mackerel, and
sardines, respectively. Knowing that QHmea, QAmea, and QSmea are the quantities that the
classification algorithm has returned for the species, one may write:QHmea

QAmea
QSmea

 =

PHH PAH PSH
PHA PAA PSA
PHS PAS PSS

 QHorse
QAtlantic
QSardine

,

And therefore:  QHorse
QAtlantic
QSardine

 =

PHH PAH PSH
PHA PAA PSA
PHS PAS PSS

−1 QHmea
QAmea
QSmea

,

where QHorse, QAtlantic, and QSardine represent the real quantities of spectra of horse mackerel,
Atlantic mackerel, and sardines, respectively, to be estimated in the collected images. Note
that the confusion matrix is transposed. The results obtained with this method are as
accurate as the statistics in creating the confusion matrix.

4. Discussion
4.1. Final Tuned Model Classification Accuracy and Classification Trust

Comparing the algorithms, while the KNN performed the worst out of the three
models, returning predictions with a balanced accuracy of 56.7%, it was not too far be-
hind the other models, showing good results considering its simple methodology that
required only one second of training time. The MP, trained for 3 min and 2 s, returned
64.4% balanced accuracy, while the SVM, trained for 8 h, 29 min, and 36 s, returned 65.3%.
While the MP proved to be more computationally efficient, the SVM proved more accurate.

From the confusion matrices’ diagonals in Table 4, all algorithms show a skewed
accuracy, correctly classifying the sardines’ spectra at a higher rate than those of the other
classes. A possible cause immediately comes to mind is that sardines have scales different
from horse mackerel, and Atlantic mackerel do not have scales. However, when looking at
the first batch, the sardine spectra are not correctly classified at more significant percentages
than the other species’ spectra. The large difference occurs only with the second batch of
sardines where a significant difference existed, namely the size of the fish, with each fish
being smaller and probably younger, which may mean better features for class separation.
In addition, the number of spectra available deriving from 5 × 5 regions is 8540 in the
second batch against 4075 in the first. In the present case, the larger number of spectra is not
a reasonable explanation for the better results of the second batch since the horse mackerel
class has a significantly greater number of spectra than the other classes and still does not
have the largest percentage of correctly classified spectra (see Table 5). One possibility is
that the variability in the second batch is described accurately by the 8540 spectra, leading
to good results. Usually, in machine learning work, the results originate from a mix of the
influence of the sample features and the amount of data available to train the classifiers;
this case appears to be similar.

The best SVM created can correctly classify large portions of each fish, despite highly
variable confidences (see Figure 10). It is hard to understand what might cause this
variability, as one would expect to have nearby spectra with approximate confidence
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values. The variable confidences may indicate that each fish’s position differs significantly
from the rest. Still, this thesis is contradicted by, in some cases, certain regions of the fish
having similar confidence values. Therefore, it might be that the differences originate from
numerical issues. The authors do not know at present, and more testing is necessary to
understand this issue better.

The first batch’s horse mackerels showed significant differences from sample to sam-
ple, with some samples having 90% correct spectra classification and others having 39%
(see Figure 10). Given that all the samples of one batch are obtained under the same setup
without disturbances, it precludes lighting or hardware issues as the cause for the differ-
ences between samples of the same species. Therefore, the reason is more likely natural
biological differences in the individual fish, presenting with enough different reflective
properties to fall outside the learned pattern for its species.

The Atlantic mackerel in the second batch displayed one of the most consistent cases
of a region presenting high-confidence classification values in our experiments. This
consistency might have to do with this region corresponding to the “stripes” in the fish,
but it cannot be the only reason since, for the same species in the first batch, this does not
occur. Consequently, it might have something to do with the relationship between lighting,
fish thickness, and “stripes”; if it were just the lighting, the effect would also be present in
the horse mackerel of the second batch, and that is not the case.

4.2. Feature Selection Performance

Our results suggest a tendency for balanced accuracy to reduce with the number of
cameras used. This reduction is expectable as the models receive less information. However,
this is not always the case. For KNN, ten cameras outperform twelve, and SVM with ten
cameras shows the same balanced accuracy as with twelve. This phenomenon probably
occurs because the two discarded highpass filters do not add extra information to the whole
group of filters, at least for the used dataset. Fewer features providing better results than
more features is not an exclusive characteristic of the present application.

From the point of view of cost, it is interesting to have fewer cameras in the MultiCam;
however, discarding two cameras from twelve is good but not a game changer. Nevertheless,
it may save some physical space, two optical filters, and the camera chip and optics when
building a MultiCam. Using twelve cameras might nonetheless be advisable as the extra
information may be relevant when training with more samples. Still, the prospects for
reducing the number of cameras in the current application are good.

4.3. Teflon vs. Spectralon Performance

In general, models employing reflectances calculated from Spectralon performed
worse than those with reflectances determined with Teflon. When comparing the Spectralon
target with the Teflon strip of lower diffuse reflectance, one sees that measuring the incident
light in each fish pixel with Teflon is better than measuring it outside the fish pixels with
Spectralon. One possible explanation for this phenomenon is the lack of lighting uniformity
over the test table, which one may expect to exist in almost all real-life and low-cost setups
required for widespread applications. More difficult to understand is why a Teflon target
of the same area as the Spectralon and placed outside of the fish pixels’ positions leads
to better results. A possible reason is again the non-uniformity in the lighting. Since
the Teflon target is closer to the fish than the Spectralon, it may provide more realistic
measurements of the fish’s lighting. Even though unexpected, these results are highly
relevant to understanding that using high-cost white targets is not always necessary when
making spectroscopy applications. A Teflon target can be good enough. Using a Spectralon
target the size of the Teflon strip would be relevant from the scientific point of view but
would be impractical for widespread application due to its cost.



Remote Sens. 2023, 15, 3952 18 of 20

4.4. Fish Imaging

The developed spectra identification method does not require fish to be separately
measured, as has been the case in our test setup. However, capturing fish in an image
containing, for example, seawater, fishing net, or boat regions would require further work
in developing an image segmentation preprocessing step to separate the fish pixels/spectra
from those belonging to other classes. Once the fish pixels/spectra are separated from the
rest, they can be given to the classifier. For easier pixel separation, one can think of the fish
passing under the camera via a conveyor belt of a color that allows easy separation between
the fish and the background. The conveyor belt solution probably allows a more accurate
estimation of fish quantities since there is no risk of fish overlap or loss of fish pixels due to
incorrect segmentation from the background. Nevertheless, if the whole fish is visible, it
may be more reasonable to consider the entire fish image for classification instead of small
regions, even if the spectral information might help get better classification results. The
authors still believe that having the ability to classify overlapping fish is relevant since, in
fishing activities, the overlap is frequent.

4.5. Comparison with Previous Work

Two previous works, Benson et al. [9] and Ren et al. [10], are directly related to the
present one in their use of machine learning and spectroscopy to identify fish species.
Benson et al. reported accuracy rates of 91.5% for fish species identification, significantly
better than those obtained in the present work. However, since their method is destruc-
tive due to the use of the fish otolith for classification, it is useless for accounting for fish
quantities. Their measurement method is Fourier Transform Infrared (FTIR) spectroscopy,
which is more complex and expensive than reflectance spectroscopy, as it usually involves
an interferometer with moving parts and a laser for calibration. Ren et al. reported classi-
fication accuracies of 98.2%. Their samples were fish muscle homogenates, which makes
their process also destructive. In the current work, the spectra are mainly from the fish
skin. Homogenates may partly explain the good results because they help stabilize sample
variability. When imaging the skin, without any preparation, one experiences its whole vari-
ability, with the extra trait of the skin’s high reflectivity that complicates diffuse reflectance
measurements. In addition, Ren et al. used laser-induced breakdown (LIBS) and Raman
spectroscopy, which are significantly more expensive than the reflectance spectroscopy
used here, preventing widespread use. Building a low-cost Raman spectrometer is more
complex than a reflectance spectrometer due to the smaller signal intensity involved in
the former. Ren et al. used convolutional neural networks, which were not employed
here since the MultiCam spectra dimensionality is small, namely twelve. Ren et al.’s data
dimensionality was approximately 7000.

4.6. Practical Applications

The automatic calculation of the amount of fish captured per species will, hopefully,
be part of equipment such as MONICAP [13] from the Portuguese company XSealence [14].
This equipment is installed onboard large fishing vessels and automatically sends informa-
tion to a land center. From the center, reports may be forwarded automatically to the state
authorities for monitoring fishing activities. This would allow these authorities to have
a more accurate idea of the captured species at each moment and would simultaneously
enable them to combat the fishing of unauthorized species and the fraudulent reporting
of the amount of fish caught. Another possibility is to place a MultiCam camera at the
entrances of fish markets to automatically control all the fish coming into the markets.

5. Conclusions

It is possible to separate fish from three species, namely, horse mackerel, Atlantic
mackerel, and sardines, using a low-cost camera equipped with twelve filters, nine highpass
and three bandpass, and an SVM. The identification uses small fish regions instead of whole
fish. The choice of the highpass filters was due to their low cost. Their bands overlap;
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therefore, there is a relevant correlation between the information of the various filters.
Nevertheless, the machine learning algorithms were able to use this information effectively.
To the best of the authors’ knowledge, this work is unique in the scientific literature
regarding fish reflectance spectra separation with machine learning while simultaneously
keeping the fish whole. In fact, with the present work, more questions seem to be raised
than answers given. Sardines have the best true classification percentage of 71.5%, while
horse mackerel and Atlantic mackerel exhibit true detection percentages of 65.5% and
58.9% with the SVM. This results in a balanced accuracy of 65.3% with twelve cameras. Ten
cameras provide the same accuracy value. These values are far from the 33% expected for
a random classification. The present work also proposes a method to estimate the total
amount of spectra available in gathered images for each species from the confusion matrix.
Our results with a white target made of low-cost Teflon were better than with an expensive
Spectralon target, possibly because the target extension and placement resulted in more
accurate lighting measurements.

The less positive outcomes of the experiments are the high variability in classification
confidence for contiguous regions and the significant differences in the percentage of
correctly classified spectra between fishes. The cause of the former is unknown, and the
latter seems to result from biological variability. The classification used 48,741 spectra of
5 × 5 pixel regions from 10 horse mackerel, 10 Atlantic mackerel, and 30 sardines. The
number of fish is not larger because this is an exploratory study of a method not currently
in use. These results should be confirmed with a greater number of fish imaged.

For future work, testing only bandpass filters to see if that helps improve the results
would be relevant. Another possible approach is to calculate reflectances with a large
Spectralon target to see the effect on the results. This test would be merely for scientific
reasons because it is not affordable for widespread application. The present study opens
up new possibilities and many questions requiring further work. Increasing the number of
fish used in the analysis is a must.
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