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Abstract: Spectral unmixing is one of the prime topics in hyperspectral image analysis, as images
often contain multiple sources of spectra. Spectral variability is one of the key factors affecting
unmixing accuracy, since spectral signatures are affected by variations in environmental conditions.
These and other factors interfere with the accurate discrimination of source type. Several spectral
mixing models have been proposed for hyperspectral unmixing to address the spectral variability
problem. The interpretation for the spectral variability of these models is usually insufficient, and
the unmixing algorithms corresponding to these models are usually classic unmixing techniques.
Hyperspectral unmixing algorithms based on deep learning have outperformed classic algorithms.
In this paper, based on the typical extended linear mixing model and the perturbed linear mixing
model, the scaled and perturbed linear mixing model is constructed, and a spectral unmixing net-
work based on this model is constructed using fully connected neural networks and variational
autoencoders to update the abundances, scales, and perturbations involved in the variable endmem-
bers. Adding spatial smoothness constraints to the scale and adding regularization constraints to
the perturbation improve the robustness of the model, and adding sparseness constraints to the
abundance determination prevents overfitting. The proposed approach is evaluated on both synthetic
and real data sets. Experimental results show the superior performance of the proposed method
against other competitors.

Keywords: hyperspectral unmixing; endmember variability; linear mixing model; variational
autoencoder

1. Introduction

Hyperspectral imaging allows the acquisition of multivariate images containing infor-
mation in hundreds of narrow and contiguous spectral bands [1], where each image pixel
is a full-spectrum measurement of an area of the surface. Since many surface materials
have unique spectral features, the technique can detect and identify surface materials via a
comparison of a spectrum sample with diagnostic spectra obtained from known materials.
Hyperspectral imaging has been widely used in various fields, such as geological mapping,
plant cover and soil studies, atmospheric research, environmental monitoring, and so on.
However, due to the limitation of the spatial resolution of remote sensing devices and
the complexity and diversity of surface objects, the spectrum of pixels, i.e., the data from
imaging a portion of the surface under study will often contain spectral contributions
from more than a single material. Such mixed pixels commonly exist in remote sensing
images and significantly degrade the classification accuracy of hyperspectral images and
the detection of specific target materials [2]. In order to improve the accuracy of remote
sensing applications, spectral unmixing (SU) is necessary; the spectrum of a mixed pixel
must be decomposed and represented as a mix of spectra, called endmembers, gener-
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ated by component materials, and the respective proportions, called abundances, of their
contributions to the spectrum of the mixed pixel.

Any SU technique depends on understanding (or assuming) the mechanism of spectral
mixing. There are two common types of spectral mixing models: linear mixing models
and nonlinear mixing models. Because of the simple principle and clear physical meaning
of the linear spectral mixing model, most of the early spectral unmixing methods were
proposed based on the linear mixing model. Spectral unmixing using linear mixing models
is accomplished in two steps. The first step is to extract endmembers; typical endmember-
extraction methods include the N-FINDR algorithm [3], the simplex growing algorithm
(SGA) [4], and vertex component analysis (VCA) [5]. The second step is to perform
abundance inversion based on endmember and spectral data, and the common method is
the fully constrained least squares method (FCLS) [6]. The linear mixing model is suitable
for ground objects that are essentially linear mixtures and ground objects that can be
considered linear mixtures on a large scale.

For the fine spectral analysis of some micro-scale ground objects or the identification
of some low-probability targets, a nonlinear mixing model is required. Several typical
nonlinear mixing models have been proposed, for example, the Fan model [7], the Nasci-
mento model [8], the Hapke model [9], the generalized bilinear model (GBM) [10], and the
post-nonlinear mixed model [11]. These better explain the multiple scattering and mixing
of photons from ground objects in complex scenes.

The endmember is susceptible to variation due to the influence of atmosphere, illumi-
nation, terrain, and the intrinsic variability in the endmember [12]. The variations affect the
accuracy of unmixing and the robustness of unmixing algorithms. Therefore, large efforts
have recently been dedicated to mitigating the effects of spectral variability in SU.

Spectral unmixing methods based on the nonlinear mixing model perform well for
some scenes because the nonlinear mixing model can explain non-negligible spectral vari-
abilities. However for various reasons, unmixing methods based on nonlinear models are
not favored; such models have a large capacity that can lead to overfitting and poor con-
trollability [13], and deep learning-based methods that account for endmember variability
using nonlinear mixing models often lack interpretability, so the estimation of endmembers
present at different locations in the scene is difficult [14]. Spectral variable unmixing stud-
ies typically use analysis methods that are based on linear mixing models. Studies have
included the extended linear mixing model (ELMM) [15], the generalized linear mixing
model (GLMM) [16], the perturbed linear mixing model (PLMM) [17], and the augmented
linear mixing model (ALMM) [18]. The ELMM is provably obtainable from the Hapke
model by continually simplifying physical assumptions [19]. By only taking scaling factors
into account, the ELMM is incomplete because certain consequential spectral variabili-
ties are not representable using only scaling factors. The ELMM can be extended for the
GLMM by defining three-dimensional tensors. The GLMM allows for the consideration of
band-dependent scaling factors for the endmember signatures and can represent a larger
variety of realistic spectral variations of the endmembers [16]. The PLMM considers that,
in the absence of any prior knowledge about variability [20], the variability is modeled
using an additive perturbation term for each endmember [21]. The PLMM lacks a physical
meaning because the spectral variability cannot be adequately represented by only an
additional term. The ALMM addresses the limitations of the ELMM and PLMM models by
considering the scaling factors and other spectral variability simultaneously, according to
their distinctive properties; the alternating direction method of the multiplier is used to
solve the mixing model.

Besides the spectral mixing model, the algorithm used to solve the model is also im-
portant. Compared with the traditional convex optimization algorithm, the method based
on neural networks is more convenient and efficient to implement, and its convergence
is also better. The autoencoder (AE) is a typical unsupervised deep learning network,
which generally consists of an encoder and a decoder. The encoder can map the input
into a hidden layer containing low-dimensional embedding (i.e., abundances), and the
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decoder can reconstruct the original input from low-dimensional embedding [22]. The AE
method has the advantages of good convergence and easy solutions and is suitable for
resolving the issues listed above. In recent years, the extensive in-depth study of AEs and
their application has led to the proposal of a series of spectral unmixing algorithms based
on AEs, such as non-negative sparse autoencoders (NNSAEs) [23], stacked non-negative
sparse autoencoders (SNSAs) [24], deep learning autoencoder unmixing (DAEU) [25], and
convolutional neural network autoencoder unmixing (CNNAEU) [26]. The output of the
encoder of an ordinary AE is only a value that represents the attributes of the latent vari-
able; the research on applications in hyperspectral unmixing has developed the variational
autoencoder (VAE) [27], whose encoder outputs the probability distribution of each latent
variable to make its results more representative.

1.1. Motivation

Although the ALMM effectively overcomes the deficiencies, the model is difficult to
implement with deep learning networks because there are more unknown terms to be
solved than with other models. The scale factor and additive perturbation complement
each other to better fit the target spectrum [28]. This paper comprehensively considers the
factors of spectral variability and combines the common ELMM and PLMM into a new
scaled and perturbed linear mixing model (SPLMM), which, unlike the ALMM, can be
efficiently solved using end-to-end neural networks.

PLMM assumes that spectral variability follows a Gaussian distribution [18], which is
not strictly true in real scenarios. The Probabilistic Generative Model for Hyperspectral
Unmixing (PGMSU) [14] can approximate arbitrary endmember distributions and so
address endmember variability, allowing the fitting of arbitrary endmember distributions
through the nonlinear modeling capability of VAEs [29]. Drawing on the ideas behind the
PGMSU, a network for the proposed SPLMM is constructed, which simultaneously solves
the abundances, scales, and approximate arbitrary perturbation distributions. Suitable
constraints on scale and perturbations are added to enhance the robustness of the model,
and the sparse constraint of abundance is added to prevent overfitting.

1.2. Contributions

The specific contributions of this paper are summarized as follows:

• We propose a new spectral mixing model, SPLMM, and a corresponding solving
network. SPLMM comprehensively considers the influence of scale and perturbation
factors and better explains the variability of endmembers. Using the neural network
to solve the model not only reduces the use of parameters but also makes the model
more convenient and efficient to implement, and the convergence to the solution
is improved.

• We propose a new network modeling method to enhance the estimation of endmem-
bers. Determining the initial fixed endmembers by extracting endmembers, using the
fully connected neural network to construct the scale, and using the nonlinear model-
ing ability of the VAE to fit any perturbation distribution, which not only limits the
range of endmembers but also better fits various situations of variable endmembers.

• We propose adding various regularization constraints. The spatial smoothness con-
straint is added to the scale, and the regularization constraint is added to the pertur-
bation, which improves the robustness of the model. For abundance, adding sparse
constraints helps prevent overfitting.

The organization of this article is as follows. Section 2 describes works related to the
theoretical analysis of the proposed SPLMM. Section 3 presents the proposed model and
its implementation details. Section 4 introduces experimental results and comparisons.
Finally, Section 5 presents conclusions.
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2. Related Work

In this section, we introduce the linear mixing model, the ELMM and the PLMM, and
then briefly introduce the VAE.

2.1. Linear Mixing Model

The linear mixing model (LMM) assumes that each pixel spectrum is a linear com-
bination of the several contributing endmembers, each weighted by its corresponding
fractional abundance and summed into the image pixel [30]. Considering the influence of
the abundance sum-to-one constraint (ASC) and the abundance non-negativity constraint
(ANC), the LMM is described for the observed pixel as follows:

yi = Ahi + ri, 1Thi = 1, hi ≥ 0, ∀i (1)

where yi ∈ RL denotes the observed mixed pixel spectrum, L is the number of spectral
bands, A ∈ RL×P represents the endmember matrix, P is the number of endmembers,
hi ∈ RP represents the abundance vector corresponding to the ith pixel spectrum, and
ri ∈ RL represents model error or the Gaussian noise.

2.2. Extended Linear Mixing Model

In the ELMM, the contributing endmembers are allowed to vary in each pixel spectrum,
and the mixing process remains linear. The variability of the endmembers can be modeled
by using scaling factors; the mechanism is expressed as follows:

yi = ∑P
p=1apsp,ihp,i + ri (2)

where sp,i is a positive scaling factor whose effect is to locally rescale each endmember, hp,i
is the abundance coefficient for material p at pixel i , ap is a reference endmember spectrum
for material p, and ri is additive noise. The overall expression is as follows:

Y = A(S� H) + R (3)

where Y ∈ RL×N represents the pixel matrix, S ∈ RP×N represents the scale matrix,
H ∈ RP×N represents the abundance matrix, and R ∈ RL×N is additive noise. The operator
� denotes the Hadamard product.

2.3. Perturbed Linear Mixing Model

In the PLMM, the variability in the endmembers is modeled by applying additive
perturbation to the spectra of endmembers contributing to each pixel spectrum, which is
expressed as follows:

yi = ∑P
p=1
(
ap + dp,i

)
hp,i + ri (4)

where dp,i ∈ RL is a perturbation vector, which represents the additive spectral per-
turbation of the pth endmember of the ith pixel spectrum. The set of variability terms
dp,i(p = 1, . . . , P, i = 1, . . . , N) are gathered in the 3-D array D ∈ RL×P×N . The overall
expression is as follows:

Y =M⊗ H + R (5)

whereM ∈ RL×P×N is a 3-D array of the pixelwise perturbed endmember spectrum,M⊗H =
[M1h1, . . . Mihi, . . . MNhN ] , Mi ∈ RL×N represents the perturbed endmember spectrum, and
Mi = A + D:,:,i. The operator ⊗ represents the tensor product of matrixes and vectors.

2.4. Variational Autoencoders

A Variational Autoencoder (VAE) is a generative model using variational inference,
and it was first proposed by Kingma et al. [31]. Its basic principles are briefly described as
follows. The VAE is divided into two parts: encoder and decoder. The encoder encodes
the input data y into hidden layer data z = encoder(y) ∼ q(z|y), through training; the
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VAE calculates the mean value µ and standard deviation σ, making it follow the Gaussian
distribution. Then, through the decoder, the hidden layer data z are reconstructed into
the input data ŷ = decoder(z) ∼ p(y|z). The loss function of the VAE is composed of two
parts [32]: reconstruction loss Lrec and Kullback–Leibler (KL) divergence Lkl .

Lvae = Lrec + Lkl (6)

Lrec = Eq(z|y)[log p(y | z)] =
1
N ∑N

i=1(yi − ŷi)
2 (7)

Lkl = −KL(q(z | y)‖p(z)) (8)

where the mean square error is used to measure the reconstruction loss of VAE, and p(z) is
the prior distribution of the latent space, set to be a standard normal distribution.

3. Proposed Model
3.1. Scaled and Perturbed Linear Mixing Model

In combining scale factors and additive perturbations, the SPLMM model is proposed,
and the ith pixel spectrum yi ∈ RL is reconstructed as follows:

yi = (Asi + di)hi (9)

where si ∈ RP, di = D:,:,i ∈ RL×P and hi ∈ RP denote the scale vector, perturbation matrix,
and abundance vector for the ith pixel, respectively. The overall expression is as follows:

Y = A(S� H) + D⊗ H, 0 ≤ H ≤ 1, A ≥ 0 (10)

where Y ∈ RL×N represents the pixel matrix, A ∈ RL×P represents the fixed endmember
matrix obtained by endmember extraction algorithms (EEAs), H ∈ RP×N represents the
abundance matrix, S ∈ RP×N represents the scale matrix, and D ∈ RL×P×N represents the
perturbation. D⊗ H = [d1h1, . . . dihi, . . . dNhN ].

3.2. Spectral Unmixing Based on SPLMM

The network structure of the SPLMM unmixing algorithm is shown in Figure 1,
where a multi-stream deep learning architecture [33] is used to build abundances, scales,
and perturbations. The network configuration is shown in Table 1, where, in the layer
names, FCi represents the fully connected layer of the ith layer, BNi represents the batch
normalization layer of the ith layer, LReLU represents the Leaky ReLU activation function,
tanh represents the tanh function, and softmax represents the softmax function.

Table 1. Network configuration table of SPLMM.

Abundance Network Scale Network Perturbed Network

Layers neurons Layers neurons Layers neurons
FC1–BN1–

LReLU 32P FC1–BN1–
LReLU 32P FC1–BN1–

LReLU 32P

FC2–BN2–
LReLU 16P FC2–BN2–

LReLU 16P FC2–BN2–
LReLU 16P

FC3–BN3–
LReLU 4P FC3–BN3–

LReLU 4P FC3–BN3–
LReLU 4P

FC4–BN4–
LReLU 4P FC4–BN4–

LReLU 4P FC4–BN4–
LReLU 4P

FC5–softmax P FC5–tanh P FC5 P
– – – – FC6 P

– – – – FC7–BN7–
LReLU 16P

– – – – FC8–BN8–
LReLU 64P

– – – – FC9–tanh LP
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Figure 1. Network structure diagram of the Scaled and Perturbed Linear Mixing Model (SPLMM).

3.3. Design of the Abundance Network, Scale Network, Perturbed Network, and Loss Function
3.3.1. The Abundance Network

The abundance network is used to estimate the abundance term, and using a nonlinear
function to directly map pixels to abundance for each pixel, the process can be expressed as

hi = fϕ(yi) (11)

where fϕ(·) is a nonlinear function parameterized by ϕ. The abundance network is mainly
modeled using fully connected networks (FCNNs). The data are input into an FCNN with
the number of input nodes set to the number of bands, and the number of output nodes
is gradually reduced to ensure that the number of output nodes in the last layer is equal
to the dimension of abundance. Except for the last layer, the output layer of each FCNN
tracks a batch-normalization layer (BN) [34] to speed parameter learning. The activation
functions used in this experiment are the Leaky ReLU functions [35]. Compared with the
ReLU function, the Leaky ReLU function has better fitting ability and is more suitable
for processing high-dimensional data. In order to ensure the abundance of the output
satisfying the ANC and ASC constraints, the last layer of FCNN uses the softmax function
as the final output layer.

3.3.2. The Scale Network

The scale network is used to estimate the scale factors using a nonlinear function to
directly map pixels to scale. The process can be expressed as:

si = fφ(yi) (12)

where fφ(·) is a nonlinear function parameterized by φ. The scale network is also realized
by FCNNs. Like the abundance network, the first few FCNNs track a BN layer to speed up
the learning speed and a Leaky ReLU function as the activation function layer. The tanh
function is used for the scale to control the range of the output scale item and effectively
prevent overfitting; the function is expressed as

tanh(x) =
ex − e−x

ex + e−x (13)
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3.3.3. The Perturbed Network

The perturbed network is realized by VAEs. First, we introduce a vector for each
pixel, which is the latent representation of the perturbation of endmembers, encoding their
variability. For each pixel, this is expressed as

di = fθ(zi) (14)

where fθ(·) is a nonlinear function parameterized by θ. In brief, the generative process
of the perturbations can be formulated as Equation (14). The perturbed network can be
realized by using FCNNs tracked with the BN layer and the Leaky ReLU activation. The
last layer of the FCNN uses the tanh function as the final output layer, which limits the
produced perturbations to a certain range by multiplying by a threshold value.

Second, we use a neural network qφ parameterized by φ as an approximation of the
true posterior distribution of the latent vector zi conditioned on the pixel yi. The posterior
distribution is approximated using a Gaussian as follows:

qφ(zi|yi) = N (µz, Σz) (15)

where Σz = diag(σ2
z ) is a diagonal covariance matrix, and µz and σ2

z are the mean and
variance of the latent variable zi , respectively. The FCNN with the pixel as input is also
used to model the mean and covariance diagonal matrices of the Gaussian distribution in
Equation (15). Considering that both the scale and the perturbation are part of the variable
endmembers, the weights of these two parts are shared, so they use the same parameter φ.
This design not only reduces the number of parameters, but also reduces the complexity of
the model and improves the efficiency of the model. The encoder network structure is the
same as the scale network structure.

Finally, after optimizing the parameters and inferring the latent variables, the scales
and abundances according to Equation (10) are reconstructed for the observed pixels.

3.3.4. Loss Function

In order to ensure the consistency between the input pixel and its corresponding
reconstructed pixel, according to Equation (9), the reconstruction error can be expressed as

Lrec = ||yi − ŷi||2 = ||yi − (Asi + di)hi||2 (16)

According to Equation (8), the KL divergence of the posterior distribution and the
prior distribution can be expressed as

Lkl = ∑P
i=1 −

1
2
[logΣz − µ2

z − Σ2
z + 1] (17)

In actual remote sensing images, the selection of scale factors may need to consider
various factors, such as the influence of terrain and atmosphere. In this paper, the spatial
smoothing item is selected to constrain the scale, which can effectively reduce the outliers
of the data and maintain the spatial consistency; the regular term is expressed as follows:

Ls =
1
2
(||Hh(S)||2F + ||Hv(S)||2F) (18)

where Hh, Hv: RP×N→RP×N are linear operators of horizontal and vertical gradients
between adjacent pixels (acting separately on each endmember).

In actual remote sensing images, the perturbations are usually similar in space. If the
perturbations are simply added, the model may be affected by the perturbations, thereby
reducing the accuracy. Here, it is prudent to consider adding the following regular items to
the perturbations to improve the robustness of the model:

Ld =
1
2
||D||2F (19)
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In hyperspectral images, sparsity is an important property. This means that most of
the pixels exist as pure pixels, and only a few pixels contain multiple ground features [30].
In these sparse images, each abundance of each endmember is locally distributed, and
the abundance has a certain sparsity, so it is necessary to introduce regularization sparsity
constraints. The regular term chosen in this article is L1/2 , which is more easily generalized
than L1 and helps prevent overfitting.

Lh = ∑P
i=1||Hi,:||1/2 (20)

At present, considering the constraints of Equations (16)–(18) and (20), the obtained
objective function can be expressed as

L = Lrec + λklLkl + λsLs + λhLh (21)

To sum up, the SPLMM procedure [36] is shown in Algorithm 1.

Algorithm 1. SPLMM: Global Algorithm

Input: observed pixels: Y, fixed endmembers: A;
hyperparameters: λkl , λs , λh;
mini-batch size: m, numbers of batches N/m;
epochs: maxIter = 1000;
learning rate: η = 0.001;

Output: abundances H, scales S, perturbations D;
Initialization: Θ = {ϕ, φ, θ}, k = 0, i =0;
Training stage:
1: While k < maxIter do
2: For i < N/m do
3: Sample from Y
4: Update H using Equation (11)
5: Update S using Equation (12)
6: Update D using Equations (14) and (15)
7: Compute Ŷ using Equation (10)
8: Compute Loss L(Θ) using Equation (21)
9: Back propagation
10: i = i + 1
11: end
12: k = k + 1
13: end
Test stage:
14: Forward propagation: Feed the SPLMM Y;
15: Obtain H , S , and D

4. Experiments

The methods used in the comparative experiments include the proposed method,
SPLMM, and these legacy methods: FCLSU [6], scaled constrained least-squares unmixing
(SCLSU) [37], ELMM [15], GLMM [16], PLMM [17], ALMM [18], and PGMSU [14]. The
number of endmembers is assumed to be a priori knowledge. The proposed algorithm is
implemented on the Pytorch framework and uses small-batch stochastic gradient descent
to learn model parameters. Following Equations (11)–(15), the parameters set in the model
are Θ = {ϕ, φ, θ} , which are initialized using random sampling from the Xavier uniform
distribution [38]. We adopt the Adam optimizer, and the learning rate is set to 0.001. We set
the maximum number of iterations to 1000 with mini-batch size setting to m.

4.1. The Criteria of Algorithm Performance

For abundance, we consider the commonly used average root mean square error of
abundance (aRMSE):

aRMSE =
1
N ∑N

i=1

√
1
P
||hi − ĥi||2 (22)
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The estimation performance in terms of endmembers is evaluated by computing the end-
member root mean square error (eRMSE) and the endmember spectral angular distance (eSAD):

eRMSE =
1

NP ∑N
i=1∑P

j=1

√
1
L
||aij − âij||2 (23)

eSAD =
1

NP ∑N
i=1∑P

j=1arccos
aT

ij âij

||aij||||âij||
(24)

If there is no ground-truth abundance and endmember, for most real data, we can
consider the reconstruction’s overall root mean square error (rRMSE):

rRMSE =
1
N ∑N

i=1∑P
j=1

√
1
L
||yi − ŷi||2 (25)

4.2. Experiments on the Synthetic Data Set
4.2.1. Synthetic Data Set

A test image was generated to test the SPLMM method and compare the SPLMM
method with other methods. The spectra used in this experiment were supplied by the
DIRSIG spectral library. As is shown in Figure 2, muddy spectra, grass spectra, concrete
spectra, and asphalt spectra were first sampled into 178 bands and then used to simulate
an image with a size of 100 × 100 pixels. The abundance of each pixel was generated
using the Hyperspectral Data Retrieval and Analysis tools, which were available at http:
//www.ehu.es/ccwintco (accessed on 3 March 2023). Finally, a signal-to-noise ratio of
30 dB Gaussian noise was added to the mixed pixels. The synthetic image is displayed in
Figure 3.

Figure 2. The four types of endmember spectra: (a) muddy, (b) grass, (c) concrete, (d) asphalt.

http://www.ehu.es/ccwintco
http://www.ehu.es/ccwintco
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Figure 3. Synthetic image.

4.2.2. Design of Model

A. Parameter Analysis

As the performance of the proposed method is sensitive to the hyperparameters, it is
indispensable to conduct further parameter analysis for the selection of hyperparameters
λkl , λs, and λh. According to the initial loss values Lrec = 2.86, Lkl = 1.82, Ls = 0.04, and
Lh = 1.91, λkl and λs are fixed as 0.1 and 5, respectively, and λh is set as [0 : 0.1 : 1]. As
is shown in Figure 4a, the best case can be obtained when λh = 0.2. Then, λh is fixed as
0.2, and λkl is set as [0 : 0.1 : 1]. Figure 4b shows that each result reached the most optimal
value when λkl = 0.4. Subsequently, λkl and λh are fixed as 0.4 and 0.2, respectively, and
λs is set as [1 : 1 : 10]. By inspecting Figure 4c, the best performance can be achieved by
setting λs as 5. Finally, the hyperparameters were set to λkl = 0.4, λh = 0.2, and λs = 5 .

(a) (b) (c)

Figure 4. The result curves under different hyperparameters: (a) λkl = 0.1 and λs = 5 , (b) λh = 0.2
and λs = 5 , (c) λkl = 0.4, and λh = 0.2 .

Following Equation (21) and in accordance with Algorithm 1, the hyperparameters
were set to λkl = 0.4 , λs = 5 , and λh = 0.2. Keeping all the conditions of the run constant
and changing only the number of iterations, the unmixing results under different numbers
of iterations are shown in Figure 5. By inspecting Figure 5a, a relatively stable and better
result is obtained after 300 iterations rather than 1000 iterations. As Figure 5b shows,
the loss gradually converges when the iteration number is less than 100. The iteration
is stopped when the loss changes for 20 consecutive iterations are within the specified
interval of [−0.004, 0.004]. According to the stopping condition for iteration, the final
iteration number is less than 400.
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(a) (b)

Figure 5. The results under different iterations: (a) The performance, (b) The loss.

B. Neural Network Configuration

Following Equation (21) and in accordance with Algorithm 1, the hyperparameters
were set to λkl = 0.4 , λs = 5 , and λh = 0.2. Keeping the used data and fixed endmember
unchanged, we set the number of runs to 1000 epochs. The evaluation index uses the
aRMSE and the rRMSE. The results obtained under different network configurations are
shown in Table 2 below.

Table 2. Results under different network configurations.

Abundance Network Scale Perturbation
Network aRMSE (10−2) rRMSE (10−2)

32P–16P–P 32P–16P–P 10.63 1.09
32P–16P–4P–P 32P–16P–4P–P 8.88 1.07

32P–16P–4P–4P–P 32P–16P–4P–P 12.30 1.19
32P–16P–8P–4P–P 32P–16P–8P–4P–P 8.63 1.10
32P–16P–4P–4P–P 32P–16P–4P–4P–P 6.77 1.09

32P–16P–8P–4P–2P-P 32P–16P–8P–4P–2P-P 11.08 1.08

According to the experimental results, the number of layers and the number of nodes
in the abundance network and the scale-perturbation network have a certain influence
on the values of aRMSE. When the number of network layers is the same, the values of
rRMSE are similar. The network configuration given in the fifth scheme in the table has the
smallest least-square error; the value is set in bold in the table.

C. The Setting of the Loss Function

According to Equation (21), the loss function is composed of a reconstruction error,
scale constraint, and abundance constraint. Comparing Equation (21) and the loss function
with perturbation constraints added is instructive. The hyperparameters were set to
λkl = 0.4, λs = 5, and λh = 0.2 . The results are shown in Table 3, where AN, SN, and
PN represent the abundance network, the scale network, and the perturbation network,
respectively. In these experimental results, the first line and the second line of the table,
respectively, consider whether to add perturbation to the model, and the results show that
the aRMSE of the added perturbation network is smaller, while rRMSE remains unchanged.
The second and third lines consider whether to add perturbation constraints under the
same mode, and the results show that the perturbation constraints do not work and that
the result when not adding them is better; the reason may be that a threshold is added
to the activation function of the perturbation, which limits the range of the perturbation,
and adding constraints related to the disturbance value will not work. The loss function
is designed as the second scheme in the table has the best performance (the smallest
least-square error) and is set bold in the table.
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Table 3. Results under Different Loss Functions.

Network Structure Loss Function aRMSE ( 10−2) rRMSE ( 10−2)

AN + SN L =
Lrec + λsLs + λhLh

8.18 1.07

AN + SN + PN
L = Lrec + λklLkl +

λsLs + λhLh
6.77 1.09

L = Lrec + λklLkl +
λsLs + λhLh + λdLd

7.23 1.10

4.2.3. Comparison Experiment Using the Synthetic Image

Table 4 lists the unmixing results of applying several methods to the synthetic image,
and Figures 6 and 7 show the abundance map and endmember bundle map of the unmixing
results of the several methods as applied to the synthetic image. The results are analyzed
in terms of several aspects below.

Figure 6. Unmixed abundance maps of synthetic images using different methods.

(1) Analysis in Terms of Abundance

The comparison results of the quantitative performance of the several methods are
presented in Table 4. Among them, SPLMM has the best estimation results for abundance.
From the abundance estimation in Figure 6, the contrast between PGMSU and the proposed
method is higher in terms of visual effects. The last two rows of the abundance map show
that it is easy to confuse concrete and asphalt, and the reason may be that their features
have some similarities. For these similar features, it may be difficult to distinguish one
from the other, and it may be more effective to compare their probability distributions.

The visual comparison of the last column of the figure, the “true” image, with the
SPLMM and PGMSU columns shows striking similarities, while the comparison of the true
image with the second through fourth columns, all LMM methods, shows considerable
visible error.
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Table 4. Comparison of unmixing results of different methods on synthetic data.

Methods aRMSE
(10−2)

rRMSE
(10−2)

eRMSE
(10−2) eSAD (10−2) Tcpu (s)

VCA + FCLSU 7.38 ± 0.12 0.91 ± 0.02 1.43 ± 0.02 5.16 ± 0.14 1.31
SCLSU 9.78 ± 0.75 0.88 ± 0.02 1.87 ± 0.01 5.16 ± 0.14 1.30
ELMM 8.34 ± 0.23 0.82 ± 0.01 1.44 ± 0.02 5.14 ± 0.11 11.22
GLMM 8.11 ± 0.15 0.70 ± 0.01 1.44 ± 0.02 5.14 ± 0.11 25.61
PLMM 8.45 ± 0.45 0.17 ± 0.01 20.3 ± 0.06 34.1 ± 0.52 35.95
ALMM 9.07 ± 0.49 11.2 ± 0.06 – – 36.52
PGMSU 6.05 ± 0.50 0.90 ± 0.02 1.49 ± 0.13 4.34 ± 0.31 92.53
SPLMM 6.02 ± 0.40 1.19 ± 0.04 1.51 ± 0.11 4.99 ± 0.15 69.25

Figure 7. Endmember bundle diagrams of synthetic image unmixing using different methods.

(2) Analysis in Terms of Endmember

Considering the influence of the single endmember curve obtained using FCLSU and
the spectral variation matrix in ALMM, the endmember diagrams of these two items are
not drawn for comparison. The endmember bundle spectrum curves in Figure 7 show
that the endmember spectra obtained using the proposed method are closest to the real
endmember spectra. The endmember curves of PLMM are not smooth, and this implies
that the perturbation obviously plays an important role. SPLMM results are compared to
both PLMM and PGMSU, which succeed in flushing much of the “noise” introduced in the
spectrum via the perturbation. The last two lines in Figure 7 show that the endmember
curves are partially similar, which corresponds to the confusion of some substances in the
abundance map in Figure 6. As shown in Table 4, it is worth noting that the numerical
performance of SPLMM falls slightly short compared to PGMSU; this is mainly due to
the fact that the errors of several spectral bands in the fourth endmember extracted using
SPLMM are more significant compared with PGMSU. As a result, the eRMSE and eSAD of
SPLMM slightly increase.
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(3) Analysis in Terms of Model Design

From the perspective of model design, the SPLMM achieves good unmixing results,
benefiting from the following aspects: (1) Scale and perturbation factors are both considered
to better explain the variability in endmembers. The weights share for the scale, and the
perturbation not only reduces the number of parameters but also reduces the complexity
of the model and improves the efficiency of the model. (2) The tanh function used in the
scale network and the perturbations network can effectively prevent overfitting. (3) Using
the nonlinear modeling ability of the VAE to fit any perturbation distribution can limit the
range of endmembers and better fit various situations of variable endmembers. (4) For the
loss function, the spatial smoothness constraint is added to the scale, and the regularization
constraint is added to the perturbation, which improves the robustness of the model. For
abundance, adding sparse constraints helps prevent overfitting.

4.3. Experiments on the Jasper Ridge Data Set
4.3.1. Jasper Ridge Data set

The JasperRidge data set collected from the AVIRIS sensor is 100 by 100 pixels, and
each pixel contains 224 bands in the range of 0.38–2.5 µm. The obtained image of the data
set is shown in Figure 8a. Due to the influence of water vapor and atmosphere, bands 1–3,
108–112, 154–166, and 220–224 were removed, and 198 bands were reserved for experiments.
The data set mainly contains four kinds of endmembers, vegetation, water, soil, and road;
their spectral curves are shown in Figure 8b.

(a) (b)

Figure 8. JasperRidge data set. (a) JasperRidge data set image, (b) Endmember spectral curves.

4.3.2. Contrast experiment

Table 5 lists the unmixing results of different methods for the JasperRidge data set,
and Figure 9 shows the abundance map of the JasperRidge data set’s unmixing results for
different methods. The results are analyzed in several respects below.

(1) Analysis in terms of abundance

Since the true abundance map of the JasperRidge data set is unknown, the obtained
reference abundance map, which is available at http://rslab.ut.ac.ir/data (accessed on 23
March 2023), was used for algorithm evaluation, and the evaluation results of different
methods are shown in Table 5. Like the synthetic data results, the abundance estimates of
the proposed method are second only to the PGMSU. From the perspective of visualization,
Figure 9 shows the abundance maps decomposed using different methods, which can be
identified for the detection of vegetation and water, but when detecting water, except for
PGMSU, the background purity of other methods is not high, showing the road. For soil

http://rslab.ut.ac.ir/data
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detection, the results of the proposed method and PGMSU are more accurate, and our
proposed method is closer to the reference abundance map. For road detection, only the
contrast of PGMSU detection is more consistent.

(2) Analysis in terms of pixels

Among the two methods with relatively good abundance estimation, the rRMSE
obtained using our proposed method are better than the results of PGMSU. The results
of PLMM and ALMM are relatively large, which may be due to the influence of the
perturbation. The result of ELMM is smaller than the result of the proposed method,
which is smaller than that of PLMM. The analysis shows that compared with ELMM, our
proposed method adds perturbation, so the result is larger. Compared with PLMM, our
proposed method adds scale, reducing the influence of the disturbance value, so the result
is smaller.

Table 5. Comparison of unmixing results of different methods on the JasperRidge data set.

Methods aRMSE
(10−2)

rRMSE
(10−2)

eRMSE
(10−2) eSAD (10−2) Tcpu (s)

VCA + FCLSU 12.22 ± 0.43 1.32 ± 0.16 13.05 ± 0.59 15.63 ± 0.88 1.31
SCLSU 9.84 ± 1.18 1.15 ± 0.13 13.76 ± 0.26 15.63 ± 0.88 1.30
ELMM 9.86 ± 1.07 0.23 ± 0.01 12.87 ± 0.31 15.87 ± 0.86 10.81
GLMM 10.14 ± 0.84 0.11 ± 0.01 12.58 ± 0.33 13.38 ± 0.80 85.63
PLMM 11.09 ± 0.18 2.22 ± 0.01 3.34 ± 0.17 8.65 ± 0.24 42.95
ALMM 12.72 ± 3.91 21.9 ± 1.31 – – 68.51
PGMSU 7.16 ± 0.19 1.66 ± 0.01 4.94 ± 0.06 6.14 ± 0.36 93.92
SPLMM 8.38 ± 0.35 1.62 ± 0.01 11.45 ± 0.40 14.96 ± 0.88 125.24

Figure 9. Unmixed abundance maps of the JasperRidge data set obtained using different methods.

4.4. Experiments on the Urban Data Set
4.4.1. Urban Data Set

The Urban Data set collected from the HYDICE sensor has 307 by 307 pixels, and each
pixel contains 210 bands in the range of 0.4–2.5 µm. The image obtained from the data set
is shown in Figure 10. Due to the influence of water vapor and atmosphere, bands 1–4,
76, 87, 101–111, 136–153, and 198–210 were removed, and 166 bands were reserved for
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experiments. The data set mainly contains four kinds of endmembers, asphalt, grass, tree,
and roof.

Figure 10. Urban data set image.

4.4.2. Contrast Experiment

Table 6 lists the unmixing results of different methods for the urban data set, and
Figure 11 shows the abundance maps of the urban data set’s unmixing results for different
methods. The results are analyzed from several perspectives below.

(1) Analysis in Terms of Abundance

Since the true abundance map of the urban data set is unknown, the obtained reference
abundance map, which is available at http://rslab.ut.ac.ir/data (accessed on 23 March
2023), was used for algorithm evaluation, and the evaluation results of different methods
are shown in Table 6. The aRMSE of the SCLSU is the smallest, and the results of ELMM
and PLMM are similar to the proposed method. From the perspective of visualization,
Figure 11 shows the abundance maps that were decomposed using different methods. For
the detection of asphalt, the contrast of each method is not high, probably because the
reflectivity of asphalt is low, and there are too many substances in the data set to accurately
distinguish asphalt. Grass is the most distinguishable substance, and for the detection
of trees, the contrast of the abundance map obtained with our proposed method is more
consistent. For the detection of the roof, it may be because the endmember spectrum
preprocessed using VCA did not accurately decompose the roof spectral curve, resulting in
inaccurate detection of the roof with many methods.

(2) Analysis in Terms of Pixel

According to Table 6, the results of ELMM and GLMM that only consider the scale are
very great, while the results of PLMM that consider the perturbation are relatively poor.
The reason may be that there are too many substances covered in the urban data set, and if
perturbation is added, it is likely to confuse the substance and perturbation. The SPLMM
adds scale and perturbation so that the spectral curve of each substance fits more possible
spectral variations, the method is more likely in some scenarios to confuse substances, and
the results obtained are worse.

http://rslab.ut.ac.ir/data
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Table 6. Comparison of unmixing results of different methods on the urban data set.

Methods aRMSE (10−2) rRMSE (10−2) Tcpu (s)

VCA + FCLSU 29.97 ± 3.14 6.78 ± 1.04 13.25
SCLSU 19.78 ± 1.01 1.47 ± 0.19 12.31
ELMM 23.19 ± 2.30 0.11 ± 0.03 601.10
GLMM 26.66 ± 7.37 0.06 ± 0.01 1624.33
PLMM 23.34 ± 0.51 0.78 ± 0.01 251.45
ALMM 37.09 ±1.76 18.69 ± 4.14 650.85
PGMSU 25.99 ± 1.95 1.48 ± 0.05 850.31
SPLMM 24.89 ± 2.22 5.15 ± 0.37 1022.45

Figure 11. Unmixed abundance maps of the urban data set using different methods.

5. Conclusions

In order to solve the spectral variable unmixing problem, a new linear mixing model
named SPLMM is proposed, which explicitly accounts for the common factors of end-
member variability. The unmixing algorithm for SPLMM is detailed and implemented
in an unmixing network that introduces deep learning into the algorithm, connects the
variational autoencoder, reduces the use of parameters, and can better converge the model.
The spatial smoothness constraints of the scale and regularization constraints of the per-
turbation enhance the robustness of the model, and the sparse constraint of abundance is
added to prevent overfitting. Experimental results using synthetic data and real data show
that the algorithm we proposed can decompose the abundance map with higher contrast
and more obvious discrimination, and the endmember bundle’s curve map is closer to the
real situation, so the SPLMM method is comparable to, and can exceed, the performance of
previous methods.
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