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Abstract: Automatic modulation classification (AMC) based on deep learning (DL) is gaining increas-
ing attention in dynamic spectrum access for 5G/6G wireless communications. However, inconsistent
feature parameters between the training (source) and testing (target) data lead to performance degra-
dation or even failure of existing DL-based AMC. The primary reason for this is the difficulty in
obtaining sufficient labeled training data in the target domain. Therefore, we propose a novel cross-
domain AMC algorithm based on multimodal information and transfer learning, utilizing abundant
unlabeled target domain data. We achieve complementary gains by fusing multimodal information
such as amplitude, phase, and spectrum, which are used to train a network. Additionally, we apply
domain adversarial neural network technology from transfer learning to learn from a large number
of unlabeled data samples in the target domain to address the issue of decreased accuracy in cross-
domain AMC caused by differences in sampling rate, signal-to-noise ratio, and channel variations.
Furthermore, we introduce class weight weighting and entropy weighting to solve the partial domain
adaptation problem, considering that the target domain has fewer modulation signal classes than the
source domain. Experimental results on two designed modulation datasets demonstrate improved
performance gains, thus validating the effectiveness of the proposed method.

Keywords: automatic modulation classification; multimodal information fusion; transfer learning;
class difference; sample distribution difference; unsupervised partial domain adaptation; class weight
weighting; entropy weighting

1. Introduction

Deep learning (DL) for automatic modulation classification (AMC) is gaining increas-
ing attention in cognitive radio and spectrum sensing technologies. This approach can
support the refarming of spectrum resources with low utilization, which is crucial for
developing 5G/6G wireless communications. AMC [1] refers to the identification of the
modulation schemes of an unknown signal received with limited prior knowledge for use
in scenarios such as electromagnetic situational awareness [2], cognitive radio [3], dynamic
spectrum access [4], and interference identification [5]. Classical AMC methods can be
divided into maximum-likelihood hypothesis testing based on decision theory and pattern
recognition based on feature extraction [6]. The likelihood ratio test methods are optimal
in terms of Bayesian estimation for their classification results. However, the identification
process requires higher prior knowledge and has stringent hypothesis constraints. More-
over, a suitable likelihood ratio function for different modulation schemes is required [7,8],
and the calculation complexity of the likelihood ratio function is high. Therefore, pattern
recognition based on feature extraction methods [9,10] is widely used in practice. However,
owing to ever-emerging complex signals and increasingly crowded electromagnetic envi-
ronments, feature extraction methods face several challenges, including difficulty setting
manual feature thresholds and achieving optimal combinations subjectively, resulting in
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poor adaptability to complex environments, complex modulation schemes, and similar
modulation schemes. Furthermore, these methods have low classification accuracy under
low signal-to-noise ratio (SNR) conditions.

To address these challenges, recently, deep learning (DL) has been applied to AMC.
DL methods do not require manual design or the extraction of signal features. Neural
networks can adaptively extract and infer modulation signal features that are more robust
and generalizable. The mainstream DL technologies include convolutional neural networks
(CNN), recurrent neural networks (RNN) [11], and some hybrid models, which show
superior performance over classical methods in AMC.

Currently, most AMC approaches obtain experimental datasets through three main
methods: MATLAB/GNU radio simulation, data collection in a single real scenario, and
direct use of publicly available datasets, such as RML 2016 and 2018 [12]. A part of the
generated /sampled /publicly obtained sample data is used to train neural networks, and
another part is used to test and verify the method'’s effectiveness. In the research process,
optimization is primarily conducted on the data or the neural network model to enhance
classification performance. Appropriate data preprocessing can maximize the differences
between different modulation schemes, thus ensuring improved classification by the neural
network. The network model and hyperparameters can also be fine-tuned to AMC tasks.

However, existing DL-based AMC algorithms often encounter specific problems and
challenges in practical applications. First, many studies predominantly rely on monomodal
information from a single depicting dimension, disregarding the complementarities that
multimodal information can generate to better adapt to complex scenarios with different
SNR and channel variations. Based on signal representation and preprocessing [13], the
existing DL-based AMC algorithms are divided into four categories: feature representation
(such as higher-order cumulants (HOCs) [9] and spectral features [10]), image representa-
tion (such as constellation diagram [14], feature point image [15], eye diagram [16], and
spectral correlation function image [17]), sequence representation (such as in-phase and
quadrature (IQ) sequences [18], amplitude and phase (AP) sequences [19], fast Fourier
transformation sequences [20]), and combined representation [21-23]. Increased modal
space has been theoretically proved to provide more comprehensive knowledge to improve
network performance [24]. Therefore, the use of multimodal information, such as features,
images, and sequences, is inevitable in future AMC algorithms. Second, training and test
data used currently in DL-based AMC algorithms are generated from the same datasets,
assuming they come from the same feature space and follow the same feature distribution.
However, time, space, transmitter and receiver performance differences, and channel multi-
path delay inevitably give rise to notable distinctions in feature distributions between the
source and target domain data (defined as the unsupervised non-partial domain adaptation
(NPDA) problem for AMC). When the trained model is directly used to test new data, it
performs poorly. In practical scenarios, the difficulty in acquiring accurate labels for data in
the target domain data hinders the direct utilization of the data for training the network.
This is the primary reason for the observed degradation in the performance of trained mod-
els. Employing unlabeled data in the target domain for training is a feasible approach to
the above problem. Finally, existing research assumes the same modulation classes without
considering that the modulation classes of the target domain are often less than those of
the source domain (i.e., the target domain class is a proper subset of the source domain
class, defined as the unsupervised PDA problem for AMC). Hence, applying nonpartial
domain-adaptive AMC algorithms directly to such scenarios can result in negative transfer
owing to their global alighment strategies, thereby reducing the method’s performance.

Several studies have attempted to resolve these issues. Insufficient monomodal
information representation capability was addressed by converting signals into a two-
dimensional image through time-frequency transformation and combined with handcrafted
features to form joint features [23]. The simulation result revealed that CNN models using
a fusion strategy achieve favorable classification performance under low SNR conditions.
However, after conversion of the raw I-Q sequences into images, the data increase ex-
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ponentially, and the computation complexity of extracting higher-order cumulants and
circular features also increase significantly, affecting classification efficiency. To address the
problem of deep neural network model mismatch caused by feature distribution differences
between the source and target domains, sharp deterioration in classification performance,
and numerous unutilized and unlabeled target domain data samples, adversarial-based do-
main adaptation (DA) methods [25,26] have been proposed [27-29]. Discrepancy-based DA
methods have been used in [30] for cross-domain AMC on self-built and public datasets [31].
These methods achieved better performance improvements than no transfer learning (TL).
However, the above studies did not consider cross-domain AMC issues under multiple
parameter changes, such as sampling rate, SNR, and channel, or conduct in-depth research
on unsupervised PDA problems using multimodal information.

We propose a novel multimodal information and TL framework for cross-domain
AMC to address the aforementioned issues. The contributions of this study are summarized
as follows.

(1) We adopted a multimodal information fusion strategy based on signal time-domain
and frequency-domain features, which enables the leverage of the complementary
benefits of different modalities to improve the network’s understanding of the input.
With the same network structure, our approach achieves improved classification
performance.

(2) Weintroduced TL to transfer knowledge from the source domain to the target domain.
By leveraging a large amount of unlabeled data in the target domain and aligning
the distribution of modulation signal data between the source and target domains
using a domain adversarial neural network (DANN), we proposed an unsupervised
DANN method that addresses the problem of unsupervised NPDA when multiple
parameters vary between the source and target domains.

(3) We designed a class weight weighting and entropy weighting mechanism to improve
the weight of shared class data samples and effectively address the PDA problem,
particularly in scenarios where the number of modulation signal classes in the target
domain is smaller than that in the source domain.

(4) We conducted extensive experiments on two datasets explicitly designed to validate
the effectiveness of our approach. The results demonstrated that our method achieves
higher classification accuracy in different DA tasks compared with the baseline methods.

The remainder of this study is organized as follows. Section 2 introduces the sys-
tem model, including the cross-domain learning model, cross-domain AMC model, and
calculation computation of multi-modal feature inputs. Section 3 details the proposed
classification approach, including multimodal information fusion, architecture, and train-
ing steps. Section 4 presents the experimental results and their detailed analysis. Finally,
Section 5 concludes this study. The list of abbreviations and notations used in the article
are presented in Tables 1 and 2, respectively.

Table 1. Summary of abbreviations.

Abbreviations Notations
AMC Automatic Modulation Classification
DL Deep Learning
SNR Signal-to-Noise Ratio
CNN Convolutional Neural Network
RNN Recurrent Neural Network
HOCs Higher-order Cumulants
IQ In-phase and Quadrature
AP Amplitude and Phase
NPDA Non-partial Domain Adaptation

PDA Partial Domain Adaptation
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Table 1. Cont.

Abbreviations Notations
DA Domain Adaptation
TL Transfer Learning
DANN Domain Adversarial Neural Network
GRL Gradient Reversal Layer
GANs Generative Adversarial Network
FE1, FE2, FE3 Feature Extractor
D1, D2, D3 Domain Classifier
Cls Class Label Predictor
S1,S2,S3 Label Predictor
fc Fully Connected layer
sps Samples Per Symbol
Table 2. Definition of notation.
Notation Definition Notation Definition
D Domain P4 Marginal probability distribution of domain
X Feature space Mg Number of source domain samples
X Domain samples ng Number of target domain samples
x; i-th feature vector in X per Marginal proszlbility distribution f)f shared
classes in the source domain
T Task A Weight coefficient
0% Label space Ly Cross-entropy loss function of label predictor
(o) Predictive function L, Cross-entropy loss fupctlon of domain
classifier
Y Labels of domain samples 0 ¢ Saddle point of 67
Yi i-th label in Y éy Saddle point of 6y
P(Y|X) Conditional probability distributions of domain 0, Saddle point of 6,
Dg Source domain u Learning rate
Ts Source task R(x) Pseudo-function
Dt Target domain I Identity matrix
Tr Target task X(n) Baseband complex signal
Ps(X) Marginal probability distributions of Dg I(n) In-phase component of signal
Pr(Y) Marginal probability distributions of DT Q(n) Quadrature component of signal
P(Ys|Xs) Conditional probability distributions of Dg X (k) Spectral amplitude
P(Yr|XT) Conditional probability distributions of Dt X5 (k) Square spectrum
Gy Feature extractor amp(n) Normalized instantaneous amplitude
Gy Label predictor phase(n) Instantaneous phase
Gy Domain classifier 7i Predicted label
0 P Weight of different classes in the source
i arameters of feature extractor 7 domain label s
pace
6y Parameters of label predictor w(x) Entropy weighting
04 Parameters of domain classifier Mys Weight of each source domain sample
. A single source domain modulated w(x) Entropy weight vector of source
! signal sample domain sample
v Label of source domain signal w(xt) Entropy dwelght vector of target
omain sample
! A single target-domain—modulated signal sample N Batch size
without a label
d]S.’t Domain label Pc Classification accuracy
Cs Label space of source domain r Current iteration number
Ce Label space of target domain Mp Number of correctly classified samples
Cs\Ct Outlier classes M Total number of samples
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2. System Model

We will first introduce the cross-domain learning model, then define the cross-domain
AMC problem, and finally describe the computation method of multi-feature input adopted
in this study.

2.1. Cross-Domain Learning Model

The research methodology employed in this study to resolve the cross-domain AMC
problem is based on transfer learning principles. Particularly, we adopt the DANN to align
the training and testing data domains.

2.1.1. Transfer Learning

The major task of TL is to transfer learned knowledge from the source to the target
domain to improve the learning process of the target task [25]. Thus, we first define
“domain” and “task”. A domain D comprises a feature space )y and marginal probability
distribution P(X) in which X = {xj,...,x,} where x; is the i-th feature vectors in X.
Hence, D = {x, P(X)}. A task T in D comprises a label space y and a predictive function
f(e) in which Y = {y1,...,ys} € 7, where y; is the i-th label in Y. The predictive (or
decision) function is learned from the feature vector and label pairs {x;,y;}. Additionally,
the predictive function represents the prediction of the corresponding label f(x;) given
instance x;. In this case, the predictive function can be defined as f(x;) = P(Y|X). Hence,
T = {7, f(o)}.

Now, we can formally define TL as follows. Given a source domain Dg with a
corresponding source task Ts, and a target domain Dt with a corresponding source task
Tr, TL aims to learn the target predictive function f(e) by leveraging the knowledge
gained from Dg and Ts, where Dg # Dr or Ts # Tr. Note that Dg # Dt implies that
Xs # xr and/or Ps(X) # Pr(Y). When xs # xr, the feature space of the source and
target domains differ. Similarly, Ps(X) # Pr(Y) when the marginal distributions of the
source and target domain differ. Another scenario of TL is Ts # Tr, where g # yr and/or
P(Ys|Xs) # P(Yr|X7). When s # T, the label space of the source and target domains
are different. When P(Ys|Xs) # P(Yr|Xr), the conditional probability distributions of the
source and target domains are different.

2.1.2. DANN

In this study, we treat the source and target domains as a whole and train a domain
classifier to achieve feature alignment between the two domains. The objective of the
domain classifier is to ensure that the deep features extracted from the source and target
domains are aligned in the same feature space. This addresses the parameter sensitivity
issue that can cause deep-learning-based modulation recognition methods to fail.

Our method utilizes DANN to align the distribution of the source and target domains,
thus avoiding the manual designing of the distance losses between the source and target do-
mains. During training, the network spontaneously learns what should be aligned between
the two domains and to what extent. This approach typically yields improved results.

DANN [25] is a representation learning approach for DA in which the training and test
data come from similar but different distributions. The advantage of the DA approaches is
the ability to learn a mapping between domains when the target domain data are either fully
unlabeled or have few labeled samples. DANN's architecture consists primarily of a feature
extractor, label predictor, and domain classifier (Figure 1). The learning feature is required
to be domain-invariant except for discriminativeness. Therefore, the domain classifier
is designed to discriminate whether the underlying features is from the source or target
domain during training. The gradient reversal layer (GRL) [25] propagates the domain
classification loss back to the feature extractor, with the weight of the loss function controlled
by a hyperparameter A. Through gradient reversal, the domain adversarial network
maximizes the loss of domain classifier while minimizing the loss of the label predictor.
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samples label predictor classifier
loss
feature optilpi zgtion
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unlabeled " domain domain
target sample classifier(with classifier
GRL) loss

Figure 1. Architecture of DANN.

The loss function consists of the source and domain classification loss. The source
domain classification loss is used to ensure that the neural network performs well on the
source domain data. The domain classification loss aims to align the data distributions of
the source and target domains so that the neural network trained on the source domain
can also exhibit good classification performance on the unlabeled target domain. By jointly
optimizing the source and domain classification loss, we can train a neural network with
good generalization performance, enabling it to perform effectively in the target domain.

The core idea of this approach is to use the domain classifier to guide the feature
extractor in learning feature representations that have discriminative performance for both
the source and target domains. By aligning the source and target domain data features, we
can resolve the issue of ineffective deep-learning-based modulation recognition methods
caused by parameter sensitivity and improve the model’s generalization performance on
unlabeled data.

Therefore, DANN must accomplish the following two core tasks during training. The
first task is to accurately classify the source domain data to minimize the loss of the label
classifier. The second task is to confuse the source and target domain data to maximize the
loss of the domain classifier. The objective function of DANN can be represented as follows.

E(0f,0y,04) = ig Ly (Gy (G (x5:05):0y ) 7)) — Ansintn;_i? La(Ga(Gr (750 ):0a) ), (1)

where Gy is the feature extractor with parameters 0y; Gy, is the label predictor in the source
domain with parameter 6,; G, is the domain classifier with parameter 6;; and the number
of samples in the source and target domain is denoted as n; and #n;, respectively. Further,
y; and d>" are the source domain category label (only the data in the source domain has
the category label) and the domain label (both the source and target domain data have
the domain label), respectively; A is the weight coefficient; and Ly and L, represent the
cross-entropy loss function obtained by finding the saddle point 8 Iz éy, 0, such that

(67,8,) = argminE (67, 0,,04 ), 2)
07,0y
éd = argminE (éf, 9y, éd). (©))
64

A saddle point can be found as a stationary point of the following gradient updates.

oLy (Gy (Gr (1567 ):6,). 4} _AaLd<Gd(Gf<x]5.’t;9f);9d),d;'t>

O < 0r—u
f 96 96

4)

oLy (G (Gr (w5365 )i84) )
26,

©)

9y<—6y—u
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oL, (Gd (Gf (x]s.'t,' 9f> ; Gd) , d;'t)

04 < 0, — uA S ,

(6)

where u is the learning rate.

Ref. [25] added GRL to achieve true end-to-end training and avoid the two-stage
training process where the generator and discriminator parameters are fixed separately,
as in generative adversarial networks (GANs). Mathematically, we can formally treat the
GRL as a “pseudo-function” R(x) defined by two (incompatible) equations describing its
forward and backpropagation behavior:

R(x) =x, @)
dR
E =-1I, (8)

where I is an identity matrix. It is worth noting that Equations (7) and (8) define a trainable
network layer that does not require parameter updates. It can be easily implemented
using existing deep learning tools, specifically by defining the procedures for forward
propagation (identity transformation) and backpropagation (multiplication by —1).

Then, we can define the objective “pseudo-function” of (Gf, Oy, 9d> that is being
optimized by the stochastic gradient descent as follows:

1 Ng+n¢

(e 00 0) = Lt (G(Gy (s0r)00) 1) 0 L La(Galor (e ) ). o
i= =

2.2. Cross-Domain AMC

The cross-domain AMC problem based on unsupervised DA comprises the source
domain Ds = {(x{,y5) }}*, with n, labeled samples and target domain Dy = {(xf)}}",
with n; unlabeled samples. Here, x{ represents a single source-domain-modulated signal
sample, with a corresponding label y$; and x! represents a single-target domain-modulated
signal sample without a label. Let us assume that the label space of the source domain
contains |Cs| types of radio signal and is denoted as C;. Similarly, the label space of the

target domain contains |C;| types of radio signal and is denoted as C;.

2.2.1. Unsupervised NPDA Problem

For the problem of unsupervised NPDA, we assume that the source and target domains
have the same number of labels and label types for radio signals, thus indicating that the
domains have the same label space. Let p and g denote the marginal probability distribution
of the two domains, where p # 4. The primary objective is to transfer knowledge from
the source to the target domain and align the distribution between the target and source
domains. Figure 2 is the schematic of the DL-based AMC method directly applied to the
unsupervised NPDA problem of AMC and the expected effect to be achieved using the
unsupervised NPDA method.

2.2.2. Unsupervised PDA Problem

For unsupervised PDA problem, we assume that the label space of the target domain
is a proper subset of the source domain, i.e., Cs @ C;. Here, p and g denote the marginal
probability distribution of the two domains, where p # g, and pc; denotes the marginal
probability distribution of source domain samples with labels shared by the two domains,
which differs from that of the target domain. The main objective of unsupervised PDA is to
align the fine-grained shared label distributions.
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Class A modulated signal in
the source domain

Class B modulated signal in
the source domain

>

Class C modulated signal in
the source domain

(@)

Class A modulated signal in
the target domain

> H o

Class B modulated signal in
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Class C modulated signal in
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®)

Figure 2. (a) Schematic of unsupervised NPDA method using global matching strategy. (b) Schematic
of the expected result using unsupervised NPDA method.

In addition to the challenges of different distributions between the source and target
domains of the modulated signal and the lack of labels in the target domain, adaptation
also involves the difficulty of not knowing the shared label space for the source and
target domain modulation signals during training as the label space of target domain C; is
unknown at that time [32]. This poses two technical challenges.

First, directly applying unsupervised NPDA AMC algorithms aligns the global dis-
tributions of both domains, thus causing negative transfer due to the existence of outlier
classes denoted as C;\C; (i.e., signal categories only included in the source domain mod-
ulation dataset). Therefore, the matching of outlier classes should be avoided. Second,
aligning the distributions of pc; and g to promote positive transfer is goal of this study.
Thus, eliminating or reducing the impact of outlier classes in the source domain and pro-
moting the transfer of shared classes (i.e., signal categories included in the source and
target domain modulation datasets) from the source domain to the target domain is critical.
Figure 3 illustrates this problem, considering a simple case with three modulation signal
categories in the source domain and only one in the target domain.

= Class A modulated signal in
the source domain

A Class B modulated signal in
(a) the source domain

° Class C modulated signal in
the source domain

Class A modulated signal in
the target domain

®)
Figure 3. (a) Schematic of unsupervised NPDA algorithm applied to the problem of unsupervised
PDA. (b) Schematic of the expected result using unsupervised PDA method.
2.3. Multimodal Feature Input Calculation

The AMC method based on image representations (such as eye and constellation
diagrams) depends on the accurate estimation of signal modulation parameters; thus,
it cannot to classify noncooperative received signals. The length of the sampled data
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considerably influences the accuracy of estimating higher-order cumulant features is com-
putationally complex.

Therefore, under the noncooperative reception condition, we aimed to reduce compu-
tational complexity and data volume while fully using the signal’s multimodal features.
We used IQ and AP sequences from the signal’s sequential representation and spectral am-
plitude and squared signal’s spectral amplitude from the feature representation as inputs
to the network. Assuming that the baseband complex signal obtained after the received
signal is X(n), the detailed calculation methods are as follows.

IQ sequence (I): The in-phase and quadrature components of the signal are the real
and imaginary parts of the signal, as follows:

I(n) = real(X(n)), (10)

Q(n) = imag(x(n)). (11)

The first modality Fy is the imaginary part and real part of the received signal, which
is expressed as:

Fy = [1(n); Q(n)]. (12)

Spectral amplitude and squared signal’s spectral amplitude (S): Calculate the spectral
amplitude of the signal, as follows:

X (k) = \Zﬁ; X(n)e2mkn/ N\,k =0,1,2,...,N-1, (13)

where | o | denotes the modulus operation.
Calculate the squared signal’s spectral amplitude, as follows:

X (k) = ‘ZnNzl a?z(n)e*ﬂ”k"/N‘,k =0,1,2,...,N—1 (14)

The second modality Fsp: consists of the spectral amplitude and the squared signal’s
spectral amplitude, which is expressed as

Fope = [Xa(n); Xa(n)],n = 1,2,3,... N (15)

where F;), represents spectral features of the received signals in the frequency domain for
DL models to recognize frequency and phase modulated signals.
AP sequence (A): Calculate the normalized instantaneous amplitude of the signal,

as follows. _
()N

Lol |%(m)

This feature can reflect the amplitude variation of different modulated signals, which
is helpful for DL models to recognize amplitude-modulated signals.
Calculate the instantaneous phase of the signal, as follows.

amp(n) = ,mn=1,2,3,...N. (16)

phase(n) = atanZé((:?),n =1,2,3,...N, (17)

where the value of phase(n) is (—, 7.
The third modality,F;,, comprises instantaneous amplitude and instantaneous fre-
quency, which is expressed as:

Fyp = [amp(n); phase(n)],n = 1,2,3,...N. (18)

Figures 4-7 present the schematic of features extracted from nine modulation schemes,
namely 8PSK, BPSK, 2FSK, 4FSK, 2ASK, GFSK, PAM4, QAM16, and QPSK.
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Figure 4. IQ sequence of nine types of modulation signals. Here the red and blue lines represent the

in-phase and quadrature components of the signal, respectively.
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Figure 7. AP sequence of nine types of modulation signals. Here the red and blue lines represent the
instantaneous amplitude and instantaneous frequency, respectively.

The complementarity between the first and third modalities (IQ and AP) has been
proven in previous research [33,34]. It has been shown that (1) algorithms that utilize AP as
input data outperform IQ algorithms at high SNR but show opposite results at low SNR;
(2) the features extracted from IQ and AP exhibit complementary characteristics.

Furthermore, selecting features with stronger representational power can enhance
the performance of existing deep-learning-based AMC. For instance, when ASK has to be
distinguished from other signals, choosing instantaneous amplitude features may yield
more effective results. Similarly, when differentiating PSK from other signals, selecting
instantaneous phase features may be preferred. When the task is to distinguish FSK from
other signals, instantaneous frequency features can be a suitable choice. Lastly, constellation
mapping can represent a feature of differentiating higher-order modulation schemes.
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Therefore, the utilization of modal information should be determined based on the
specific signal categories and their corresponding feature selection. The multi-modal feature
input that we have chosen here is provided as an example.

3. Proposed Cross-Domain AMC Method Based on Multimodal and TL
3.1. Multimodality DANN Modulation Classification

For the problem of unsupervised NPDA, we proposed the multimodality DANN
modulation classification model (MMDA-MC) shown in Figure 8. The network input
consists of the multimodal features computed in Section 2.3. FE1, FE2, and FE3 represent
the underlying feature extractors and share the same network structure. D1, D2, and D3
are domain classifiers with the same network structure. Cls is the class label predictor. s1,
s2, and s3 are the hidden layer outputs of the three feature extractors. The method mainly
consists of two key modules: multimodal fusion AMC module and domain adversarial
alignment module. We present the training and testing steps of the proposed MMDA-MC
in Algorithm 1.

Algorithm 1: Training and Testing Steps of Proposed MMDA-MC

Input: Multimodal features of the source and target domains {I;,S}, A? }?;1,{15, St Al }:.1;1, the
learning rate u, and the training epoches epo.
Output: Classification accuracy.

1.  Initializing the network parameters

Build Gy, Gfl’ sz, Gfs' Gdl, Gdz, and Gd3'
Initialize the Qy, Gfl, sz, Gfs, Gdl, Gdz, and 9d3-

2. Training

Forv=1,2,...,epo

a. Input {If,S?,A?}?;l and {If-,Sf,Af}?;l into G, Gf,, and Gy, to extract deep

features Gy, (I3; 0, ), G, (S5;01,), Gr, (A;65,), G, (11;64,), G, (S5 65,), and
Gr (AL 0y,).
Input the deep features into the G - Gay, and Gy, to calculate Ly, Ly,, and Ly,.
Concatenate the deep features to obtain fused feature.
Input the fused feature into G, to calculate Ly;
Add Ly, Lg,, Lg,, and Ly to obtain L.
Update 6., G‘f] , sz, 9f3, 04,,04,, and 0, by using gradient descent.
Adjust learning rate u.
If converges to an extremum or L reaches a preset threshold:

Sm e an o

Save weights 0, 9f1/ sz, 9f3, 04,,04,, and 0, .
Stop training.
End
End
3.  Testing

Input the concatenated the deep features of the target domain into Gy to calculate the
classification accuracy.

It should be noted that a previous study has shown that employing corresponding
network structures for different modalities can lead to better feature representations [35].
However, as neural networks become deeper, the performance differences between various
network structures may diminish. Therefore, in this work, we concentrate on address-
ing the challenge of parameter sensitivity, which can impede the effectiveness of deep-
learning-based modulation recognition methods, by leveraging multi-modal information
and adversarial training. Rather than utilizing multiple network structures to extract deep
features from different modal inputs, we have made a deliberate choice to maintain focus
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and prevent the research from becoming divergent. This decision is reasonable and helps
us maintain a concentrated and focused approach to our research.
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Figure 8. Proposed multimodality DANN modulation classification (MMDA-MC) model.

3.1.1. Multimodal Fusion AMC Module

The source domain label classification loss is calculated by propagating the loss
through backpropagation to each feature extractor after fusing and concatenating the
deep features extracted from the input multimodal features (I, S, A). Therefore, the source
domain label classification loss can be expressed as:

1 < S S S S
- 21 Ly <(Gy(Gf1 (x7:05,) + Gp, (x7;05,) + Gy, (673 6,); 9y>/yi)r (19)

where G -G/ and G £, are three feature extractor with parameters 0 005 and 6 5 Gy is the
label predictor with parameter 0,, respectively; G, is the domain classifier with parameter
84; ns is the number of samples in the source domain; y; is the source domain category
label; and Ly represents the cross-entropy loss function.

3.1.2. Domain Adversarial Alignment Module

To leverage the complementary benefits of multimodal information, a domain classifier
is applied to each mono-modality feature to align the feature distributions between the
source and target domains. Thus, the overall domain classification loss can be defined as:

M M”:i:t Ly, (Gdl (Gfl (x];,t; 9f1>;6d1)’d]s',t>

ns+n

it L (G (G (5505, 47) )
A3 nimné” Lo, (Gay (G (365, ) 0, ). )

where G, Gg,, and Gy, are three domain classifiers with parameters 6, , 64,, and 6,,,
respectively; A1, Ay, and A3 are the weight coefficients; d;’t is the source domain label;
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and Ly, Lg,, and Ly, represent the cross-entropy loss function. Thus, the total loss function
can be defined as

:n%éLy(( (G, (x5385,) + Gy (5536, + Gy (x5:67):0,), 7 )
+Aujmf§1gxcﬁﬁﬁ( @Jeﬁ)dﬂ
+ant§1%0%4qx %)%J »)

)

+A3+é La, (Gay (G (5565, )64, ). 5"

(21)

The loss function of the label classifier applies only to the source domain, whereas the
loss function of the domain classifier applies to both the source and target domains.

3.2. Class-Entropy Weighted Multimodality DANN Modulation Classification

Directly applying DANN to unsupervised PDA AMC problems can degrade per-
formance owing to negative transfer caused by outlier classes, which can be reduced by
mitigating the influence of outlier classes [32]. Therefore, the main ideas in [32,36-39]
include assigning higher class weights to shared class samples and lower weights to outlier
class samples from the source domain, either in the label predictor or the domain adver-
sarial classifier. Our approach identifies the modulation schemes of the target domain. It
assigns higher weights to source domain samples that belong to the same class as the target
domain by introducing a class weight weighting and entropy weighting mechanism into
the proposed early MMDA-MC model. The modified model is named WMMDA-MC.

The output of the label predictor §; = G, (x;) presents a probability distribution in
the source domain label space Cg for each input sample x;. This distribution effectively
describes the likelihood of a sample belonging to a certain class. As the label spaces
of outlier classes and shared classes do not overlap, the label predictor should assign a
sufficiently low probability of predicting an outlier class for shared class samples in the
target domain. Based on the output of the label predictor for target domain samples, we
can determine the weights of each class in the target domain and share these weights with
the source domain samples. The impact of prediction errors can be reduced by averaging
the SoftMax predictions of all target domain samples. Ultimately, the contribution of each
class in the source domain to training can be represented as

10
U:;Z%, (22)

ti=1

where 7 is a |Cg|,-dimensional vector that quantitatively describes the different categories
in the source domain label space during training. Considering that this vector is obtained
from the output of the target domain samples in the label predictor and that the target
domain does not include outlier classes, the weights assigned to the outlier classes in 7
should be noticeably smaller than those assigned to the shared classes.

In addition to reducing negative transfer, promoting positive transfer from pc; to q
is also important. Multimodal information in the signal can enhance the confidence of
the label predictor’s predictions, thus enabling more accurate assignment of appropriate
weights to the shared and outlier classes. Furthermore, DANN can better facilitate the
transfer between the shared classes in the source and target domains.

According to [39,40], for PDA problems, having every sample from the source and
target domains equally participate in domain adversarial training is unreasonable. The
presence of difficult samples to accurately predict and located near the label predictor
can negatively impact domain adversarial training. These difficult-to-predict samples are
referred to as “hard samples”, whereas easily predictable samples are called “soft samples”.
Figure 9 illustrates soft and hard samples in the simplest binary classification case. The
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soft samples

existence of hard samples affects the transfer ability of soft samples; hence, the weight of
hard samples in domain adversarial training must be reduced, whereas that of the soft
samples must be increased. Hard samples primarily originate from two sources. As outlier
and shared classes are orthogonal, no outlier classes exist in the target domain. Therefore,
outlier classes are comparatively harder to transfer and lack directionality, resulting in
more difficulty in accurate prediction. Moreover, hard-to-transfer samples within the
shared classes are fewer, and they can be measured using the conditional entropy criterion
defined as

o
H(Gy(x)) = =Y ) v 1o (v)- (23)
classifier margin

\ hard samples

/\ Class A modulated signal

/. ) @ Class B modulated signal

'/

—

Figure 9. Schematic of the soft and hard samples in the two-category case.

According to the optimization principle in [40], in adversarial training, entropy weight-
ing is applied to each sample and expressed as

w(x) =1+ e HGy (), (24)

The total loss function for the PDA problem is modified by incorporating Equations
(22)-(24) into Equation (21), as follows.

Ng

=i XLy ((GulG (5505) + Gy (x5565) + G, (35:05,);80), )
s
+ A=Y w(x$n,sLy (Ga | G (x5;07 )04 |,dS 2
kgl knsig (1)77]/, dk( dk( fk(l fk) dk) 1) , (25)

+ kil /\knltjngtll w(x;)Ldk (Gdk (Gfk (x;-,' 9fk>,’ Qdk),d]t->

where 77+ represents the weight of each source domain sample, obtained by taking the y;-th
value in the vector.

The proposed WMMDA-MC method modified according to the loss function is shown
in Figure 10. We present the training and testing steps of the proposed MMDA-MC in
Algorithm 2.
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Algorithm 2: The Training and Testing Steps of Proposed WMMDA-MC

Input: the multimodal features of the source and target domains {I},S}, A }?;1,{15, S, Al }?;1, the
learning rate u, and the number of iterations iter.
Output: Classification accuracy.

1. Initializing the network parameters

Build Gy, Gfl’ sz, Gfs’ Gd1/ Gdz, and Gd3-
Initialize the 6y, 0 s 0 by 0 i 04,,04,, and 0, .

2. Training
Forv=1,2,... iter
a. Ifiter # 1 and is a multiple of the test interval
ng

Input {I},S}, A{}" | into Gy, Gy, and Gy, to extract deep features Gy, (I}; 6y,),
Gy, (S};6y,), and Gp, (A};6y,).
Concatenate these deep features and input them to Gy to get SoftMax output
(target_softmax). Take the average of target_softmax to obtain the class weight
vector 7.
If i exists

Update y
End

End
b. Input {If,Sf,Af}?‘z‘l and {If-,Sf, Af}:ll into Gy,, Gf,, and Gy, to extract deep
features Gy, (I3; 0, ), G, (S5;01,), Gr, (A 65,), G, (11;6y,), G, (S};6y,), and
Gf3 (Azt'; 9f3)'
c.  Concatenate Gy, (I}; 07, ), G, (S;0f,), and Gy, (A}; 0y, ) into Gy to get SoftMax
output (source_softmax).
d. Calculate the source domain sample entropy weight vector w(x®) based on
source_softmax.
e. Ifyexists
Apply class weight weighting to each source domain sample’s cross-entropy
loss to obtain the weighted source domain label classification losses.
End
f.  Concatenate Gy, (1 0r), Gp, (st; 0r,), and Gy, (Ah 0,) into Gy to get SoftMax
output (target_softmax).
g. Calculate the source domain sample entropy weight vector w(x') based on
target_softmax.
h.  Input the deep features into the G;,, G4,, and G, to calculate Ly,, Ly,, and Ly, .
The cross-entropy losses for each source and target domain sample should be
weighted using the respective entropy weights w(x®) and class weights w(x?)

i.  Input the fused source domain feature into Gy to calculate Ly,.

jo AddLg,Lg, Lg,and Ly to obtain L.

k. Update 6y, 9f1' sz, 9f3, 04,,04,, and 0, by using gradient descent.
1. Adjust learning rate u.

m. If converges to an extremum or L reaches a preset threshold:
Save weights 6,, 9f1' sz, Gfs, 04,,04,, and 0, .
Stop training.
End
End
3. Testing

Input the concatenated the deep features of the target domain into Gy to calculate the
classification accuracy.
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Figure 10. Proposed weighted multimodality DANN modulation classification (WMMDA-
MC) model.

4. Numerical Results and Performance Analysis
4.1. Implementation Details
4.1.1. Model Network Structure

The feature extractor used in this study mainly consists of five convolutional layers
(convl, conv2, conv3, conv4, and conv5) and a fully connected layer (fcl) for extracting
features from the source and target domains. ReLU is used as the activation function,
and BatchNorm is applied for normalization. Additionally, pooling layers are added after
conv2, conv3, conv4, and conv5 to reduce data dimensionality. The original input size of the
feature extractor is N x 2 x 128, and it is reshaped using the Reshape function before being
fed into the feature extractor as N x 1 x 2 x 128, where N represents the batch size. An
AdaptiveAvgPool2d layer conducts binary adaptive mean aggregation, thus ensuring that
the features extracted by each feature extractor have consistent dimensions during fusion.

The label predictor consists of two fully connected layers (fcl, fc2) for predicting the
labels of the source domain data. ReLU is the activation function. The hidden layer features
outputted by the feature extractor are fused and concatenated before being input to the
label prediction classifier.

The domain classifier includes three fully connected layers (fcl, fc2, and fc3) for
discriminating whether the hidden layer output from the feature extractor belongs to
the source or target domains. ReLU is used as the activation function, and each domain
classifier is preceded by a GRL.

The Adam optimizer is used for optimizing the feature extractor, label predictor,
and domain classifier. A restarted cosine annealing method [41] is applied to update the
learning rate at the end of each epoch. The network layouts for each module are presented
in Tables 3-5.

4.1.2. Simulation Environment and Evaluation Metric

The DL environment is configured with Python 3.8.0, pytorch 1.6.0, cudal0.2.89 on
Windows Server 2012 R2 Standard. The CPU is dual Intel(R) Xeon(R) Gold 6230R, with
NVIDIA Tesla V100 and 128 GB memory.
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Table 3. CNN architecture layout of feature extractor.
Layers Output Shape
Reshape N x1x2x128
Conv (filter 32, size = (2,7), stride = 2, padding = (0,3), bias = True) N x32x1x64
BatchNorm2d (32) + ReLU N x32x1x64
Conv (filter 64, size = (1,3), stride = 1, padding = (0,1), bias = True) N x64x1x64
BatchNorm2d (64) + ReLU N x 64 x1x64
MaxPool2d (size = (1,2)) N x 64 x1x32
Conv (filter 128, size = (1,3), stride = 1, padding = (0,1), bias = True) N x 128 x 1 x 32
BatchNorm2d (128) + ReLU N x 128 x 1 x 32
MaxPool2d (size = (1,2)) N x 128 x1x 16
Conv (filter 256, size = (1,3), stride = 1, padding = (0,1), bias = True N x256 x1x16
BatchNorm2d (256) + ReLU N x 256 x1x 16
MaxPool2d (size = (1,2)) N x512x1x8
Conv (filter 512, size = (1,3), stride = 1, padding = (0,1), bias = True) N x512x1x8
BatchNorm2d (512) + ReLU N x512x1x8
MaxPool2d (size = (1,2)) N x512x1x4
AdaptiveAvgPool2d ((1,1)) N x512x1x1
Flatten N x 512
Dense (512,128) N x 128
BatchNorm1d (128) + ReLU + Dropout N x 128

Table 4. CNN architecture layout of label predictor.

Layers Output Shape
Dense (384,192) N x 192
ReLU + Dropout N x 192
Dense (192,192) N x 192
ReLU + Dropout N x 192
Dense (192,9) N x9

Table 5. CNN architecture layout of domain classifier.

Layers Output Shape
Dense (128,128) N x 128
ReLU + Dropout N x 128
Dense (128,128) N x 128
ReLU + Dropout N x 128

Dense (128,2) N x2

For the MMDA-MC method experiment, the optimizer batch size is set to 5000; the
epoch is 50, and A;, i = 1, 2, 3; all three parameters remain the same. As the epochs iterate
from O to 1, the strategy used in [42] is adopted to update A; such that A; = ﬁ -1,
where r represents the current iteration number divided by the total iteration number. In
the early stage of training, A; tends to be 0, thus indicating the importance of optimizing
the label predictor. In the later training stages, A; tends to be 1, thus indicating equal
importance in optimizing the label predictor and domain classifier. The AMC performance
metric is defined as classification accuracy:

_Mp

P ,
CT M

(26)

where Mp represents the number of correctly classified samples and M represents the total
number of samples.

For the WMMDA-MC method experiment, the optimizer batch size is set to 400,
iterations are set to 40,000 (as the sample sizes of the source and target domains are
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different, epoch is not used for counting iterations), test interval is set to 40,000, and the
initial learning rate is set to 1 x 1073,

4.2. Dataset Generation

The datasets were created following the method described in [31], which includes
five parts: symbol data generation, digital modulation, channel modeling, normalization,
and storage.

Based on the unsupervised NPDA problem for AMC mentioned in Section 2.2.2, we
designed a typical cross-domain dataset with different parameters and reception conditions
to verify the good classification performance and generalization ability of the MMDA-MC
method, named Dataset A. By adjusting the SNR, channel types, and samples per symbol
(sps), we controlled different domains of data. Dataset A is divided into 12 subsets, named
Dy, n=1,2,...n, containing 8PSK, BPSK, 2FSK, 4FSK, 2ASK, GFSK, PAM4, QAM16, and
QPSK, which are nine typical digital modulation schemes. The number of sampling points
for each signal sample was 128. Each subset contains 1200 training samples, 400 validat-
ing samples and 400 testing samples for each modulation scheme at different SNRs. The
parameter settings are presented in Table 6, and the remaining parameters are kept consis-
tent. Based on the 12 subsets, we designed 12 x 11 = 132 DA tasks, denoted as D; — D;,
i=1,2,...,12;j=1,2,...,12; i # j where the left side of — represents the labeled source
domain dataset and the right side represents the unlabeled target domain dataset.

Table 6. Unsupervised NPDA datasets parameter settings.

Dataset SNR Channel sps
D; [20, 30] dB, interval: 2 AWGN 8
D, [20, 30] dB, interval: 2 AWGN 4
Ds [20, 30] dB, interval: 2 AWGN 16
Dy [20, 30] dB, interval: 2 Rician 8
Ds [20, 30] dB, interval: 2 Rician 4
Dg [20, 30] dB, interval: 2 Rician 16
Dy [—4, 6] dB, interval: 2 AWGN 8
Dg [—4, 6] dB, interval: 2 AWGN 4
Do [—4, 6] dB, interval: 2 AWGN 16
Dqp [—4, 6] dB, interval: 2 Rician 8
Dy [—4, 6] dB, interval: 2 Rician 4
D1o [—4, 6] dB, interval: 2 Rician 16

We introduced two research variables, sps and the number of modulation schemes,
to further validate that the modified WMMDA-MC model can effectively address not
only unsupervised NPDA but also unsupervised PDA. The parameter sps, when the
sampling rate is the same, can control the symbol rate of the modulated signal, which
significantly effects transmission rate, bandwidth requirements, and noise resistance in
digital communication. Therefore, we specifically selected sps as the experimental variable.
Additionally, other source and target domain data parameters were kept consistent to avoid
the effects of other interfering variables, except for the difference in sps and modulation
scheme types. We designed dataset B, which comprises BPSK, QPSK, 8PSK, PAM4, QAM16,
GFSK, CPFSK, and QAM64 modulation schemes, used for AMC under Rician channel
conditions. Table 7 presents the parameter settings for the Rician channel. The SNR ranges
from 0 to 18 dB with an interval of 2 dB.
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Table 7. Rician channel parameter settings.

Parameter Value
sampling rate 200 x 103
sampling rate offset standard deviation 0.01 Hz
maximum sampling rate offset 50 Hz
center frequency offset standard deviation 0.01 Hz
maximum center frequency offset 500 Hz
multipath delay [0,0.9,1.7]
multipath gain [1,0.8,0.3]
SNR [0, 18] dB, interval: 2

Dataset B includes two subsets. Each subset contains 1200 training samples, 400
validating samples and 400 testing samples for each modulation scheme at different SNRs.
The subset with a sps of 8 is named D,g and will be considered the source domain because
it contains all eight modulation schemes. The subset with an sps of 4 is further divided into
eight datasets based on the included modulation types. For example, the dataset containing
only the first modulation type (BPSK) is named Dg4 ;.

These datasets collectively form the target domain, and the label space of the target
domain should be a proper subset of the source domain label space. Here, when Dy g
is used as the target domain, the PDA problem becomes an NPDA problem. Based on
these nine datasets from the source and target domains, we design eight DA tasks for
each method, denoted as Dsg — Dg4 ;,i = 1,2,...8, where the left side of ”—" represents
the labeled source domain dataset and the right side represents the unlabeled target
domain dataset.

4.3. Baseline
4.3.1. Supervised Learning

Supervised learning algorithms are used for comparison to explore the upper limit of
classification accuracy in DA methods. Currently, most AMC algorithms based on DL are
trained on labeled datasets and tested on datasets with the same distribution as the trained
datasets. This method is referred to as “supervised” in this study. The network structure
of the supervised method is composed by concatenating the feature extractor and label
predictor introduced in Section 3.

4.3.2. Supervised Learning with Different Source and Target Domain Distributions

To compare the performance gain of DA methods with current DL-based AMC al-
gorithms in practical scenarios, we designed a “source-only” method. The training was
conducted using the supervised network structure, whereas testing was performed on a
target domain different from the source domain.

4.4. Effectiveness Analysis of the Multimodal Fusion Strategy

This section verifies the effectiveness of multimodal fusion in DL-based AMC algo-
rithms. It tests the classification performance of the “supervised” method under different
input feature combinations on a target domain dataset with the same distribution as the
source domain. Figure 11 and Table 8 present the average classification accuracy; the
column headers represent different feature combinations fed into the network, and the row
headers represent different datasets. Using basic features such as amplitude, phase, and
frequency for learning and training can effectively achieve AMC under high SNR Gaussian
channels. Furthermore, multimodal fusion outperforms single-feature approaches in classi-
fication performance across different channels, SNRs, signal parameters, and other datasets.
Moreover, the classification performance increases when more modal features are used as
input. This demonstrates that multimodal information can achieve better complementary
gains by helping the network learn and understand the input objects, thus improving the
network’s classification performance.
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Figure 11. Classification accuracy for different combinations of input on different datasets.
Table 8. Test accuracy for different combinations of input on different dataset (%).
SPC 10 AP IQ+SPC  IQ+AP AP+SPC  IQ+SPC+ AP
Dy 82.53 99.75 99.69 99.77 99.98 99.78 99.98
D, 89.64 99.97 99.81 99.99 100.00 99.89 100.00
D3 86.41 98.25 98.52 98.47 99.60 99.17 99.67
Dy 77.59 86.37 85.82 95.19 95.98 94.19 96.94
Ds 75.75 85.08 84.50 89.42 91.66 90.08 94.47
D¢ 83.99 86.34 85.23 93.51 94.96 94.40 96.13
Dy 75.90 80.09 76.58 85.11 87.50 86.54 89.25
Dg 75.59 77.01 74.34 82.91 83.60 81.43 86.75
Do 74.19 78.56 84.31 83.49 88.51 88.87 90.48
Dqg 69.54 58.38 70.27 73.52 71.94 74.62 75.72
Dy 62.10 54.19 55.00 68.72 65.46 69.28 71.11
Dy 70.51 57.12 73.21 73.61 73.50 75.87 77.10
average value 76.98 80.09 82.27 86.98 87.72 87.84 89.80

4.5. Validity Analysis of Cross-Domain AMC

This section verifies the effectiveness of the MMDA-MC method for solving the
unsupervised NPDA problem in cross-domain AMC and analyzes the impact of the channel,
SNR, and symbol rate. Multimodal information is employed, with “source-only” serving
as the control group. Table 9 presents the average classification accuracy, where the column
headers indicate the current dataset as the source domain and others as the target domain.

For visual comparison, Figure 12 shows a histogram comparing the two methods. Evidently,
when the target and source domain data differ, the accuracy of the DL-based AMC method

decreases significantly, thus indicating significant challenges in realistic scenarios. However,

8.22% to 31.03%.

Table 9. Test accuracy of different algorithms in various datasets (%).

the proposed MMDA-MC demonstrates clear advantages in such scenarios. Compared
with “source-only” without cross-domain training, it improves classification accuracy from

D1 D3 D4 D5 D6 D7 Dg Dg D10 D11 D12 Average
source-only 25.73 22.26 24.68 37.04 35.26 26.36 39.95 41.77 36.45 45.13 50.78 36.65 35.17
MMDA-MC 56.76 46.86 49.35 57.76 56.94 45.78 58.38 54.09 47.42 60.55 59.00 51.49 53.70
improved 31.03 24.60 24.67 20.72 21.68 19.42 18.43 12.32 10.97 15.42 8.22 14.84 18.53
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Figure 12. Test accuracy of different algorithms in various datasets (%).

Analyzing the different domain discrepancies caused by varying parameters between
the source and target domains is important for evaluating the MMDA-MC method’s
performance. For experimental convenience and demonstration, all 132 DA tasks generated
from the 12 datasets are divided into seven categories based on the types and combinations
of parameter variations. Table 10 summarizes the DA task mappings: “1” indicates that the
parameter remains consistent between the source and target domains, whereas “0” indicates
a change. For example, DT110 represents scenarios where the source and target domains
have consistent symbol rates and channels but varying SNR.

Table 10. Various cross-domain adaptation tasks.

ID Name sps Channel SNR
1 DT110 1 1 0
2 DT101 1 0 1
3 DTO011 0 1 1
4 DT100 1 0 0
5 DT010 0 1 0
6 DT001 0 0 1
7 DT000 0 0 0

The results presented in Table 11 indicate the following.

(1) Overall, the average classification accuracy improvement ranges from 11.50% (DT101)
to 20.58% (DT100), thus demonstrating that the MMDA-MC method can enhance
classification performance even when there are one or multiple parameter differences
between the source and target domains.

(2) Under single parameter changes: When only the SNR or channel differs (DT110
and DT101, respectively) between the source and target domains, the MMDA-MC
method achieves relatively high average classification accuracy of 75.94% and 74.72%,
respectively. This indicates that the feature distributions are more similar when only
the SNR or channel varies, facilitating feature distribution alignment. However, when
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only the sps differ (DT011), the average classification accuracy reduces to 58.32%.
Particularly, when SNR and channel change simultaneously (DT100), the average
classification accuracy is 63.39%, higher than in the case of sps difference alone. This
demonstrates that a difference in sps reduces feature similarity, thereby increasing the
difficulty in aligning the feature distributions between the source and target domains

and significantly impacting classification performance.

(3) When two or three parameters vary, particularly for DT000, although the MMDA-MC
method improves the average classification accuracy compared with the “source-only”
method, the accuracy is only 38.10%. Thus, DA methods can enhance classification
performance when the differences between the source and target domains are signif-
icant. However, the gain in classification performance for the target domain is also

limited owing to limited source domain knowledge.

Table 11. Test accuracy of different algorithms in various cross-domain adaptation task (%).

Classification Accuracy Improvement Number of Tasks
ID Code Name
MMDA-MC  Source-Only Average Max Test Improved
1 DT110 75.94 54.97 18.65 38.15 12 12
2 DT101 74.72 63.22 11.50 35.10 12 12
3 DT011 58.32 39.61 18.71 52.86 24 24
4 DT100 63.39 42.56 20.83 36.14 12 12
5 DTO010 48.32 27.74 20.58 36.73 24 24
6 DT001 43.57 25.06 18.51 46.32 24 24
7 DTO000 38.10 19.51 18.59 35.73 24 24
4.6. Validity Analysis of Partial Cross-Domain AMC
This section validates the effectiveness of the WMMDA-MC for solving the unsuper-
vised PDA problem in cross-domain AMC. The compared algorithms include supervised,
source-only, and MMDA-MC. Table 12 presents the average classification performance
of the proposed and compared algorithms on different DA tasks. Figure 13 shows the
average classification accuracy curves of different algorithms on different DA tasks. The
x-axis is labeled 1, 2, . . ., 8, representing DA tasks Dg — Dy 1, Dg — D4y 2, Dg = Dy 3, ...
Dg — Dy g, respectively. The results indicate the following.
Table 12. Test accuracy of different algorithms in various cross-domain adaptation tasks (%).
Supervised WMMDA-MC MMDA-MC Source-Only
Dg — D4 1 100.00 100.00 60.43 70.55
Ds — Dy 5 100.00 98.88 46.79 85.10
Dg — Dy 3 100.00 94.58 63.41 57.76
Dg — Dy 4 100.00 87.92 82.32 68.32
Ds — Dy 5 99.93 99.39 87.10 72.63
Dg — Dy ¢ 99.09 87.37 80.09 66.63
Dg — Dy 7 89.54 84.49 82.59 65.60
Dg — Dy 7 89.45 85.42 85.02 67.26
Average (exclude Dg — Dy g) 98.37 93.23 71.82 69.51
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The WMMDA-MC achieves an average classification accuracy of 93.23%, which is
a significant improvement of 23.72% compared to 69.51% without TL. The average
classification accuracy of the WMMDA-MC is higher than that of non-TL across all
seven PDA tasks, essentially demonstrating that this method effectively addresses the
performance degradation issue faced by current intelligent AMC algorithms when
dealing with inconsistent distributions between source and target domains.

The proposed method improves the average accuracy by 21.42% compared with the
MMDA-MC, with an average classification accuracy of 71.82%. Moreover, the average
classification accuracy of the proposed method is higher than that of NPDA AMC
algorithms across all seven PDA tasks. In particular, when the target domain only has
two classes, the proposed method achieves a maximum improvement of 52.09% in
average classification accuracy. This demonstrates that introducing class weight and
entropy weighting can reduce the negative transfer effects caused by outlier classes in
the source domain, thus promoting the positive transfer and improving classification
performance.

The average classification accuracy of the NPDA AMC method is lower than that of
no TL when the target domain only has 1 or 2 modulation classes. This verifies that
directly applying the unsupervised NPDA AMC to the unsupervised PDA problem
can lead to abnormalities in the global matching strategy due to inconsistent label
spaces between the source and target domains, resulting in performance degradation.
Dg — Dy g task is equivalent to the unsupervised NPDA problem of AMC. There is
minimal difference in classification accuracy between the MMDA-MC and WMMDA-
MC algorithms. Note that because no outlier classes exist when the modulation classes
of the source and target domains are the same, no significant distinction in weights
among different classes will exist. Thus, the weights tend to average out, consequently
not improving the performance.

By contrast, entropy weighting assigns smaller weights to outlier classes and minority-

shared classes that are difficult to transfer and predict. Thus, when no outlier classes exist,
the number of complex samples to transfer and predict decreases, reducing the performance
gain and increasing the computational complexity. Therefore, the MMDA-MC is suitable
when dealing with unsupervised NPDA. However, for the unsupervised PDA problem,
the WMMDA-MC is preferable.
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5. Conclusions

The problem of insufficient generalization ability in current intelligent AMC algo-
rithms was addressed in this study. A novel framework based on multimodal information
and TL for cross-domain AMC was proposed to alleviate the phenomenon. The com-
prehensive amplitude, phase, and frequency information of the modulation signals were
effectively utilized, and the cross-domain AMC problem was solved under varying pa-
rameter spaces such as symbol rate, SNR, channel model, and modulation categories. The
learning ability of DL networks for signals and scenarios was enhanced by our method,
and the method’s robustness was improved, rendering it more adaptable to real-world
application scenarios. The main achievements of this study are as follows:

1.  The existing research results were used to construct two scenarios with 20 domains
to create an AMC dataset. This provides a new multidomain dataset for intelligent
AMC research with strong generalization capabilities.

2. The proposed method guides the network to enhance its understanding of the modu-
lation schemes using the multimodal information in the modulation signals. Exper-
imental results demonstrate that the multimodal fusion input enables deep neural
networks to learn richer information under supervised conditions, effectively improv-
ing classification performance to 89.80% on 12 datasets.

3. TL is introduced to effectively utilize the unlabeled data in the target domain. A
cross-domain AMC method is proposed based on the existing DANN. Experimental
results show that the MMDA-MC improves the average classification accuracy by
18.53% compared to the ”"source-only” method in cross-domain classification problems.
Moreover, under seven variations between the source and target domains, the average
classification accuracy is improved by 11.50% (only channel changes) and 20.58%
(changes in SNR and sps).

4.  Furthermore, when the modulation signal categories in the target domain are a proper
subset of the source domain (category differences), an AMC method is proposed based
on category-weighted entropy and multimodal DANN. Experimental results demon-
strate that the WMMDA-MC achieves an average classification accuracy improvement
of 21.42% compared with the MMDA-MC when category and sps differences exist
between the source and target domains. Additionally, it achieves an average classifi-
cation accuracy improvement of 23.72% compared to the “source-only” method.

Thus, the proposed framework exhibits better performance and adaptability in ad-
dressing cross-domain adaptation problems for AMC.
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