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Abstract: The accurate estimation of a regional ecosystem’s carbon storage and the exploration of its
spatial distribution and influencing factors are of great significance for ecosystem carbon sink function
enhancements and management. Using the Yellow River Basin as the study area, we assessed the
changes in regional terrestrial ecosystem carbon storage through geographically weighted regression
modeling based on a large number of measured sample sites, explored the main influencing factors
through geographic probe analysis, and predicted the carbon sequestration potentials under different
scenarios from 2030 to 2050. The results showed that (1) the total carbon storage in the Yellow
River Basin in 2020 was about 8.84 × 109 t. Above-ground biological carbon storage, below-ground
biological carbon storage, and soil carbon storage accounted for 6.39%, 5.07%, and 89.70% of the total
ecosystem carbon storage, respectively. From 2000 to 2020, the carbon storage in the basin showed a
trend in decreasing and then increasing, and the carbon storage in the west was larger than in the east
and larger in the south than in the north. (2) Forest ecosystem was the main contributor to the increase
in carbon storage in the Yellow River Basin. Elevation, temperature, and precipitation were the main
factors influencing the spatial pattern of carbon storage. (3) The ecological conservation scenario had
the best carbon gain effect among the four future development scenarios, and appropriate ecological
conservation policies could be formulated based on this scenario in the future to help achieve the
goals of carbon sequestration and sink increase.

Keywords: carbon storage; the Yellow River Basin; terrestrial ecosystem; geographically weighted
regression; prediction

1. Introduction

The massive use of fossil fuels by humans over the past century has caused global
temperatures to rise significantly. To cope with climate change and stop the trend in global
warming, the United Nations formulated the United Nations Framework Convention on
Climate Change in 1992 to reduce emissions and control the rise of global temperature. The
Paris Agreement proposed to control the increase in global average temperature within
2 degrees Celsius and strive to limit it to 1.5 degrees Celsius [1]. In 2020, in response to
the Paris Agreement, UN Secretary-General Antonio Guterres called on major emitters to
target net-zero greenhouse gas emissions by 2050; the Chinese government has proposed to
peak carbon emissions before 2030 and strive to achieve “carbon neutrality” by 2060 [2,3].
Ecosystem carbon storage mainly includes above-ground biomass carbon storage, below-
ground biomass carbon storage, soil organic carbon storage, and dead organic matter
carbon storage [4], which are important indicators of terrestrial ecosystem service functions
and play a very important role in global climate change and carbon cycle [5]. It was found
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that terrestrial ecosystems absorbed 31% of the net CO2 released by human activities during
the same period from 2010 to 2019 [6], and increasing terrestrial ecosystem carbon storage
is considered one of the most environmentally friendly and economically feasible ways
to mitigate the greenhouse effect. Therefore, it is important to accurately estimate the
carbon storage of the Yellow River Basin ecosystem and identify its spatial distribution
and driving factors to scientifically guide regional ecological management and achieve the
carbon peaking and carbon neutrality goals.

The Yellow River Basin is an important ecological barrier in China, an ecological
corridor connecting the Qinghai–Tibet Plateau, Loess Plateau, and North China Plain, and
an important carbon sink and storage area for China’s terrestrial ecosystem. Significant
changes in land use and spatial and temporal patterns of carbon storage have occurred in the
basin since the 21st century, with profound impacts on the ecosystem service functions of the
basin [7–11]. Based on measured sample points, multi-source remote sensing data modeling,
and ecosystem modeling [12–14], studies have been conducted to estimate and predict
the carbon storage potential [15–17] of individual ecosystems [18–20] or individual carbon
pools [21–23] in the Yellow River Basin. In estimating carbon storage based on measured
sample points’ carbon densities, the spatial distribution of the study area is demanding
and mostly needs to be further combined with model estimation [17,24–26]. At present,
there are few studies on the unified estimation of carbon storage in terrestrial ecosystems
in the Yellow River Basin [27]. The spatial heterogeneity of the basin is large [21], and the
mode of action of different factors and the main control factors are still unclear, leading
to the variable distribution of carbon density in the region, and the existing studies only
considered the carbon density differences between different ecosystems [28] or estimated
the basin by simple zonal modeling [29], which is not sufficient to well solve the not-well-
addressed problem of spatial heterogeneity. In recent years, a geographically weighted
regression model to explore the spatial characteristics of data came into being, which
incorporated the spatial characteristics of data into the estimation of the model, considered
the spatial heterogeneity of the data, and achieved good application results in the fields of
meteorology, forestry, and ecology [30–32].

In this study, the Yellow River Basin was taken as the study area, and the spatial
heterogeneity model of carbon density of different ecosystems was established by using
the geographical weighted regression model, combining a large number of sample data
and a variety of remote sensing indicators. In this paper, we estimated carbon stocks from
2000 to 2020, determined the spatial and temporal distribution of carbon stocks and their
drivers, and predicted the carbon sequestration potential from 2030 to 2050. This study can
provide scientific basis for the evaluation of carbon sequestration benefits and management
decisions of terrestrial ecosystems in the Yellow River Basin.

2. Study Area and Data Sources
2.1. Study Area

The Yellow River Basin is located at 32◦N~42◦N, 95◦E~120◦E. The total length is about
5464 km, and the basin area is about 795,000 square kilometers. The Yellow River Basin
is high in the west and low in the east, spanning three major topographic gradients in
the east and west, including the Tibetan Plateau, Inner Mongolia Plateau, Loess Plateau,
North China Plain, Shandong hills, and other topography [17,24]. The basin contains arid,
semi-dry early, semi-humid areas; the annual temperature difference is evident; and the
average annual precipitation is 200~600 mm. In the role of the east Asian monsoon, the
average annual temperature and rainfall are decreasing from the southeast to the northwest
(Figure 1).
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Figure 1. Overview of the geographical location of the study area.

2.2. Data Sources

The land use data were derived from the China 30 m Land Cover Product (CLCD) (80%
accuracy), which was based on LANDSAT images, combined with automatic stabilization
samples of existing products and visual interpretation samples. Vegetation type data
were derived from the MCD12Q1 product (spatial resolution 500 m). Geomorphology,
population, GDP, road traffic, night lights, and ecogeographic regionalization data were
obtained from the Resources and Environmental Sciences and Data Center (resolution
1000 m). Precipitation and temperature data were from the National Earth System Science
Data Center (spatial resolution 30 m). The carbon density data were derived from the
measured data in the published literature, including 703 above-ground biological samples,
708 underground biological samples, and 878 soil samples. Soil organic matter data were
derived from the spatiotemporal tripolar environment big data platform (spatial resolution
1000 m). Evapotranspiration data were obtained from GLEAM v3 (spatial resolution 0.25◦).
Vegetation index, topography, and slope data were obtained by atmospheric correction
and band calculation of LANDSAT images (resolution 30 m). NPP data acquisition using
MOD17A3HGF products (resolution 250 m). GDP and population data for future climate
change scenarios were based on the Shared Socio-economic Pathways (SSPs) Population
and Economy lattice dataset (resolution 1000 m).

3. Methods
3.1. Carbon Storage Estimation Method

Using the property that remotely sensed vegetation indices could well reflect the
prosperity of surface vegetation, remote sensing indices with high correlations, biological
above-ground and below-ground carbon densities, and 0–100 cm soil carbon densities
were selected and modeled based on a geographically weighted regression model com-
bined with sample point data, respectively. Among them, the remote sensing indices
contained 20 vegetation indices, 7 single-band factors, 56 texture bands, and 2 topographic
factors [30,31] (Table 1). Three kernel functions (Gaussian, Bi-square, and Exponential),
two bandwidths (Akaike information criterion and cross-validation), and a total of six geo-
graphically weighted regression models were constructed using the R language GWmodel
function package, and the cross-validation and Moran index were used to evaluate the
fitting accuracy of the six models and filter the best-fit model. The optimal model was
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used for inversion to obtain carbon storage datasets of three carbon pools from different
ecosystems in the Yellow River Basin.

Table 1. Formulas for calculating vegetation indices used in the study.

Serial Number Vegetation Index Calculation Formula *

1 Normalized difference vegetation index (NDVI) NDVI = NIR − RED/NIR + RED

2 Ratio vegetation index (RVI) RVI = NIR/RED

3 Difference vegetation index (DVI) DVI = NIR − RED

4 Ratio vegetation index 1 Ratio vegetation index 1 (RVI54) RVI54 = SWIRI/NIR

5 Ratio vegetation index 2 (RVI64) RVI64 = SWIR2/NIR

6 Soil-adjusted vegetation index (SAVI) SAVI = (1 + L)(NIR − RED)/NIR + RED + L

7 Non-linear vegetation index (NLI) NLI = NIR2 − RED/NIR2 + RED

8 Atmospherically resistant vegetation index (ARVI) ARVI = (NIR − RED + r(BLUE − RED))/(NIR −
RED − r(BLUE − RED))

9 Enhanced vegetation index (EVI) EVI = G × (NIR − RED)/(NIR + C1 × RED −
C2 × BLUE + I)

10 RGVI RGVI = RED − GREEN/RED + GREEN
* BLUE, GREEN, RED, NIR, SWIR1, and SWIR2 are the blue, green, red, near-red, short-wave infrared 1, and
short-wave infrared 2 bands, respectively; in the SAVI index, the value of L is 0.5; in the ARVI index, r is the
correction parameter and is set to 1.0; in the EVI index, the values of the gain factor G, the soil adjustment factor I,
and the two correction factors C1 and C2 are 2.5, 0.10, 6.0, and 7.5 [30].

3.2. Carbon Storage Change Analysis Method

Based on the trend in statistical analysis, the changes in carbon stocks in different
ecogeographical regions of the Yellow River Basin were analyzed in both time and space,
and the changes in carbon stocks in different ecosystems were investigated by using spiral
graph analysis [9,17].

3.3. Carbon Storage Impact Factor Analysis Method

According to the ecological geography and socio-economic development of the study
area, the influencing factors, such as precipitation, temperature, altitude, terrain, slope,
NPP, population, and GDP, were selected for classification (Table 2) [32]. The influence of
each factor on carbon storage was analyzed with geographical detectors (including fac-
tor_detector, risk_detector, ecological_detector, and interaction_detector), and the influence
degree of each factor on the spatial distribution of carbon storage and the high-value area
of carbon storage were analyzed.

Table 2. Impact factor classification.

Factor
Classification Level

1 2 3 4 5

Elevation/m 0~200 200~500 500~1500 1500~3500 >3500

Landforms Plain Terrace Hilly Small undulating
hills

Middle-rolling
hills

GDP/yuan·km−2 0~1 million 1~2 million 2~5 million 5~10 million >10 million

NPP/kg·m−2 0~1000 1000~2000 2000~3000 3000~4000 >4000

Precipitation/mm 0~200 200~400 400~600 600~800 >800

Population/persons·km−2 0~100 100~200 200~500 500~1000 >1000

Slope/◦ 0~5 5~15 15~25 25~35 >35

Temperature/◦C <−5 −5~0 0~5 5~10 >10



Remote Sens. 2023, 15, 3866 5 of 14

3.4. Future Carbon Storage Prediction Methods

Using Patch-generating Land Use Simulation (PLUS) and a Markov model to predict
future development scenarios of land use change in the Yellow River Basin during 2030–2050,
the VEST model (Integrated Valuation of Ecosystem Services and Tradeoffs) was further
used to estimate carbon reserves in the Yellow River Basin during 2030–2050 [12]. In
order to meet different future development needs, this paper set four future development
scenarios (Table 3), which comprehensively considered the land use transfer situation in the
Yellow River Basin from 2000 to 2020, the Outline of Ecological Protection and High-quality
Development Plan in the Yellow River Basin, the middle road scenario of socio-economic
development, and the moderate level of greenhouse gas emissions (SSP245).

Table 3. Four future development scenarios.

Types of Future Development Scenarios Features

Natural development scenario This scenario considers only the natural variation in land use types in the
Yellow River basin according to the existing rate of change.

Arable land conservation scenario Under the “natural development scenario”, the arable land is not transferred
and the restricted development area is the water area.

Ecological conservation scenario

Using the nature reserve as a limit in 2021, the probability of converting forest,
grassland, scrub, and wetland to construction land is reduced by 20%; the
probability of converting arable land and unused land to forest, grassland,
scrub, and wetland is increased by 50%; and the probability of converting

construction land to forest, grassland, scrub, and wetland is increased by 30%.

Urban restricted development scenario Grassland, arable land, and unused land to construction land probability
reduced by 20%, restricting the development area for impervious surface area.

4. Results
4.1. Spatial and Temporal Changes in Carbon Storage

The estimated terrestrial carbon storage in the Yellow River Basin in 2020 is 8.84 × 109 t,
and the spatial distribution of carbon density ranges from 0.02 to 62.27 kg C·m−2, with an
average value of 8.81 kg C·m−2. The carbon storage in western basin is larger than that in
eastern basin, and that in southern basin is larger than that in northern basin. Soil carbon
storage is greater than biological carbon storage. The total carbon reserves mainly exist
in the Qingdong Qilian mountains (20.15%) and the highlands in the Shaanxi Gandong
plateau hills (19.83%), mainly because these regions occupy a large proportion of the basin
area and have a high carbon density. Aboveground biological carbon reserves mainly exist
in the Jinzhong North Shaanxi Gandong plateau hills (35.00%) and the Jinan Guanzhong
basin (17.00%). The underground biological carbon reserves mainly exist in the Jinzhong
North Shaanxi Gandong plateau hills and the Qingdong Qilian mountains, accounting
for 20.89% and 20.36% of the total above biological carbon pool, respectively. Soil carbon
storage was mainly distributed in the western and southern parts of the basin, especially in
the Qingdong Qilian mountains and the Guoluo Naqu hill-like plateau (Figure 2).

Over the past 20 years, the total carbon storage in the Yellow River Basin decreased
by 7.15%. The total carbon storage showed a trend in decrease followed by increase, with
an average decrease of 1.84 × 108 t per year from 2000 to 2010 and an average increase of
1.17 × 108 t per year from 2010 to 2020 (Figure 3). The carbon storage changes differed in
different ecogeographic regions, among which the total carbon storage decreased the most
in the eastern part of the basin in the North China Plain and the hills in south central Lu.
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Figure 2. Carbon storage distribution in the Yellow River Basin in 2020. Diagrams of the (a) above-
ground biogenic carbon storage; (b) below-ground biogenic carbon storage; (c) soil carbon storage;
(d) total carbon storage. (II Middle Temperate Zone, III Warm Temperate Zone, IV Northern Subtropi-
cal Zone, HI Plateau Subtropical Zone, HII Plateau Temperate Zone; A Humid Region, B Semi-Humid
Region, C Semi-Arid Region, D Arid Region; IIC3 Eastern Inner Mongolia High Plain, IID1 Western
Inner Mongolia High Plain, IID2 Alashan and Hexi Corridor, IIIB3 North China Mountain Hills,
IIIB2 North China Plain, HIID1 Qaidam Basin, IIIC1 Jinzhong North Shaanxi Gandong plateau hills,
HIIC1 Qingdong Qilian mountains, IIIB1 Luzhong mountain hills, IIIB4 Jinan Guanzhong basin,
HIC1 Qingnan plateau wide valley, HIB1 Guoluo Naqu hill-like plateau, IVA2 Hanzhong basin, and
HIIA/B1 Sichuan–Xizang East high mountain deep valley).
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4.2. Carbon Storage Changes in Different Ecosystems

The carbon storage of each ecosystem in the Yellow River Basin changed more dras-
tically between 2000 and 2020. If we do not consider the increase or decrease in carbon
density before and after ecosystem transformation, due to ecosystem change only, the
forest ecosystem is the main contributor to the increase in carbon storage in the Yellow
River basin, accounting for 63.61% of the total carbon storage enhancement, and the carbon
storage mainly comes from the grassland ecosystem (Figure 4). At the same time, the
changes in carbon storage in different ecosystems are also directly related to the changes in
carbon density (Figure 5).
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4.3. Analysis of Impact Factors

The average degree of influence of each factor on the spatial distribution of total
carbon storage in the Yellow River basin was altitude > temperature > precipitation >
GDP > landscape type > population > NPP > slope direction, among which altitude and
temperature affected the distribution of carbon storage to a greater extent (Figure 6).
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Figure 6. Factor detection results of carbon storage. Diagrams of the (a) total carbon storage;
(b) above-ground biogenic carbon storage; (c) below-ground biogenic carbon storage; (d) soil carbon
storage.

The overall distribution range of each factor in the high carbon storage area remained
stable over 20 years, and the above-ground biogenic carbon pool differed more compared
to the below-ground biogenic carbon pool, soil carbon pool, and total carbon pool (Table 4).
The high-value areas of total carbon storage in the Yellow River Basin were mainly within
the climate range of −5~0 °C, precipitation > 400 mm, elevation > 3500 m, slope > 25◦, NPP
3000~4000 kg·m−2, population 0~100 persons·km−2, GDP 0~1 million yuan·km−2, and
middle-rolling hill.

Table 4. Distribution range of each factor in the high-value area of carbon storage in the study area.

Factor Total Carbon Pool Above-Ground
Biogenic Carbon Pool

Below-Ground Biogenic
Carbon Pool Soil Carbon Pool

Elevation 5 2–3 5 5

Landforms 5 5 5 5

GDP 1 4–5 1 1

NPP 4 5 2–4 4–5

Precipitation 3–5 4–5 2–5 3–4

Population 1 5 1 1

Slope 4–5 5 5 3–4

Temperature 2 5 1–2 2

4.4. Future Carbon Storage Prediction

The change in carbon storage in the Yellow River Basin from 2030 to 2050 depends on
the transfer probability and transfer matrix of land use types under four different scenarios;
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the ecological conservation scenario has the best carbon sequestration effect, and the carbon
storage is generally increasing and evenly distributed (Figure 7). The carbon storage under
the arable land protection scenario decreases by 7.98 × 107~1.33 × 108 t compared to 2020,
the carbon storage under the ecological protection scenario develops from a decrease of
3.03 × 107 t to an increase of 1.63 × 108 t compared to 2020, and the carbon storage under
the urban development restriction scenario decreases by 6.99 × 107~6.83 × 107 t compared
to 2020. The southeastern part of the basin has a large change in carbon storage due to
rapid socioeconomic development and frequent human activities, whereas the western and
northern parts of the basin have the largest changes due to the large carbon storage bases.
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the (a) natural development scenario-30; (b) arable land conservation scenario-2030; (c) ecological
conservation scenario-2030; (d) urban restricted development scenario-2030; (e) natural development
scenario-40; (f) arable land conservation scenario-2040; (g) ecological conservation scenario-2040;
(h) urban restricted development scenario-2040; (i) natural development scenario-50; (j) arable land
conservation scenario-2050; (k) ecological conservation scenario-2050; (l) urban restricted develop-
ment scenario-2050.

5. Discussion
5.1. Comparison of Carbon Storage in the Yellow River Basin with the Average in China

The total carbon storage of terrestrial ecosystems in the Yellow River Basin accounts for
8.81% of the carbon storage of terrestrial ecosystems in China (99.13 × 109 t) [33], of which
the average aboveground biological carbon density is about 0.56 kg C·m−2, which is lower
than the average in China (1.08 kg C·m−2); the average belowground biological carbon
density is about 0.45 kg C·m−2, which is lower than the average in China (0.50 kg C·m−2);
the average soil carbon density is about 7.93 kg C·m−2, which is also lower than the
average in China (9.13 kg C·m−2). The average subsurface biogenic carbon density is
about 0.45 kg C·m−2, which is lower than the Chinese average (0.50 kg C·m−2); the average
soil carbon density is about 7.93 kg C·m−2, which is also lower than the Chinese average
(9.13 kg C·m−2). This indicates that although the Yellow River Basin has implemented
ecological restoration measures such as returning farmland to forest and grass, and the
vegetation cover has increased significantly and increased carbon sequestration [34,35]; the
carbon density level of the whole ecosystem is still lower than the average level in China.
Therefore, more efforts are still needed to protect and develop the ecological environment
of the Yellow River Basin.
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5.2. Comparison of the Results of This Study with Other Results

The total carbon storage of the Yellow River Basin ecosystem estimated by the geo-
graphically weighted regression model in this study is higher than that estimated by the
InVEST model (3.96 × 109 t) [16], and this difference is mainly due to the different methods
of carbon storage estimation. It shows that the geographical weighted regression model can
find and calculate the high value area of the ecosystem in the basin to a large extent. Also,
compared with the average carbon density of ecosystems estimated in this study, the carbon
density estimates of typical vegetation in the Yellow River Basin [13] and ecosystems in the
western region [28] based on a large number of sample points were higher than those in this
study, which may have been because most previous studies estimated carbon density based
on typical vegetation or a single region [36]. In addition, different sampling times may also
lead to differences in the estimation results [37]. For example, with the implementation of a
series of ecological restoration measures in the Yellow River basin, the vegetation cover
such as grassland increased, the carbon sequestration capacity improved, and the carbon
density increased [28].

5.3. Changes in Carbon Storage in the Yellow River Basin, 2000–2020

The total carbon storage in the Yellow River Basin showed a trend in decreasing and
then increasing in the past 20 years, which was consistent with the results of previous
studies [29]. The Yellow River Basin started to carry out ecological projects vigorously in
the 21st century, and, although the ecological land area continued to expand [17,22,25,35],
the vegetation cover of the new ecological land was low, and the carbon density did not
increase significantly (Figure 5), so the total carbon storage in the Yellow River Basin was
decreasing from 2000 to 2010. From 2010 to 2020, the results of multi-year afforestation
and ecological restoration began to show, the vegetation cover of the watershed increased
significantly [38,39], the carbon density of ecosystems such as forests, grasslands, and
thickets became larger, and the total carbon storage increased, especially the above-ground
biological carbon storage in the key ecological restoration areas such as the eastern and
western parts of the high plains of Inner Mongolia [40], the plains of northern China [41],
the highland hills of the Gandong plateau in northern Shanxi and central Jin [10,42], and
the Guanzhong basin in southern Jin [43].

5.4. Impact of Climate Factors on Carbon Storage

At the scale of the Yellow River Basin, both temperature and precipitation showed a
gradual decrease from southeast to northwest, which was similar to the spatial distribution
pattern of biological carbon storage [44]. The results of this study showed that precipitation
and temperature had a positive effect on carbon density in the Yellow River Basin region,
which was the same as previous findings [45]. Meanwhile, compared to the study of
vegetation carbon storage in grassland ecosystems [46], which considered the influence
of precipitation to be more significant, the results of this study showed that temperature
had a greater influence on regional carbon storage. This may have been because this
study estimated a variety of ecosystems and included soil carbon pools, and soil carbon
storage accounted for a large proportion of the total carbon storage. When the temperature
increased, the zooplankton and sediment increased, microbial activity increased, and the
decomposition rate of organic matter accelerated accordingly [47,48], which increased
the soil carbon storage and made the results of this study show a greater influence of
temperature factor.

5.5. Land Use Change and Impact on Carbon Storage under Different Development Scenarios

The results of this study indicate that high socioeconomic activities and the expansion
of non-ecological land will lead to a continuous decline in carbon storage and gradual
ecological degradation, which is consistent with the results of previous studies [49–51].
In-depth analysis reveals four scenarios in which the expansion of construction land is
more driven by economic development; changes in the agricultural land area are more
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influenced by population growth, more stable climatic conditions promote the growth
of forest area, and forests tend to expand to areas with healthier ecological environment
(Figure 8). In the future, we can formulate corresponding ecological protection policies
based on ecological protection scenarios, slow down economic growth appropriately, and
promote the transformation of economic development from “high speed” to “high quality”,
which can increase the value of ecosystem services in the study area and provide the
development goal of fundamental improvement of ecological environment. This can help
to improve the value of ecosystem services in the study area and provide some help to the
development goal of fundamental improvement of ecological environment quality.
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5.6. Research Outlook

In this study, we used a large number of field sample point data, which were extended
to the whole watershed by geographically weighted regression analysis to generate spatially
continuous facet data. Based on the facet raster data, carbon density and carbon storage
in different areas can be estimated more accurately. However, the estimation results are
inevitably affected to some extent by the difficulty in obtaining apomictic data. Therefore,
to more accurately assess the carbon storage in the Yellow River Basin, future studies
should collect more sample point data to improve the accuracy of the results.

6. Conclusions

This paper used the method of geographical weighted regression to estimate carbon
stocks in the Yellow River Basin from 2000 to 2020, analyzed the change trend in carbon
stocks, discussed the factors affecting the change in carbon stocks, and predicted the carbon
stocks from 2030 to 2050. The main conclusions are as follows:

The total carbon storage in the Yellow River Basin is about 8.84 × 109 t, with above-
ground biogenic carbon storage, below-ground biogenic carbon storage, and soil carbon
storage accounting for 6.39%, 5.07%, and 89.70%, respectively. Temporally, the total carbon
storage in the Yellow River Basin decreased and then increased from 2000 to 2020, with
a total decrease of 0.67×109 t (the average carbon density decreased by 6.80 kg C·m−2).
Spatially, the total carbon storage mainly existed in the western and southern parts of the
basin, whereas the carbon storage in the northern part of the east was relatively small.
In terms of different ecosystems, the area and carbon density of each ecosystem varied
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significantly, and forest ecosystems were the main contributor to the increase in carbon
storage in the Yellow River Basin.

Precipitation, temperature, and altitude were important factors affecting the spatial
pattern of carbon storage in the Yellow River Basin. The range of high-value carbon storage
area in the Yellow River Basin was the annual average temperature of −5~0 ◦C, precipitation
in the climate range of >400 mm, altitude >3500 m, slope in the range of topographic factors
of >25◦, NPP in the range of 3000~4000 kg·m−2, population 0~100 persons·km−2, GDP in
the range of 0~1 million yuan·km−2, and the landform of medium undulating mountains.

From the four future development scenarios, the ecological conservation scenario has
the best carbon gain effect, followed by the urban restricted development scenario and the
natural development scenario, and the arable land conservation scenario is the worst.
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