
Citation: Yu, S.; Miao, J.; Li, G.; Jin,

W.; Li, G.; Liu, X. Tensor Completion

via Smooth Rank Function Low-Rank

Approximate Regularization. Remote

Sens. 2023, 15, 3862. https://

doi.org/10.3390/rs15153862

Academic Editors: Liang-Jian Deng,

Gemine Vivone and Danfeng Hong

Received: 16 May 2023

Revised: 1 August 2023

Accepted: 1 August 2023

Published: 3 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Tensor Completion via Smooth Rank Function Low-Rank
Approximate Regularization
Shicheng Yu 1, Jiaqing Miao 2,*, Guibing Li 3,4, Weidong Jin 3,5, Gaoping Li 2 and Xiaoguang Liu 2

1 School of Big Data and Artificial Intelligence, Chengdu Technological University, Chengdu 611730, China
2 School of Mathematics, Southwest Minzu University, Chengdu 610041, China
3 School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China
4 School of Computer Science and Engineering, Southwest Minzu University, Chengdu 610041, China
5 China-ASEAN International Joint Laboratory of Integrated Transportation, Nanning University,

Nanning 530299, China
* Correspondence: jiaqing_miao@swun.edu.cn; Tel.: +86-177-8067-1494

Abstract: In recent years, the tensor completion algorithm has played a vital part in the reconstruction
of missing elements within high-dimensional remote sensing image data. Due to the difficulty of ten-
sor rank computation, scholars have proposed many substitutions of tensor rank. By introducing the
smooth rank function (SRF), this paper proposes a new tensor rank nonconvex substitution function
that performs adaptive weighting on different singular values to avoid the performance deficiency
caused by the equal treatment of all singular values. On this basis, a novel tensor completion model
that minimizes the SRF as the objective function is proposed. The proposed model is efficiently solved
by adding the hot start method to the alternating direction multiplier method (ADMM) framework.
Extensive experiments are carried out in this paper to demonstrate the resilience of the proposed
model to missing data. The results illustrate that the proposed model is superior to other advanced
models in tensor completeness.
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1. Introduction

Hyperspectral image (HSI) data are obtained by hyperspectral imagers that capture
important information regarding the Earth’s surface in hundreds of continuous wavebands,
and the rich surface structure information they contain are indispensable for identifying
objects; as a consequence, HSI data have extensive application prospects and have al-
ready played an important role in geological applications, mineral exploration and target
detection [1].

Each HSI is naturally represented as a three-dimensional data volume, where one
dimension is the spectral direction, and the remaining two dimensions are spatial [2]. In
many cases, due to errors or design flaws, the three-dimensional data volume lacks many
elements. A specific example of the lack of measurements is snapshot spectral imaging
(SSI) [3]. To achieve high temporal resolution imaging, only a small proportion of pixels
can be observed in each spectral band. The loss of pixels not only decreases the quality of
visual imaging but also adversely impacts the performance of subsequent image analyses,
such as target detection and classification [4–6]. The practical application performance
based on HSI mainly depends on the efficiency of the algorithm used to recover the missing
measurements. Therefore, the efficient and accurate recovery of missing pixels in HSI is
currently a highly important research topic.

Tensors or multi-dimensional arrays are widely used in machine vision [7,8], ma-
chine learning [9,10], image denoising [11], image reconstruction [12–14] etc. An HSI
is a tensor composed of height × width × band number [15] (such as 224 bands). In
general, recovering missing pixels in HSI can be formulated as restoring tensors from
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corrupted observations (called tensor completion). Due to the high-dimensional nature
of HSI, processing and analysis of HSI may encounter storage and computational diffi-
culties. Tensor completion can accurately reconstruct compressed HSI data and improve
data access efficiency and processing speed. Therefore, studying tensor completion has
important significance for fields that require processing high-dimensional image data, such
as geological surveys and crop diagnosis.

Tensor completion is a nondeterministic polynomial hard (NP-hard) inverse problem
without prior knowledge. However, in practical applications, the various bands in HSI
data are usually highly correlated, so the tensor is essentially determined by the correla-
tion factor of the spectral direction. This structural correlation indicates that it is possible
to recover tensors from incomplete or destroyed observation tensor data. At the same
time, this prior knowledge mathematically means that the tensor is of low rank, so the
tensor completion model usually takes minimizing the tensor rank as the objective function.
However, at present, tensor rank has various definitions [16]; commonly used are CAN-
DECOMP/PARAFAC (CP) rank, Tucker rank (also called n rank), and tensor multi-rank.
Unfortunately, all tensor ranks are nonconvex, and their calculation is NP hard [17], so
obtaining the optimal solution for a tensor completion model is a difficult task. To alleviate
this problem, some convex/nonconvex substitution functions are usually used to relax
the tensor rank. Liu et al. [7] suggested the tensor trace norm (TTN), which was taken as
a convex substitution of the tensor Tucker rank, and proposed the corresponding tensor
completion model. TTN needs to unfold the tensor into a series of matrices along each
mode, and this simple matricization usually loses the intrinsic spectral direction structure
information of HSI. Therefore, the tensor completion method utilizing the inherent struc-
ture of HSI is more favored by researchers. To this end, Kilmer et al. [18] constructed the
tensor singular value decomposition (t-SVD) framework. On this basis, Semerci et al. [19]
defined the tensor nuclear norm (TNN). Zhang et al. [20] used TNN for convex relaxation
of tensor multi-rank and video data completion. In addition, Wu et al. [21] proposed a new
tensor decomposition method called tensor wheel (TW) decomposition and applied it to
tensor completeness.

To promote the performance of tensor completion, various nonconvex surrogate
functions have been proposed for tensor rank. Ji et al. [22] and Zhang et al. [23] used the
logDet function to perform nonconvex substitution for tensor Tucker rank and proposed
a logDet-based tensor completion model. Similarly, Xu et al. [24] used the Laplacian
function as a nonconvex alternative to tensor multi-rank. Zhang [25] proposed a nonconvex
relaxation method that employs a set of concave functions on the singular values as an
approximation of the tensor Tucker rank. Since the approximation effect of the truncated
nuclear norm on matrix rank is better than that of the traditional nuclear norm, Xue
et al. [26] extended it to the case of tensors and constructed a tensor completion model
on this basis. Similarly, since the capped nuclear norm also better approximates the
tensor rank, Chen et al. [27] constructed a new completion model using capped nuclear
norm regularization and developed a fast solution algorithm based on the majorization
minimization [28] framework. Furthermore, Liu et al. [29] and Yang et al. [30] exploited
the γ-norm as a nonconvex substitution of tensor multi-rank. Furthermore, Zhao et al. [31]
proposed a tensor completion model with a nonconvex tensor rank substitution function,
and proved that both the minimax concave penalty function and the smoothly clipped
absolute deviation function are equivalent substitutions of the tensor average rank. The
above methods are all nonconvex substitutions of tensor rank, which are more effective
than TNN and have achieved excellent results in practical applications.

TNN weights all singular values indiscriminately so that the obtained solution may be
suboptimal. Many alternatives have been suggested to avoid this limitation. In this paper,
a new tensor completion model is constructed that uses the SRF as a low-order relaxation
penalty function to approximate the rank function. The SRF can treat different singular
values differently through adaptive weight allocation and can also reduce the deviation
between the substitution function and the rank function. On this basis, a fast solution
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algorithm based on the ADMM [32] is developed. However, the introduction of the SRF
leads to nonconvexity of the tensor completion model. Therefore, the hot start method is
added to the ADMM framework to assure the convergence of the solution algorithm.

The contributions and advantages of this article are listed below:

(1) This paper uses the SRF as a nonconvex substitution of tensor multi-rank. The SRF
can treat different singular values of a tensor differently through adaptive weight
allocation, and can approach the rank function more closely than the existing substitu-
tion functions. This paper analyzes the convergence of the SRF and proposes a tensor
completion model. This provides a new theoretical insight for the study of tensor
rank substitution and tensor completion.

(2) A solution algorithm based on the ADMM framework is proposed, and the hot start
method is added to assure the convergence of the algorithm, providing technical
support for the practical application of the proposed model.

(3) Several experiments are constructed to indicate that the proposed method can re-
store missing values excellently with greatly compressed data. Therefore, the model
proposed in this article can be effectively applied in fields that require processing
high-dimensional image data such as geological surveys.

2. Symbols and Preliminary Theory
2.1. Symbol Definitions

In this subsection, the basic symbols are introduced in detail. In this paper, nonbold
lowercase letters refer to scalars; bold lowercase letters stand for vectors; bold capital letters
represent matrices; bold calligraphic letters refer to tensors. For a third-order tensor Z , the
symbols Z(i, :, :), Z(:, j, :) and Z(:, :, k) stand for the horizontal, vertical and front slices
of Z , respectively, while Z(i, j, :), Z(i, :, k) and Z(:, j, k) represent the tubes, rows and
columns of Z , respectively (see Figure 1). To facilitate writing, Z(k) refers to the k-th front
slice, zij: stands for Z(i, j, :), and zijk represents the (i, j, k)-th element in tensor Z .
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Figure 1. A three-dimensional tensor: (a) column fiber; (b) row fiber; (c) tube fiber.

Definition 1. (Frobenius norm [18,33]). Suppose Z ∈
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Definition 4. (third-order identity tensor [18,33]). The identity tensor 1 1 3I I I× ×∈   is shown in 
Figure 4, in which the elements in the grid are 1 and the rest are 0; that is, the first front slice of 
the tensor  is a unit matrix, while the remaining front slices are all zero matrices. 

I2×I4×I3 , the
t-product of Z and Y is a tensor (see Figure 2):

X := f old(b− cir(Z)un f old(Y)), (1)
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where b− cir(Z) is called the block circulant matrix, which is defined as:

b− cir(Z) =


Z(1) Z(I3) · · · Z(2)

Z(2) Z(1) · · · Z(3)

...
...

. . .
...

Z(I3) Z(I3−1) · · · Z(1)

. (2)

The definitions of the expansion operator unfold(·) and its inverse operator fold(·) are as
follows:

unfold(Y) :=


Y(1)

Y(2)

...
Y(I3)

, fold(unfold(Y)) = Y . (3)
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Definition 4. (third-order identity tensor [18,33]). The identity tensor 1 1 3I I I× ×∈   is shown in 
Figure 4, in which the elements in the grid are 1 and the rest are 0; that is, the first front slice of 
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Definition 4. (third-order identity tensor [18,33]). The identity tensor 1 1 3I I I× ×∈   is shown in 
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I1×I1×I3 .

Definition 5. (f-diagonal third-order tensor [18,33]). All front slices of the f-diagonal tensor are
diagonal matrices (see Figure 5).
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Definition 6. (orthogonal third-order tensor [18,33]). If the tensor data U ∈
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Definition 4. (third-order identity tensor [18,33]). The identity tensor 1 1 3I I I× ×∈   is shown in 
Figure 4, in which the elements in the grid are 1 and the rest are 0; that is, the first front slice of 
the tensor  is a unit matrix, while the remaining front slices are all zero matrices. 

I1×I1×I3 satisfy
U ∗UH = UH ∗U = E , where E is an identity tensor, then U is named an orthogonal third-order
tensor.

Definition 7. (t-SVD [33]). A tensor Z ∈
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Definition 4. (third-order identity tensor [18,33]). The identity tensor 1 1 3I I I× ×∈   is shown in 
Figure 4, in which the elements in the grid are 1 and the rest are 0; that is, the first front slice of 
the tensor  is a unit matrix, while the remaining front slices are all zero matrices. 

I1×I2×I3 can be expressed as Z = U ∗ S ∗VH (see
Figure 6), where S ∈
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Definition 4. (third-order identity tensor [18,33]). The identity tensor 1 1 3I I I× ×∈   is shown in 
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Definition 4. (third-order identity tensor [18,33]). The identity tensor 1 1 3I I I× ×∈   is shown in 
Figure 4, in which the elements in the grid are 1 and the rest are 0; that is, the first front slice of 
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I2×I2×I3 are
orthogonal third-order tensors.

In t-SVD, the Fourier transform is performed in the direction of the tube first, and
Z̃ = dft(Z , [], 3) is used to represent the discrete Fourier transform (DFT) along each tube
of the tensor Z . Second, in the SVD framework, matrix factorization is performed for each

front slice of Z̃ to obtain matrices Ũ(j), S̃(j),
(

Ṽ (j)
)H

, j = 1, · · · , I3. Third, Ũ(j), S̃(j) and(
Ṽ (j)

)H
are used as front slices to form tensors Ũ , S̃ and ṼH

, respectively. Finally, the

inverse Fourier transform is performed along the tube direction of tensors Ũ , S̃ and ṼH
to

obtain U , S and VH .
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2.2. Preliminary Theory

The low-rank structure is the basic and powerful prior information of a tensor and is
widely used in tensor completion algorithms [34–36]. Mathematically, the specific tensor
completion model is:

argmin
Z

rank(Z)

s.t. ZΩ = BΩ
, (4)

where ∗Ω represents the element corresponding to the ∗ tensor in the index set Ω, the
remaining items are set to zero, and B represents the observed tensor.

At present, tensor rank includes CP-rank [37], Tucker rank [38], tensor multi-rank [33],
etc. The definition of CP rank is straightforward, but its calculation is an NP-hard
problem [39], which greatly limits CP rank in tensor completion. The Tucker rank of
Z ∈

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 23 
 

 

Definition 2. (third-order t product [18,33]). Suppose 1 2 3I I I× ×∈  , 2 4 3I I I× ×∈  , the t-prod-
uct of   and   is a tensor (see Figure 2): 

( ) ( )( ): b-cirfold unfold=   , (1) 

where ( )b-cir   is called the block circulant matrix, which is defined as: 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

3

3 3

1 2

2 1 3

1 1

b-cir

I

I I −

 
 
 

=  
 
 
 




   





Z Z Z

Z Z Z

Z Z Z

. (2) 

The definitions of the expansion operator ( )unfo ld ⋅  and its inverse operator ( )fold ⋅  are as 
follows: 

(1)

(2)

( )3

unfold( ) :=

I

 
 
 
 
 
 
 




Y

Y

Y

, fold(unfold( )) =  . (3) 

 

Figure 2. The t-product of   and  . 

We can consider a tensor 1 2 3I I I× ×∈   as an 1 2I I×  matrix, each component of 
which is a tube. Therefore, when 3 = 1I , the t-product is simplified as the matrix product. 

Definition 3. (third-order tensor conjugate transpose [18,33]). Given 1 2 3I I I× ×∈  , the size of 
the transpose tensor 2 1 3I I IH × ×∈   is 2 1 3I I I× × , which is obtained by transposing each front 
slice (see Figure 3). 

 
Figure 3. The transpose tensor. 

Definition 4. (third-order identity tensor [18,33]). The identity tensor 1 1 3I I I× ×∈   is shown in 
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I1×I2×···×In is represented by ranktc(Z), and its definition is as follows:

ranktc(Z) :=
(

rank(Z(1)), . . . , rank(Z(n))
)

, (5)

with Z(j) denoting the j-th mode unfolding matrix of tensor Z . By definition, ranktc(Z) is
obtained by the matrix rank, so it is easy to calculate. Usually, the weighted sum of each
component of ranktc(Z) is penalized to minimize it; that is, the following formula is used
as the objective function of the tensor completion model:

S(Z) =
n

∑
j=1

wjrank(Z(j)), (6)

where wj ≥ 0 is the weight and ∑n
j=1 wj = 1.

The tensor completion model with Equation (6) as the objective function is an NP-
hard problem. To solve it effectively, TTN [7] is usually used as a convex surrogate for
Equation (6). Notably, the Tucker rank may not be a good representation of the tensor rank
because the expansion of tensors according to the mode-unfolding operator destroys the
characteristic structure of tensors, especially in the case of hyperspectral tensor image data,
because the unfolding operator seriously damages the structure of the spectrum direction.
Even with TTN convex substitution, the disadvantage of the tensor’s characteristic structure
being destroyed cannot be effectively avoided.

To avoid the destruction of the tensor’s characteristic structure, tensor multi-rank

is proposed. The multi-rank of Z ∈
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Definition 4. (third-order identity tensor [18,33]). The identity tensor 1 1 3I I I× ×∈   is shown in 
Figure 4, in which the elements in the grid are 1 and the rest are 0; that is, the first front slice of 
the tensor  is a unit matrix, while the remaining front slices are all zero matrices. 

I1×I2×I3 takes the rank of Z̃ (j)
as a vector of its

j-th element. TNN [19,20] is usually used as a substitution for multi-rank. Given tensor
Z ∈
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Definition 4. (third-order identity tensor [18,33]). The identity tensor 1 1 3I I I× ×∈   is shown in 
Figure 4, in which the elements in the grid are 1 and the rest are 0; that is, the first front slice of 
the tensor  is a unit matrix, while the remaining front slices are all zero matrices. 

I1×I2×I3 , the TNN of Z is:

‖Z‖∗ :=
1
I3

I3

∑
k=1

∥∥∥Z̃
(k)
∥∥∥
∗
, (7)
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where ‖·‖∗ represents the nuclear norm. Taking the TNN as the objective function, the
following important tensor completion model is obtained:

argmin
Z
‖Z‖∗

s.t. ZΩ = BΩ
, (8)

TNN treats each singular value of a tensor equally and assigns them the same weight,
which greatly limits the tensor complete performance and the flexibility of TNN to deal with
practical problems. This is because the singular values of the tensor have specific physical
meanings, and different singular values should be assigned different weights. Therefore, it is
difficult to accurately restore the missing values using the TNN-based model (8).

3. Proposed Method

In this section, the rank function is replaced by the SRF under the DFT. On this basis,
a new tensor completion model is established. In addition, the corresponding solution
method is proposed according to the ADMM framework.

3.1. Tensor Completion Model Based on Smooth Rank Function

To treat singular values differently through adaptive weight allocation and reduce the
deviation between the substitution and rank function, this paper will replace the multi-rank
function with the nonconvex SRF regularization term.

The SRF is defined as 1 − e−x2/δ2
[40], which is closer to the l0 pseudonorm (see

Figure 7). That is, when solving the rank minimization problem, the SRF function ap-
proximates the multi-rank function better than the existing substitutions. Furthermore, in
the TNN, all singular values of each front slice are assigned a weight of 1

I3
. However, for

hyperspectral remote sensing images, singular values have different degrees of significance,
so different weights should be assigned to them [41]. For example, a smaller singular
value represents high-frequency information and noise, whereas a larger singular value
represents low-frequency information. SRF can automatically assign different weights to
each singular value. Based on the above two points, given Z ∈
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I1×I2×I3 , the following
nonconvex substitution based on SRF to the multi-rank function is proposed:

Gδ(Z) =
I3

∑
j=1
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3.2. Convergence Analysis of the Smooth Rank Function

The SRF is a pseudo norm, but it has some nice properties. According to these
properties, a solution algorithm for the tensor completion model (10) is proposed in this
paper.

Lemma 1. lim
δ→0

Gδ(Z) =
(

rank
(

Z̃
(1)
)

, · · · , rank
(

Z̃
(I3)
))
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Proof of Lemma 1. First, consider the case of a single slice; for the j-th front slice,

Gδ

(
Z̃
(j)
)
=

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 23 
 

 

3. Proposed Method 
In this section, the rank function is replaced by the SRF under the DFT. On this basis, 

a new tensor completion model is established. In addition, the corresponding solution 
method is proposed according to the ADMM framework. 

3.1. Tensor Completion Model Based on Smooth Rank Function 
To treat singular values differently through adaptive weight allocation and reduce 

the deviation between the substitution and rank function, this paper will replace the 
multi-rank function with the nonconvex SRF regularization term. 

The SRF is defined as 2 2/1 xe δ−−  [40], which is closer to the 0l  pseudonorm (see Fig-
ure 7). That is, when solving the rank minimization problem, the SRF function approxi-
mates the multi-rank function better than the existing substitutions. Furthermore, in the 

TNN, all singular values of each front slice are assigned a weight of 
3

1
I

. However, for 

hyperspectral remote sensing images, singular values have different degrees of signifi-
cance, so different weights should be assigned to them [41]. For example, a smaller singu-
lar value represents high-frequency information and noise, whereas a larger singular 
value represents low-frequency information. SRF can automatically assign different 
weights to each singular value. Based on the above two points, given 1 2 3I I I× ×∈ , the 
following nonconvex substitution based on SRF to the multi-rank function is proposed: 

( ) ( )( )3 2 2( )/

=1 =1

= 1
j

k

I

j k

e σ δ
δ

−−



  Z , (9) 

where { }1 2m in ,I I= , ( )kσ ∗  refers to the k-th singular value of ∗ , and the parameter 
>0δ  is small. To avoid falling into local minima and to ensure the convergence of the 

solution framework for the tensor completion model (10) that will be proposed below, the 
initial value of δ is set to a large value at the beginning of the iteration. With increasing 
iterations, the δ value decreases gradually. Incorporating Equation (9) into Equation (4), 
the following model that can efficaciously recover the missing elements in HSI data is 
proposed: 

( )argmin

. . =s t

δ

Ω Ω


 

 
. (10) 

 

∑
k=1

(
1− e−σ2

k (Z̃
(j)
)/δ2
)

. When δ becomes infinitely small,

1− e−σ2
k (Z̃

(j)
)/δ2 →

0, i f σk

(
Z̃
(j)
)
= 0
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)
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Therefore, when δ→ 0 , Gδ

(
Z̃
(j)
)

tends to the zero-norm of vector
(

σ1(Z̃
(j)
), · · · , σl(Z̃

(j)
)
)

,
that is,

lim
δ→0
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(
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= rank
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Equation (12) is satisfied for each slice, so the lemma is proven. �

Theorem 1. Given Y ∈

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 23 
 

 

Definition 2. (third-order t product [18,33]). Suppose 1 2 3I I I× ×∈  , 2 4 3I I I× ×∈  , the t-prod-
uct of   and   is a tensor (see Figure 2): 

( ) ( )( ): b-cirfold unfold=   , (1) 

where ( )b-cir   is called the block circulant matrix, which is defined as: 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

3

3 3

1 2

2 1 3

1 1

b-cir

I

I I −

 
 
 

=  
 
 
 




   





Z Z Z

Z Z Z

Z Z Z

. (2) 

The definitions of the expansion operator ( )unfo ld ⋅  and its inverse operator ( )fold ⋅  are as 
follows: 

(1)

(2)

( )3

unfold( ) :=

I

 
 
 
 
 
 
 




Y

Y

Y

, fold(unfold( )) =  . (3) 

 

Figure 2. The t-product of   and  . 

We can consider a tensor 1 2 3I I I× ×∈   as an 1 2I I×  matrix, each component of 
which is a tube. Therefore, when 3 = 1I , the t-product is simplified as the matrix product. 

Definition 3. (third-order tensor conjugate transpose [18,33]). Given 1 2 3I I I× ×∈  , the size of 
the transpose tensor 2 1 3I I IH × ×∈   is 2 1 3I I I× × , which is obtained by transposing each front 
slice (see Figure 3). 

 
Figure 3. The transpose tensor. 

Definition 4. (third-order identity tensor [18,33]). The identity tensor 1 1 3I I I× ×∈   is shown in 
Figure 4, in which the elements in the grid are 1 and the rest are 0; that is, the first front slice of 
the tensor  is a unit matrix, while the remaining front slices are all zero matrices. 

I1×I2×I3 , suppose there is the following minimization function:

min
Z

Gδ(Z) +
β

2
‖Z −Y‖2

F. (13)

According to the generalized weighted singular value threshold method (WSVT) used in [42],
the optimal solution of Equation (13) is Z∗ = U ∗D ∇φ

β

∗ VH , where U and VH are obtained

by t-SVD of Y , that is, Y = U ∗ S ∗ VH . D ∇φ
β

∈
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Definition 4. (third-order identity tensor [18,33]). The identity tensor 1 1 3I I I× ×∈   is shown in 
Figure 4, in which the elements in the grid are 1 and the rest are 0; that is, the first front slice of 
the tensor  is a unit matrix, while the remaining front slices are all zero matrices. 

I1×I2×I3 is an f-diagonal third-order

tensor, the element on the catercorner of each front slice of D̃ ∇φ
β

is D̃ ∇φ
β

(k, k, j) = (S̃(k, k, j)−

∇φ(σ
j
k)

β )+, j = 1, · · · , I3. ∇φ(σ
j
k) is the gradient of function φ = 1− e−σ2

k (Z̃
(j)
)/δ2

at σ
j
k, and σ

j
k

stands for the k-th singular value of Z̃
(j)

.



Remote Sens. 2023, 15, 3862 9 of 23

Proof of Theorem 1. Because the expression of the SRF isGδ(Z) =
I3
∑

j=1
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)
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Since
φ(σ

j
k) ≈ ∇φ(σ

j
k)
(

σ
j
k − 0

)
+ φ(0) = ∇φ(σ

j
k)σ

j
k, (15)

according to WSVT, for any j = 1, · · · , I3, the solution that minimizes
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Z̃
(j)∗

= Ũ
(j) ∗ D̃

(j)
∇φ
β

∗
(

Ṽ
(j)
)H

, (16)

where Ỹ
(j)

= Ũ
(j) ∗ S̃

(j) ∗
(

Ṽ
(j)
)H

, and D̃
(j)
∇φ
β

= Diag
{(

S̃
(j)
(k, k)− ∇φ(σ

j
k)

β

)
+

}
. Therefore,

the theorem is proven. �

3.3. Solution Algorithm

In this subsection, based on the ADMM framework and Theorem 1, a method for
solving the tensor completion model (10) is developed. First, we introduce the following
function:

lS(Z) =

{
0, if Z ∈
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where α  represents the step size. According to the ADMM, Equation (20) can be de-
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
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
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The specific steps to solve the first two subproblems are given below. 
First, solve subproblem (21a). From Theorem 1, the optimal solution for (21a) is: 
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The specific steps to solve the first two subproblems are given below. 
First, solve subproblem (21a). From Theorem 1, the optimal solution for (21a) is: 

:=
{
Z ∈ RI1×I2×I3 ,ZΩ = BΩ

}
, and Equation (10) can be reformulated as

min
Z

Gδ(Z) + l
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The specific steps to solve the first two subproblems are given below. 
First, solve subproblem (21a). From Theorem 1, the optimal solution for (21a) is: 

(Z). (18)

Then, the variable Y = Z is introduced, and the following augmented Lagrangian function
of Equation (18) is obtained:

L(Z ,Y ,W) := Gδ(Z) + 1S(Y) + 〈Y −Z ,W〉+ β
2 ‖Y −Z‖2

F

= Gδ(Z) + 1S(Y) + β
2

∥∥∥Y −Z + 1
βW

∥∥∥2

F
+ c

, (19)

where W ∈ RI1×I2×I3 is the Lagrangian multiplier, c is a constant dependent on W , and β
is a regularization balance parameter. According to the ADMM framework, Z , Y and W
can be updated iteratively as:

Z l+1 = argmin
Z

L(Z ,Y l ,W l)

Y l+1 = argmin
Y

L(Z l+1,Y ,W l)

W l+1 = W l + α(Y l+1 −Z l+1)

, (20)

where α represents the step size. According to the ADMM, Equation (20) can be decom-
posed into three subproblems as follows:
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
min
Z

Gδ(Z) +
β
2

∥∥∥Z −Y l − 1
βW

l
∥∥∥2

F
(a)

min
Y

l
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(Y) + β
2

∥∥∥Z l+1 −Y − 1
βW

l
∥∥∥2

F
(b)

W l+1 = W l + α(Y l+1 −Z l+1) (c)

. (21)

The specific steps to solve the first two subproblems are given below.
First, solve subproblem (21a). From Theorem 1, the optimal solution for (21a) is:

Z l+1 = U l ∗Dl
∇φ
β

∗
(
V l
)H

, (22)

where X l = U l ∗ S l ∗
(
V l
)H

is the t-SVD of X l = Y l + 1
βW

l , Dl
∇φ
β

∈ CI1×I2×I3 is

an f-diagonal third-order tensor, the element on the diagonal of each front slice of D̃l
∇φ
β

is D̃l
∇φ
β
(k, k, j) = (S̃ l

(k, k, j) − ∇φl(σ
j
k)

β )+, j = 1, · · · , I3, and ∇φl(σ
j
k) is the gradient of

function φl = 1− e−σ2
k ((Z̃

l
)
(j)
)/δ2

at σk

((
Z̃

l
)(j)
)

.

Second, solve subproblem (21b). Obviously, the objective function of (21b) is differen-
tiable, so the solution of (21b) is:

Y l+1 = (Z l+1 − 1
β
W l)Ωc +B, (23)

with Ωc referring to the complement of Ω.
The complete steps of the ADMM-based solution algorithm for the proposed model

are summarized in Algorithm 1.

Algorithm 1. The ADMM-based algorithm for solving the model (10).

Input:
Observed data B, index set Ω, parameters α, β and δ2;

1: Enter the maximum number of iterations Lmax = 500, tol= 10−6, let Z0 = B, Y0 = 0, W0 = 0;
2: for l = 1 to Lmax:
3: Let X l = Y l + 1

βW
l ;

4: U l ,S l ,
(
V l
)H

is obtained by performing t-SVD on X l ;

5: Update Z l+1 on the grounds of formula (22);
6: Update Y l+1 on the grounds of formula (23);
7: Update W l+1 on the grounds of formula (21c);

8: If
∥∥∥Z l+1 −Z l

∥∥∥
F

/
∥∥∥Z l

∥∥∥
F
< tol, terminate loop;

9: end for
10: return Z ;
Output:
The recovered tensor Z .

4. Experiment
4.1. Data and Experimental Environment

For this article, we conducted five sets of experiments on three sets of HSI data synthe-
sized through the hyperspectral library, a distribution map of ground object types from
the Remote Sensing Imaging Processing Center of the National University of Singapore,
and the well-known AVIRIS Cuprite dataset. For these experiments, to synthesize the HSI
data, two different spectral databases were considered: A1 ∈ R100×120 and A2 ∈ R224×240.
A1 is a subset generated from the NASA Johnson Space Center (NASA-JSC) spectral char-
acteristics database, which includes 262 end members with 100 bands [43]. This spectral
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database has been widely used in HSI analysis. A2 is a random selection of 240 elements
from the USGS Digital Spectrum Database (splib06a) [44]. This spectral database contains
224 bands uniformly distributed within 0.4–2.5 µm. This spectral database is widely used
in hyperspectral unmixing.

The simulation dataset 1 (DS1) used in example 1 is generated from nine end members
randomly selected from the spectral database A1. The data contain 100 × 100 pixels and
100 bands. The simulation dataset 2 (DS2) in example 2 is generated by randomly selecting
four end members in the spectral database A2. The data contain 100 × 100 pixels, and each
pixel contains 224 bands. The simulation dataset 3 (DS3) in example 3 is generated by
randomly selecting five end members from the spectral database A2. The data contain
75 × 75 pixels, and each pixel contains 100 bands. In example 4, the data are a distribu-
tion map of ground object types from the Remote Sensing Imaging Processing Center of
the National University of Singapore. The data contain 278 × 329 pixels. The data in
Example 5 are from the AVIRIS Cuprite dataset, which is a mineral map drawn by the U.S.
Geological Survey in 1995 and contains 224 spectral bands, ranging from 0.4–2.5 µm. The
experiment uses a data subset of 350 × 350 pixels, and the spectral bands are reduced to
188 after removing the water absorption band and data with a low signal-to-noise ratio.
The relevant information of the data is summarized in Table 1.

Table 1. The relevant information of the data in 5 experiments.

Data Source Data Size (Height ×Width
× Band)

Example 1

Generated from nine end
members randomly selected
from the subset A1 generated
from the NASA Johnson Space
Center (NASA-JSC) spectral

characteristics database

100 × 100 × 100

Example 2

Generated from four end
members randomly selected
from A2 generated from the

United States Geological
Survey (USGS) digital

spectrum database

100 × 100 × 224

Example 3
Generated by randomly

selecting five end members
from A2

75 × 75 × 100

Example 4

Distribution map of ground
object types from the Remote
Sensing Imaging Processing

Center of the National
University of Singapore

278 × 329 × 100

Example 5 The AVIRIS Cuprite dataset 350 × 350 × 188

All experimental codes were written in MATLAB (R2020a) and executed on a computer
with an Intel Core i7-7700K processor (4.20 GHz) and 16 GB of RAM.

4.2. Experimental Results

In the following, the proposed tensor completion method is contrasted with the
existing methods, such as HaLRTC [7], TNN, logDet-based method (denoted as LogDet-TC)
and Laplace-based method (denoted as Laplace-TC). The peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM) values are used to measure the performance of various
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algorithms. Suppose Fo is the original monochrome image, and Fr is the corresponding
reconstructed image. Then PSNR is defined as:

PSNR = 10 · log10

 MAX2
Fo

1
I1×I2

I1
∑

i=1

I2
∑

j=1
[Fo(i, j)− Fr(i, j)]2

, (24)

where I1 and I2 are the height and width of the image, MAXFo is the maximum value of

pixels on the image, and 1
I1×I2

I1
∑

i=1

I2
∑

j=1
[Fo(i, j)− Fr(i, j)]2 is the mean squared error (MSE).

For HSI data, the definition of PSNR is similar, but the MSE is the sum of the squares of all
differences divided by the image size and then divided by the number of bands. The larger
the PSNR, the better the quality of the image reconstruction.

In addition, SSIM is defined as:

SSIM =
(2µFo µFr + C1)(2σFoFr + C2)(

µ2
Fo
+ µ2

Fr
+ C1

)(
σ2

Fo
+ σ2

Fr
+ C2

) , (25)

where µFo is the average value of Fo, µFr is the average value of Fr, σ2
Fo

is the variance of Fo,
σ2

Fr
is the variance of Fr, σFoFr is the covariance of Fo and Fr, and C1 = (K1L)2, C2 = (K2L)2,

K1 and K2 are two constants far less than 1. In this paper, the values of K1 and K2 are set to
K1 = 0.01 and K2 = 0.03.

Example 1. In this experiment, we test our method on DS1. Figure 8 shows the various band
images synthesized by the nine selected elements (because there are too many bands, bands 56 and
57 are selected for display with a sampling rate of 10%; bands 66 and 67 are selected for display with
a sampling rate of 20%; bands 73 and 74 are selected for display with a sampling rate of 30%; and
in other examples, only two bands are displayed, but the selected bands are different); also shown
are the reconstruction results of HaLRTC, TNN, LogDet-TC, Laplace-TC and the proposed tensor
completion method at various sampling rates, difference images and grayscale histograms of the
difference images (which are used to indicate the distribution of the specific grayscale deviation of the
difference image, where the x-coordinate represents the difference between the reconstructed image
and the original image, and the y-coordinate represents the number of pixels corresponding to a
certain difference value. The x-coordinate and y-coordinate representations of the histograms in
the experimental results of Example 2 to Example 5 have the same meaning as the histograms in
Figure 8). As seen from the histograms, in the tensor completion results of the proposed method, the
difference value of more pixels falls within a small range near 0. Therefore, the proposed method can
obtain good tensor completion results. Compared with the images generated by other methods, the
images obtained by our method have clearer boundaries and more details of the HSI.

Example 2. In this example, the proposed method is tested on DS2. To state the preponderance
of the proposed method, the results of five methods with sampling ratios of 0.1 to 0.2 and 0.3 are
given in Figure 9, which indicates that the visual effect of our method is much better than the visual
effects of the completion results of the HaLRTC and TNN methods. Moreover, upon numerically
quantifying the tensor completion results, the proposed method exhibits certain advantages over the
LogDet-TC and Laplace-TC methods. Figure 9 ultimately demonstrates that the images obtained
with our method visually appear most similar to the real HSI.
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Figure 8. Tensor completion method test results on simulation dataset DS1. One area of interest
(red frame) is enlarged for detailed comparison. (a) The original images of different bands of DS1
with different sampling ratios (because there are too many bands, bands 56 and 57 are selected for
display when the sampling rate is 10% (first row); bands 66 and 67 are selected for display when the
sampling rate is 20% (fourth row); and bands 73 and 74 are displayed when the sampling rate is 30%
(seventh row)). (b) The sampling data images of the original images. From the sampling data images,
the characteristic information of the retained pixels after random sampling of the specific bands can
be seen. (c–g) are (in order) the tensor reconstruction results with sampling rates of 10%, 20% and
30% by HaLRTC, TNN, LogDet-TC, Laplace-TC and the proposed method. The first, fourth and
seventh rows are the reconstruction results with sampling rates of 10%, 20% and 30%, respectively.
The second, fifth and eighth rows show the difference images between the original image and the
reconstruction results by HaLRTC, TNN, LogDet-TC, Laplace-TC and the proposed method with
various sampling rates. The third, sixth and ninth rows are gray distribution histograms of the
corresponding difference images.
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Figure 9. Test results of the tensor completion method on simulation dataset DS2. One area of interest
(red frame) is enlarged for detailed comparison. (a) The original images of different bands of DS2
with different sampling ratios (bands 56 and 57 are selected for display when the sampling rate is 10%
(first row); bands 92 and 94 are selected for display when the sampling rate is 20% (fourth row); bands
93 and 95 are selected for display when the sampling rate is 30% (seventh row). (b) The sampling data
images of the original images with sampling rates of 10%, 20% and 30%, respectively. (c–g) are the
tensor reconstruction results of HaLRTC, TNN, LogDet-TC, Laplace-TC and the proposed method.
The first, fourth and seventh rows are the reconstruction results for sampling rates of 10%, 20% and
30%. The second, fifth and eighth rows show the difference images between the original image and
the reconstruction results by HaLRTC, TNN, LogDet-TC, Laplace-TC and the proposed method with
various sampling rates. The third, sixth and ninth rows are the gray distribution histograms of the
corresponding difference images.

Example 3. In this example, this study applies the proposed method to DS3. The results of different
methods with sampling ratios of 0.1, 0.2 and 0.3 are also given in Figure 10. As we expected, the
tensor completion results of our method are better than those of HaLRTC, TNN, LogDet-TC and
Laplace-TC.
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Figure 10. Tensor completion method test results on DS3. One area of interest (red frame) is enlarged
for detailed comparison. (a) The original images of different bands of DS3 with different sampling
ratios (bands 32 and 99 are selected for display when the sampling rate is 10% (first row); bands
5 and 18 are selected for display when the sampling rate is 20% (fourth row); bands 42 and 51 are
selected for display when the sampling rate is 30% (seventh row). (b) The sampling data images of
the original images with sampling rates of 10%, 20% and 30%, respectively. (c–g) are (in order) the
tensor reconstruction results of HaLRTC, TNN, LogDet-TC, Laplace-TC and the proposed method for
sampling rates of 10%, 20% and 30%. The first, fourth and seventh rows are the reconstruction results
for sampling rates of 10%, 20% and 30%. The second, fifth and eighth rows show the difference
images between the original image and the reconstruction results by HaLRTC, TNN, LogDet-TC,
Laplace-TC and the proposed method with various sampling rates. The third, sixth and ninth rows
are the gray distribution histograms of the corresponding difference images.

Example 4. This example further validates the effectiveness of the proposed tensor completion
method through a distribution map of ground object types from the Remote Sensing Imaging
Processing Center of the National University of Singapore (Figure 11). Figure 11 shows the
distribution map of ground object types in this example, which is HSI data obtained by combining
10 pure end members. Table 2 lists the ground object types and their colors, the specific composition
end members and the ratios of the various end members. Dark brown represents pure water, which is
composed of end member 1 and end member 10 in a ratio of 6:4. Fuchsia represents forest, which is
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composed of end member 2 and end member 7 in a ratio of 9:1. Yellow-green represents shrub, which
is composed of end member 3 and end member 8 in a 1:1 ratio. Light blue indicates that the grass
is directly generated by end member 4. Dark gray represents soil and man-made buildings, and is
composed of end member 5 and end member 9 in a ratio of 7:3. Navy blue represents turbid water,
soil and man-made buildings, and is composed of end member 6, end member 9 and end member
5 in a ratio of 4:3:3. Light blue-green represents soil and man-made buildings, generated by end
member 5 and end member 9 in a 1:1 ratio. Dark blue-green represents soil and man-made buildings,
generated by end member 5 and end member 9 in a ratio of 4:6.
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Figure 11. Distribution map of the ground object types in example 4.

Table 2. Ground object types, their colors and composition end members.

Ground Object Type Number (Color) Ground Object Type Composition End Members (%)

1 (Dark brown) Pure water End member 1 (60), end member 10 (40)

2 (Fuchsia) Forest End member 2 (90), end member 7 (10)

3 (Yellow-green) Shrub End member 3 (50), end member 8 (50)

4 (Light blue) Grass End member 4 (100)

5 (Dark gray) Soil, man-made buildings End member 5 (70), end member 9 (30)

6 (Navy blue) Turbid water, soil, man-made buildings End member 6 (40), end member 9 (30),
end member 5 (30)

7 (Light blue-green) Soil, man-made buildings End member 5 (50), end member 9 (50)

8 (Dark blue-green) Soil, man-made buildings End member 5 (40), end member 9 (60)

Figure 12 shows the original images of different bands of HSI data (simulation
dataset 4) in Figure 11, the sampling data images of the original images with sampling rates
of 10%, 20% and 30%, respectively, as well as the tensor completion results obtained by
HaLRTC, TNN, LogDet-TC, Laplace-TC and the proposed method. Figure 12 indicates that
the difference between the real image and the result generated by the proposed method
is the smallest, and the gray histogram shows that the difference in the pixel value of the
proposed method decreases as the sampling rate increases. As expected, the proposed
method outperforms the other methods.
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have  fewer  outliers because  they  consider  the  spatial  information between pixels. The proposed 

Figure 12. Tensor completion method test results on the distribution map of ground object types from
the Remote Sensing Imaging Processing Center of the National University of Singapore. (a) The origi-
nal images of different bands of simulation dataset 4 with different sampling ratios (bands 22 and 23
are selected for display at sampling rates of 10%, 20% and 30% (first, fourth and seventh rows,
respectively)). (b) The sampling data images of the original images with sampling rates of 10%, 20%
and 30%, respectively. (c–g) are the tensor reconstruction results for sampling rates of 10%, 20% and
30% by HaLRTC, TNN, LogDet-TC, Laplace-TC and the proposed method. The first, fourth and
seventh rows are the reconstruction results for sampling rates of 10%, 20% and 30%. The second,
fifth and eighth rows show the difference images between the original image and the reconstruction
results by HaLRTC, TNN, LogDet-TC, Laplace-TC and the proposed method with various sampling
rates. The third, sixth and ninth rows are the gray distribution histograms of the corresponding
difference images.

Example 5. Next, the preponderance of the proposed method is validated on the famous AVIRIS
Cuprite dataset [45], which is a mineral map drawn by the U.S. Geological Survey in 1995 and
contains 224 spectral bands, ranging from 0.4–2.5 µm. The experiment uses a data subset of
122,500 pixels, and the spectral bands are reduced to 188 after removing the water absorption band
and data with a low signal-to-noise ratio. Figure 13 shows the tensor completion results using
HaLRTC, TNN, LogDet-TC, Laplace-TC and the proposed method, all of which produce similar
images. The tensor completion result obtained by the proposed method shows good spatial consistency.
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Compared with the results provided by HaLRTC and TNN, LogDet-TC and Laplace-TC have fewer
outliers because they consider the spatial information between pixels. The proposed method achieves
better tensor completion results than LogDet-TC and Laplace-TC, and the corresponding results
usually exhibit stronger spatial consistency. Figure 13 ultimately indicates that the reconstruction
result of our method is very close to the real hyperspectral image.

In conclusion, our model shows good performance in all experiments and is superior
to other models. Although the speed of the proposed model is slower than that of HaLRTC,
it achieves a higher tensor completion image accuracy.
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Figure 13. The results on the AVIRIS cuprite dataset. (a) The original images of different bands of the
AVIRIS cuprite dataset with different sampling ratios (bands 72 and 74 are selected for display when
the sampling rate is 10% (first row); bands 67 and 68 are selected for display when the sampling rate
is 20% (fourth row); bands 65 and 68 are selected for display when the sampling rate is 30% (seventh
row). (b) The sampling data images of the original images with sampling rates of 10%, 20% and 30%,
respectively. (c–g) are the tensor reconstruction results for sampling rates of 10%, 20% and 30% by
HaLRTC, TNN, LogDet-TC, Laplace-TC and the proposed method. The first, fourth and seventh
rows are the reconstruction results for sampling rates of 10%, 20% and 30%. The second, fifth and
eighth rows show the difference images between the original image and the reconstruction results by
HaLRTC, TNN, LogDet-TC, Laplace-TC and the proposed method with various sampling rates. The
third, sixth and ninth rows are the gray distribution histograms of the corresponding difference images.
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To quantitatively assess the preponderance of the proposed model, the PSNR and SSIM
values of various tensor completion models are listed in Table 3 for sampling ratios of 0.1,
0.2 and 0.3. Table 3 indicates that in most cases, the PSNR and SSIM values of the proposed
tensor completion model are the largest. This indicates that the completion results obtained
by the proposed model are the closest to the real situation. Furthermore, Table 4 shows the
distribution ranges of the difference between the real image and the hyperspectral tensor
completion results by the HaLRTC, TNN, LogDet-TC, Laplace-TC and proposed model
under different sampling ratios. In Table 4, we set a small difference range of pixel values to
evaluate various methods. The higher the percentage of pixels falling within the difference
range, the smaller the difference between the original image and the recovered images,
and the better the corresponding method. From Table 4, it can be seen that the proposed
model has the smallest difference on different datasets. The above two points show that
the SRF nonconvex low-rank regularization method can effectively improve the tensor
completion result, and the proposed tensor completion model outperforms HaLRTC, TNN,
LogDet-TC and Laplace-TC. In addition, the number of iterations and running time of
different methods are listed in Table 5. From Tables 3–5, it can be seen that the running time
of HaLRTC is the shortest, but its performance is the worst. The proposed method has the
best performance and the second shortest runtime. In conclusion, our model shows good
performance in all experiments and is superior to other models. Although the speed of
the proposed model is slower than that of HaLRTC, it achieves a higher tensor completion
image accuracy.

Table 3. The PSNR and SSIM values of the five methods.

Dataset Sampling
Rate

HaLRTC TNN LogDet-TC Laplace-TC Proposed

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DS1
10% 19.1810 0.5427 26.1529 0.7779 26.5367 0.7730 27.1079 0.7811 27.6988 0.8027
20% 24.3083 0.7850 30.4836 0.8771 31.3059 0.8830 31.9637 0.8908 32.3647 0.8979
30% 28.7637 0.9037 33.8098 0.9271 34.9760 0.9347 35.3474 0.9380 35.6564 0.9409

DS2
10% 44.3918 0.9915 50.2451 0.9965 52.0375 0.9975 52.1378 0.9975 52.5568 0.9979
20% 47.8194 0.9961 59.3216 0.9995 61.3278 0.9997 59.3125 0.9995 61.9718 0.9997
30% 54.1652 0.9990 66.4177 0.9999 67.7105 0.9999 68.0190 0.9999 68.5685 0.9999

DS3
10% 46.8033 0.9928 47.5930 0.9897 50.5077 0.9940 50.9990 0.9943 67.4867 1.0000
20% 50.9409 0.9974 54.7000 0.9978 57.3828 0.9986 57.0897 0.9986 95.5115 1.0000
30% 54.4479 0.9986 61.0524 0.9994 63.5759 0.9996 63.4314 0.9996 98.4993 1.0000

Distribution
map of ground

object types

10% 21.5421 0.4777 27.8932 0.7478 28.0606 0.7472 28.2599 0.7715 28.5770 0.7949
20% 24.9645 0.6679 32.2982 0.8828 33.1070 0.8808 33.1114 0.8976 33.3183 0.9038
30% 26.8058 0.7725 35.8089 0.9394 36.4996 0.9364 36.8591 0.9475 37.0572 0.9502

AVIRIS Cuprite
10% 49.3208 0.4318 53.7352 0.7869 55.8124 0.8232 59.7162 0.8979 62.2725 0.9173
20% 53.4043 0.7048 56.6647 0.8804 57.3858 0.8224 64.9149 0.9502 67.0668 0.9565
30% 56.6848 0.8435 59.6989 0.9183 60.7367 0.8908 68.3113 0.9679 69.9921 0.9707

Table 4. Percentage of pixels within a small range of pixel values (centered on 0) of the difference
images between the original image and the recovered images using five tensor completion methods.

Dataset Sampling Rate Difference Range
of Pixel Value

Percentage of Pixels Occupied

HaLRTC TNN LogDet-TC Laplace-TC Proposed

DS1
10% [−0.15,0.15] 86.330% 99.805% 99.870% 99.920% 99.940%
20% [−0.10,0.10] 92.820% 99.935% 99.965% 99.985% 99.990%
30% [−0.05,0.05] 85.450% 99.300% 99.775% 99.800% 99.860%

DS2
10% [−0.01,0.01] 89.145% 90.415% 93.535% 96.225% 97.935%
20% [−0.07,0.07] 69.225% 98.090% 99.085% 98.875% 99.925%
30% [−0.05,0.05] 87.980% 99.795% 99.905% 99.975% 99.990%

DS3
10% [−0.02,0.02] 97.013% 98.027% 98.951% 98.996% 100%
20% [−0.01,0.01] 97.867% 98.818% 99.093% 99.493% 100%
30% [−0.003,0.003] 94.347% 96.631% 97.173% 97.493% 100%
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Table 4. Cont.

Dataset Sampling Rate Difference Range
of Pixel Value

Percentage of Pixels Occupied

HaLRTC TNN LogDet-TC Laplace-TC Proposed

Distribution map
of ground object

types

10% [−0.10,0.10] 80.146% 98.202% 98.367% 98.746% 98.912%
20% [−0.10,0.10] 90.904% 99.873% 99.957% 99.944% 99.955%
30% [−0.10,0.10] 94.792% 99.993% 99.997% 99.998% 99.999%

AVIRIS Cuprite
10% [−400,400] 88.529% 97.606% 99.294% 99.971% 99.997%
20% [−100,100] 59.607% 80.892% 78.311% 98.905% 99.904%
30% [−50,50] 55.267% 71.592% 69.236% 96.605% 99.255%

Table 5. The number of iterations and running time of the five methods.

Dataset Method HaLRTC TNN LogDet-TC Laplace-TC Proposed

DS1
Number of iterations 240 348 207 202 196

Time 8.80 61.54 53.24 51.44 46.75

DS2
Number of iterations 261 380 178 170 163

Time 9.42 64.09 43.61 40.25 36.12

DS3
Number of iterations 313 374 200 186 181

Time 6.56 36.75 26.83 23.71 22.82
Distribution map of
ground object types

Number of iterations 362 365 202 194 187
Time 121.06 634.11 548.77 526.93 510.04

AVIRIS Cuprite Number of iterations 245 282 181 176 167
Time 121.13 719.70 574.42 529.66 492.13

5. Discussion

The SRF treats singular values differently through adaptive weight allocation; there-
fore, a tensor completion model using the SRF as a substitution for the tensor rank is
proposed in this paper. The low-rank regularization method can utilize tensor prior in-
formation in HSI data, and the minimization method of the nonconvex low-rank model
can effectively complete the hyperspectral data. The proposed model is compared with
HaLRTC, TNN, LogDet-TC and Laplace-TC on three synthetic hyperspectral images and
two actual hyperspectral datasets at different sampling ratios. The results show that the
proposed method is superior to HaLRTC, TNN, LogDet-TC and Laplace-TC according to
a quantitative evaluation of the PSNR and SSIM, and the running time of the proposed
method is shorter than that of TNN, LogDet-TC, and Laplace-TC.

Usually, the reconstruction error mainly occurs in the transition zone between different
types of geological structures or different land cover. Remote sensing images require high
reliability in transitional zones in order to clearly identify complex surface geological or
ecological features. The experimental results show that even in such transitional regions,
the results obtained by the proposed tensor completion method maintain good consistency
with the original HSI.

6. Conclusions

Hyperspectral tensor completion has important social applicability in fields such as
geological surveys, agriculture and intelligent transportation. Monitoring and assessment
of environmental quality, intelligent management of crops, early diagnosis of diseases and
optimization of intelligent transportation systems can be realized through the completion
of hyperspectral tensors.

This paper proposes a new tensor rank nonconvex substitution (SRF), which reduces
the deviation between substitution and the rank function and effectively utilizes spatial-
spectral correlation, thereby improving the quality of tensor completion. On this basis, this
paper proposes a tensor completion model based on the SRF, analyzes the convergence of
the SRF, and designs an iterative solution algorithm based on the ADMM. The proposed
model provides a certain theoretical basis and technical support for the practical application
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of tensor completion. This paper focuses on tensor completion of HSI data. However, the
nonconvex substitution method based on the SRF can be extended to image denoising and
other fields. In addition, we will develop new tensor completion models and corresponding
algorithms to improve the computational efficiency.

Author Contributions: Conceptualization, S.Y. and J.M.; methodology, S.Y., J.M. and G.L. (Guibing
Li); software, G.L. (Gaoping Li) and J.M.; investigation, G.L. (Guibing Li); data curation, J.M. and
W.J.; writing—original draft preparation, S.Y. and W.J.; writing—review and editing, S.Y. and W.J.;
visualization, G.L. (Gaoping Li) and X.L.; project administration, J.M.; funding acquisition, S.Y. and
J.M. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported in part by the Natural Science Foundation of Sichuan Province
under Grants 2021ZYD0021 and 2022NSFSC0507, in part by the Sichuan Science and Technology Pro-
gram under Grant No. 2023NSFSC0471, in part by the Chengdu Technological University Introduced
Talents Research Startup Funds under Grant No. 2022RC002, and in part by the Southwest Minzu
University Research Startup Funds under Grant No. RQD2021066.

Data Availability Statement: The data used in the first four examples are available through the
link https://github.com/kaipuyu/data-for-tensor-completion (accessed on 20 June 2022), and the
AVIRIS Cuprite dataset used in Example 5 is freely available through the link http://aviris.jpl.nasa.
gov/html/aviris.freedata.html (accessed on 5 July 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, J.; Xia, Y.; Zhang, Y. Anomaly detection of hyperspectral image via tensor completion. IEEE Geosci. Remote Sens. Lett. 2020,

18, 1099–1103. [CrossRef]
2. Giannopoulos, M.; Tsagkatakis, G.; Tsakalides, P. On the impact of Tensor Completion in the Classification of Undersam-

pled Hyperspectral Imagery. In Proceedings of the 26th European Signal Processing Conference (EUSIPCO), Rome, Italy,
3–7 September 2018; pp. 1975–1979. [CrossRef]

3. Geelen, B.; Tack, N.; Lambrechts, A. A compact snapshot multispectral imager with a monolithically integrated per-pixel filter mo-
saic. In Proceedings of the Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VII, San Francisco, CA, USA,
7 March 2014; Volume 8974, pp. 80–87. [CrossRef]

4. Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral remote sensing data
analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [CrossRef]

5. Zhao, X.L.; Yang, J.H.; Ma, T.H.; Jiang, T.X.; Ng, M.K.; Huang, T.Z. Tensor completion via complementary global, local, and
nonlocal priors. IEEE Trans. Image Process. 2021, 31, 984–999. [CrossRef]

6. Xu, T.; Huang, T.Z.; Deng, L.J.; Yokoya, N. An iterative regularization method based on tensor subspace representation for
hyperspectral image super-resolution. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [CrossRef]

7. Liu, J.; Musialski, P.; Wonka, P.; Ye, J. Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal.
Mach. Intell. 2012, 35, 208–220. [CrossRef] [PubMed]

8. Lu, C.; Feng, J.; Chen, Y.; Liu, W.; Lin, Z.; Yan, S. Tensor robust principal component analysis: Exact recovery of corrupted
low-rank tensors via convex optimization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 5249–5257. [CrossRef]

9. Xie, Y.; Tao, D.; Zhang, W.; Liu, Y.; Zhang, L.; Qu, Y. On unifying multi-view self-representations for clustering by tensor
multi-rank minimization. Int. J. Comput. Vis. 2018, 126, 1157–1179. [CrossRef]

10. Xie, Y.; Liu, J.; Qu, Y.; Tao, D.; Zhang, W.; Dai, L.; Ma, L. Robust kernelized multiview self-representation for subspace clustering.
IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 868–881. [CrossRef]

11. Xue, J.; Zhao, Y.; Liao, W.; Chan, J.C.-W. Nonlocal low-rank regularized tensor decomposition for hyperspectral image denoising.
IEEE Trans. Geosci. Remote Sens. 2019, 57, 5174–5189. [CrossRef]

12. Wu, Z.C.; Huang, T.Z.; Deng, L.J.; Huang, J.; Chanussot, J.; Vivone, G. LRTCFPan: Low-rank tensor completion based framework
for pansharpening. IEEE Trans. Image Process. 2023, 32, 1640–1655. [CrossRef]

13. Xue, J.; Zhao, Y.; Liao, W.; Chan, J.C.-W. Nonlocal tensor sparse representation and low-rank regularization for hyperspectral
image compressive sensing reconstruction. Remote Sens. 2019, 11, 193. [CrossRef]

14. Ran, R.; Deng, L.J.; Jiang, T.X.; Hu, J.F.; Chanussot, J.; Vivone, G. GuidedNet: A general CNN fusion framework via high-resolution
guidance for hyperspectral image super-resolution. IEEE Trans. Cybern. 2023, 53, 4148–4161. [CrossRef] [PubMed]

15. Xue, J.; Zhao, Y.; Liao, W.; Chan, J.C.-W.; Kong, S.G. Enhanced sparsity prior model for low-rank tensor completion. IEEE Trans.
Neural Netw. Learn. Syst. 2019, 31, 4567–4581. [CrossRef]

https://github.com/kaipuyu/data-for-tensor-completion
http://aviris.jpl.nasa.gov/html/aviris.freedata.html
http://aviris.jpl.nasa.gov/html/aviris.freedata.html
https://doi.org/10.1109/LGRS.2020.2993214
https://doi.org/10.23919/EUSIPCO.2018.8552934
https://doi.org/10.1117/12.2037607
https://doi.org/10.1109/MGRS.2013.2244672
https://doi.org/10.1109/TIP.2021.3138325
https://doi.org/10.1109/TGRS.2022.3176266
https://doi.org/10.1109/TPAMI.2012.39
https://www.ncbi.nlm.nih.gov/pubmed/22271823
https://doi.org/10.1109/CVPR.2016.567
https://doi.org/10.1007/s11263-018-1086-2
https://doi.org/10.1109/TNNLS.2020.2979685
https://doi.org/10.1109/TGRS.2019.2897316
https://doi.org/10.1109/TIP.2023.3247165
https://doi.org/10.3390/rs11020193
https://doi.org/10.1109/TCYB.2023.3238200
https://www.ncbi.nlm.nih.gov/pubmed/37022388
https://doi.org/10.1109/TNNLS.2019.2956153


Remote Sens. 2023, 15, 3862 22 of 23

16. Luo, Y.S.; Zhao, X.L.; Jiang, T.X.; Chang, Y.; Ng, M.K.; Li, C. Self-supervised nonlinear transform-based tensor nuclear norm for
multi-dimensional image recovery. IEEE Trans. Image Process. 2022, 31, 3793–3808. [CrossRef] [PubMed]

17. Liu, C.; Shan, H.; Chen, C. Tensor p-shrinkage nuclear norm for low-rank tensor completion. Neurocomputing 2020, 387, 255–267.
[CrossRef]

18. Kilmer, M.E.; Martin, C.D. Factorization strategies for third-order tensors. Linear Algebra Its Appl. 2011, 435, 641–658. [CrossRef]
19. Semerci, O.; Hao, N.; Kilmer, M.E.; Miller, E.L. Tensor-based formulation and nuclear norm regularization for multienergy

computed tomography. IEEE Trans. Image Process. 2014, 23, 1678–1693. [CrossRef]
20. Zhang, Z.; Ely, G.; Aeron, S.; Hao, N.; Kilmer, M. Novel methods for multilinear data completion and de-noising based on

tensor-SVD. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA,
24–27 June 2014; pp. 3842–3849. [CrossRef]

21. Wu, Z.C.; Huang, T.Z.; Deng, L.J.; Dou, H.X.; Meng, D. Tensor wheel decomposition and its tensor completion application.
In Proceedings of the 36th Conference on Neural Information Processing Systems (NeurIPS2022), New Orleans, LA, USA,
28 November–9 December 2022; pp. 27008–27020.

22. Ji, T.Y.; Huang, T.Z.; Zhao, X.L.; Ma, T.H.; Deng, L.J. A non-convex tensor rank approximation for tensor completion. Appl. Math.
Model. 2017, 48, 410–422. [CrossRef]

23. Zhang, X.; Ma, J.; Yu, S. Nonconvex Tensor Completion for 5-D Seismic Data Reconstruction. IEEE Trans. Geosci. Remote Sens.
2023, 61, 1–12. [CrossRef]

24. Xu, W.H.; Zhao, X.L.; Ji, T.Y.; Miao, J.Q.; Ma, T.H.; Wang, S.; Huang, T.Z. Laplace function based nonconvex surrogate for low-rank
tensor completion. Signal Process. Image Commun. 2019, 73, 62–69. [CrossRef]

25. Zhang, X. A nonconvex relaxation approach to low-rank tensor completion. IEEE Trans. Neural Netw. Learn. Syst. 2018, 30,
1659–1671. [CrossRef]

26. Xue, S.; Qiu, W.; Liu, F.; Jin, X. Low-rank tensor completion by truncated nuclear norm regularization. In Proceedings of the 24th
International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 2600–2605. [CrossRef]

27. Chen, X.; Li, J.; Song, Y.; Li, F.; Chen, J.; Yang, K. Low-rank tensor completion for image and video recovery via capped nuclear
norm. IEEE Access 2019, 7, 112142–112153. [CrossRef]

28. Lin, Z.; Xu, C.; Zha, H. Robust matrix factorization by majorization minimization. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40,
208–220. [CrossRef] [PubMed]

29. Liu, H.; Li, H.; Wu, Z.; Wei, Z. Hyperspectral image recovery using non-convex low-rank tensor approximation. Remote Sens.
2020, 12, 2264. [CrossRef]

30. Yang, Y.; Han, L.; Liu, Y.; Zhu, J.; Yan, H. A Novel Regularized Model for Third-Order Tensor Completion. IEEE Trans. Signal
Process. 2021, 69, 3473–3483. [CrossRef]

31. Zhao, X.; Bai, M.; Sun, D.; Zheng, L. Robust tensor completion: Equivalent surrogates, error bounds, and algorithms. SIAM J.
Imaging Sci. 2022, 15, 625–669. [CrossRef]

32. Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction
method of multipliers. Found. Trends®Mach. Learn. 2011, 3, 1–122. [CrossRef]

33. Kilmer, M.E.; Braman, K.; Hao, N.; Hoover, R.C. Third-order tensors as operators on matrices: A theoretical and computational
framework with applications in imaging. SIAM J. Matrix Anal. Appl. 2013, 34, 148–172. [CrossRef]

34. Du, S.; Xiao, Q.; Shi, Y.; Cucchiara, R.; Ma, Y. Unifying tensor factorization and tensor nuclear norm approaches for low-rank
tensor completion. Neurocomputing 2021, 458, 204–218. [CrossRef]

35. Cai, C.; Poor, H.V.; Chen, Y. Uncertainty quantification for nonconvex tensor completion: Confidence intervals, heteroscedas-
ticity and optimality. In Proceedings of the 37th International Conference on Machine Learning (ICML), Vienna, Austria,
12–18 July 2020; pp. 1271–1282. [CrossRef]

36. Yang, J.; Zhu, Y.; Li, K.; Yang, J.; Hou, C. Tensor completion from structurally-missing entries by low-tt-rankness and fiber-wise
sparsity. IEEE J. Sel. Top. Signal Process. 2018, 12, 1420–1434. [CrossRef]

37. Kolda, T.G.; Bader, B.W. Tensor decompositions and applications. SIAM Rev. 2009, 51, 455–500. [CrossRef]
38. Gandy, S.; Recht, B.; Yamada, I. Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Probl. 2011,

27, 025010. [CrossRef]
39. Hillar, C.J.; Lim, L.H. Most tensor problems are NP-hard. J. ACM 2013, 60, 45. [CrossRef]
40. Fan, Y.R.; Huang, T.Z.; Liu, J.; Zhao, X.L. Compressive sensing via nonlocal smoothed rank function. PLoS ONE 2016, 11, e0162041.

[CrossRef] [PubMed]
41. Gu, S.; Zhang, L.; Zuo, W.; Feng, X. Weighted nuclear norm minimization with application to image denoising. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 2862–2869.
[CrossRef]

42. Chen, Y.; Guo, Y.; Wang, Y.; Wang, D.; Peng, C.; He, G. Denoising of hyperspectral images using nonconvex low rank matrix
approximation. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5366–5380. [CrossRef]

43. Abercromby, K. Communication of the NASA JSC Spacecraft Materials Spectral Database. 2006. Available online: https://www.
nasa.gov/open/data.html (accessed on 3 March 2022).

https://doi.org/10.1109/TIP.2022.3176220
https://www.ncbi.nlm.nih.gov/pubmed/35609097
https://doi.org/10.1016/j.neucom.2020.01.009
https://doi.org/10.1016/j.laa.2010.09.020
https://doi.org/10.1109/TIP.2014.2305840
https://doi.org/10.1109/CVPR.2014.485
https://doi.org/10.1016/j.apm.2017.04.002
https://doi.org/10.1109/TGRS.2023.3245296
https://doi.org/10.1016/j.image.2018.11.007
https://doi.org/10.1109/TNNLS.2018.2872583
https://doi.org/10.48550/arXiv.1712.00704
https://doi.org/10.1109/ACCESS.2019.2934482
https://doi.org/10.1109/TPAMI.2017.2651816
https://www.ncbi.nlm.nih.gov/pubmed/28092520
https://doi.org/10.3390/rs12142264
https://doi.org/10.1109/tsp.2021.3086363
https://doi.org/10.1137/21M1429539
https://doi.org/10.1561/2200000016
https://doi.org/10.1137/110837711
https://doi.org/10.1016/j.neucom.2021.06.020
https://doi.org/10.48550/arXiv.2006.08580
https://doi.org/10.1109/JSTSP.2018.2873990
https://doi.org/10.1137/07070111X
https://doi.org/10.1088/0266-5611/27/2/025010
https://doi.org/10.1145/2512329
https://doi.org/10.1371/journal.pone.0162041
https://www.ncbi.nlm.nih.gov/pubmed/27583683
https://doi.org/10.1109/CVPR.2014.366
https://doi.org/10.1109/TGRS.2017.2706326
https://www.nasa.gov/open/data.html
https://www.nasa.gov/open/data.html


Remote Sens. 2023, 15, 3862 23 of 23

44. Clark, R.; Swayze, G.; Wise, R.; Livo, E.; Hoefen, T.; Kokaly, R.; Sutley, S. USGS Digital Spectral Library Splib06a; Digital Data Series
231; USGS: Denver, CO, USA, 2007.

45. Han, H.; Wang, G.; Wang, M.; Miao, J.; Guo, S.; Chen, L.; Guo, K. Hyperspectral unmixing via nonconvex sparse and low-rank
constraint. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5704–5718. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/JSTARS.2020.3021520

	Introduction 
	Symbols and Preliminary Theory 
	Symbol Definitions 
	Preliminary Theory 

	Proposed Method 
	Tensor Completion Model Based on Smooth Rank Function 
	Convergence Analysis of the Smooth Rank Function 
	Solution Algorithm 

	Experiment 
	Data and Experimental Environment 
	Experimental Results 

	Discussion 
	Conclusions 
	References

