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Abstract: Hyperspectral image (HSI) classification is one of the hotspots in remote sensing, and
many methods have been continuously proposed in recent years. However, it is still challenging to
achieve high accuracy classification in applications. One of the main reasons is the lack of labeled
data. Due to the limitation of spatial resolution, manual labeling of HSI data is time-consuming and
costly, so it is difficult to obtain a large amount of labeled data. In such a situation, many researchers
turn their attention to the study of HSI classification with small samples. Focusing on this topic,
this paper provides a systematic review of the research progress in recent years. Specifically, this
paper contains three aspects. First, considering that the taxonomy used in previous review articles
is not well-developed and confuses the reader, we propose a novel taxonomy based on the form
of data utilization. This taxonomy provides a more accurate and comprehensive framework for
categorizing the various approaches. Then, using the proposed taxonomy as a guideline, we analyze
and summarize the existing methods, especially the latest research results (both deep and non-deep
models) that were not included in the previous reviews, so that readers can understand the latest
progress more clearly. Finally, we conduct several sets of experiments and present our opinions on
current problems and future directions.

Keywords: hyperspectral image; small samples; remote sensing; classification; review

1. Introduction

Hyperspectral remote sensing is a powerful multidimensional information acquisition
technology to detect both spatial and spectral information of the Earth’s surface [1,2]. The
technology is widely used in various fields, including agricultural monitoring, resource
exploration, and urban construction [3–5].

HSI classification is an important topic in hyperspectral remote sensing [6–8]. In the
past five years, papers related to classification have occupied the main part of hyperspectral
remote sensing research. HSI classification is the process of assigning semantic classes to
each pixel using spectral features and spatial features [9]. Although related research is
developing rapidly, achieving accurate classification of HSI is still a rather challenging task
due to a number of reasons [10]. First, the process of acquiring HSI brings non-negligible
negative effects for accurate classification. On the one hand, scattering can cause spectral
mixing between different classes of adjacent image elements [11], and on the other hand,
atmospheric aberrations and alignment deviations can also adversely affect the imaging
process. Under these circumstances, samples of the same class sometimes exhibit different
spectral qualities, which undoubtedly increases the difficulty of classification. In addition to
the classification difficulty caused by the properties of HSI themselves, the limited number
of labeled samples is also a key factor limiting classification accuracy.

For machine learning, there is a widely accepted consensus that the effectiveness of
a model is positively correlated with the number of labeled samples [12]. This is because
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it is difficult for the model to infer regularity from the limited samples, resulting in poor
generalization ability. It is easy to understand that more available samples are likely to
provide more learnable knowledge when training classifiers, and make it easier to train a
high-performing classifier. Especially with the rapid development of deep learning, more
researchers intuitively realize the importance of the amount of labeled data in training
models [13]. Deep learning models are known to be data-hungry, requiring large amounts
of labeled data to fit their enormous parameter space. The success of deep learning is
largely attributed to the availability of a massive amount of labeled data. Without a
sufficient amount of labeled data, it may be difficult for even the best model to present
full performance. However, obtaining labeled data is a challenging task in many fields,
including hyperspectral remote sensing.

The spatial resolution of HSI is usually limited due to the irreconcilable conflict
between spectral resolution and spatial resolution. In this case, the labeling of HSI cannot
be completed solely by observing the images as in most data labeling in computer vision.
Generally, this work requires field surveys and validation, and even the assistance of other
data. For example, in 2020, the aerial hyperspectral remote sensing dataset of Xiongan New
Area was released, and although its spatial resolution has reached 0.5 m, it is still labeled
by field surveys combined with global position system (GPS) [14]. Therefore, HSI label
acquisition is very time-consuming and expensive, and the currently available HSI label
samples are very limited.

Achieving accurate classification of hyperspectral data with small samples is undoubt-
edly more challenging than with sufficient sample size. The prerequisite for a model
obtained on a training set to perform well in testing is that the training set describes the
true distribution of the data. Obviously, when the training samples are sufficient, the above
condition is easier to fulfill. However, when the training samples are insufficient, the data
distribution formed by a few training samples is more likely to be biased, which will result
in the learned model being more prone to overfitting. In addition, considering that the
high-dimensional features of hyperspectral images make the samples sparsely distributed
in the feature space, the overfitting problem caused by insufficient samples will be more
prominent. This is the main reason why hyperspectral images are currently difficult to
classify with small samples.

Given the urgent need for accurate HSI classification techniques and the difficulty in
obtaining labeled data, research on methods with a small labeled sample is essential. In
fact, researchers have been aware of this need and have conducted research on it for more
than a decade. Since 2008, more than one hundred papers have been published on the
classification of HSI with small samples or limited data. At present, hyperspectral image
classification with small samples (HIC-SS) has entered a period of rapid development.
More than seventy percent of all related articles are from after 2018, and close to sixty
percent are from after 2020.

In the early stage of research, some scholars focused on feature representation of HSI,
and some feature extraction and feature selection methods were born as a result. Some
examples are non-parametric weighted feature extraction [15], dimension reduction tech-
niques [16], attraction points feature extraction [17], band clustering [18], etc. In addition,
other researchers focus on designing more robust classifiers, such as classification meth-
ods based on sparse representation [19] and ensemble learning [20–23]. In later research,
HIC-SS methods based on deep models gradually became mainstream. Among them, the
use of convolutional neural networks (CNN) is undoubtedly revolutionary. The vast ma-
jority of methods used for HIC-SS are built on CNN [24–33]. Among these CNN-based
approaches, some focus on extracting features with better differentiability from a limited
samples [24,34–36], while others focus on optimizing the training process of classifiers [37].
The learning paradigms used cover a variety of models including self-supervised learn-
ing [38], transfer learning [39], active learning [40,41], meta-learning [37,42,43], and so on.

With the increasing number of relevant articles in the last five years, a review of
these articles is very necessary. However, the fact is that the number of review articles
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on HIC-SS is very few [44–46]. Among them, the literature in [46] provides a systematic
and comprehensive review of deep learning-based HIC-SS methods, which classifies and
introduces a large number of existing methods and has an important reference value for
subsequent research. Meanwhile, with the passage of time and the continuous development
of technology, the review represented by [46] still needs to be supplemented and developed,
which is mainly reflected in the following aspects.

1. The current reviews categorize HIC-SS methods invariably according to the learning
paradigm. However, some learning paradigms do not have a precise definition,
especially those that have just been developed in recent years. The boundaries of
these learning paradigms are ambiguous, and even the meaning of some learning
paradigms has changed with further research. Therefore, there is some ambiguity in
existing taxonomy based on learning paradigms in such cases.

2. Most of the current reviews have focused on deep learning methods. Although deep
models are the mainstream of current research, there are some non-deep models that
have been proposed and have achieved remarkable results as well. In this case, it is
necessary to provide a comprehensive overview of the research progress by taking
non-deep models into account.

3. Due to the rapid development of HIC-SS research, many more methods have been
proposed in the past two years, and these methods were not mentioned in the previous
reviews. In fact, the number of articles in this area is quite substantial. It is only by
including them together that a more comprehensive understanding of the current
developments in the field can be generated.

Based on the above reasons, we present a new overview of the research progress of
HIC-SS. Notably, this paper does not use the learning paradigm as the taxonomy for method
generalization, but generalizes the methods according to the form of data utilization. On
this taxonomy, the boundaries between different methods are clearer and unnecessary
ambiguities are also eliminated, which is conducive to the extraction and analysis of
method generalities. In addition, on the basis of summarizing the existing methods, this
paper also analyzes the problems faced by the existing methods through experiments and
foresees future research trends.

The rest of the paper is organized as follows. Section 2 discusses in detail the limitations
of using the learning paradigm as a basis for generalization and the taxonomy adopted in
this paper. Section 3 reviews the current HIC-SS methods in detail. Section 4 provides a
comparative description for the performance of the focused methods. Section 5 presents
the perspectives. Section 6 concludes the paper.

2. Taxonomy

Taxonomy is a very important part of the review articles. As mentioned earlier, the
references [44–46] all invariably use the learning paradigm as a criterion for classifying
models. Jia et al. [44] classified the existing methods into transfer learning, semi-supervised
learning, active learning, and few shot learning, while Li et al. [45] classified them into three
categories: transfer learning, active learning, and few shot learning. The situation in [46] is
similar. It is worth mentioning that the few shot learning and small sample classification
involved in this paper have a similar meaning literally, but in fact they are completely
different concepts. Few shot learning is a description of a class of method, which is an
application of meta learning in the field of supervised learning. It has a standard training
strategy and training process, so it can be considered a learning paradigm. Small sample
classification is a description of the problem. It covers a wider scope, and it includes all the
methods used when the sample size is insufficient. Therefore, we can consider that few
shot learning is a means to solve small sample classification, and small sample classification
is the goal of few shot learning.

In fact, this taxonomy in terms of learning paradigms is controversial in some cases.
One of the most illustrative is the relationship between transfer learning and few shot
learning. The main idea of both is to apply the knowledge learned from the source domain
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to the target domain. So, many researchers believe that few shot learning should belong
to transfer learning [47]. Such a debate arises mainly because of the lack of explanation
of the relationship between transfer learning and few shot learning until 2020. As the
research progresses, the answer to this question becomes clearer. Few shot learning is
actually equivalent to transfer learning when limiting the number of labeled samples in the
target domain [48]. The commonly referred-to few shot image classification can actually
be called few shot transfer [47]. From this perspective, few shot learning is a special case
of transfer learning, and it is inappropriate to express these two learning paradigms as a
juxtaposition [49]. In fact, some of the newly proposed learning paradigms lack rigorous
definitions. Therefore, it is not always appropriate to adopt learning paradigm as the
taxonomy in a certain field, as faced by HIC-SS.

In this paper, we no longer use the learning paradigm as the taxonomy. Instead, the
form of data utilization during model training is used as the classification basis of the
model. Specifically, it can be divided into three categories (as shown in Figure 1).

Figure 1. Schematic diagram of the training process of the three types of methods; the dark blue
squares represent the original training samples. (a) Method based on intra-domain sample set:
The classifier is trained on the original training samples of the current data. (b) Method based
on intra-domain sample set expansion and pseudo-label generation: The green squares represents
the pseudo-labeled intra-domain extension samples, and the classifier is trained on the original
samples and the intra-domain extension samples. (c) Method based on extra-domain sample set
expansion and knowledge transfer: The dashed box on the left represents intra-domain data and the
dashed box on the right represents extra-domain data. The dark yellow squares represent samples
from other hyperspectral datasets. By training on hyperspectral source domain data or other types
of source domain data, the learned transferable knowledge is then used to help train the target
domain classifier.

1. Method based on intra-domain sample set (IS): This method uses only the labeled
samples in the current operation domain to train the model. Because of the limited
amount of data available, these methods aim to extract as much useful information
as possible from the available data. Approaches commonly used include developing
better feature extraction techniques and enhancing the training set with more effective
sample augmentation methods, among others.

2. Method based on intra-domain sample set expansion and pseudo-label generation
(ISE-PG): The most significant difference between this method and the first one is
that it incorporates not only labeled data in the current operational domain but also
partially unlabeled data in the same domain. Specifically, a portion of unlabeled
data is selected from the current operational domain and pseudo-labels are generated
for it, thereby enabling the expansion of the training sample size. The selection of
samples from unlabeled regions in the current operational domain and the generation
of pseudo-labels rely on labeled samples and prior knowledge.
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3. Method based on extra-domain sample set expansion and knowledge transfer (ESE-
KT): This method is similar to the second method in that it also leverages data other
than the labeled data in the current domain for auxiliary training. However, in this
case, the data used for auxiliary training is not from the current operational domain,
but from other domains. The representative works are various transfer learning
methods including methods such as few shot learning. In applications, although there
is less data available in the current domain, data from other domains may be more
readily available. Therefore, finding the similarities between different domains and
applying the transferable knowledge to model training in the current domain is also
an important research direction.

We think the above taxonomy can be a good way to sort out the existing methods
and provide a better indication of current research trends. Section 3 will provide a more
comprehensive overview of representative methods in each category.

3. Methods
3.1. Methods Based on Intra-Domain Sample Set

Without the limitation of a small number of samples in the training set, past research
on HSI classification has focused on how to improve the efficiency of data utilization during
model training. Viewed from this perspective, optimizing feature engineering and classifier
modules are fundamental to achieving high model performance. The IS-based approach is
a continuation of this concept, which aims to improve the efficiency of data utilization in
small sample settings [50,51].

As an extension of HSI classification method when the number of samples is sufficient,
research on this type of method began earlier. For example, in [23], the authors generate
a new feature set by feature space partitioning and kernel orthonormalized partial least
square. In [52], the authors used affinity propagation-based band selection and conditional
mutual information-based feature selection to generate a new feature representation for
each labeled sample. Both methods classically start with a better feature representation.
The original features are first mapped in a certain way and then the classifier is trained
using the new feature set. In the era of non-deep learning, there are also articles that
propose new methods from the perspective of optimizing classifiers. For example, ref. [21]
uses rotation forest and adaboost, and ref. [19] uses a sparse representation classification
method using homotopy. Regardless of the perspective, the aim of these methods is to
extract more information from a limited sample.

With the rapid development of deep learning, numerous deep learning-based methods
have been proposed for HIC-SS. The feature extractors and classifiers in deep models no
longer have distinct boundaries but operate more as a whole. The proposal of multiple
deep modules also provided more options to improve the efficiency of HSI utilization
under small samples [53,54]. For example, ref. [24] is an early use of CNN for HIC-SS,
demonstrating the feasibility of CNN even with a small amount of data. Many subsequent
methods aimed to increase the performance of HIC-SS by improving the efficiency of
limited training sample utilization using CNN-based methods. Zhang et al. proposed deep
quadruplet network in [55], which is designed with a new quadruplet loss function to learn
the feature space. Dong et al. proposed the pixel cluster theory in [56] to enrich the training
set and exploit the advantages of CNN networks in feature extraction. Pal et al. proposed a
new variance loss term to reduce network uncertainty and combined it with cross-entropy
loss to train the model in an end-to-end manner [57]. Apart from proposing loss functions
and data augmentation methods dedicated to this scenario, numerous network structure-
level improvements have also proven effective. In recent years, the residual network
module, attention module, and feature pyramid module, which have been widely used
in other fields, have been introduced to HIC-SS to learn more useful information from a
limited samples. For example, Ding et al. [58] proposed a hybrid model of 3D-CNN and
2D-CNN with a hybrid pyramidal feature fusion mechanism and a coordinated attention
mechanism. Feng et al. [59] constructed a spatial feature cascade fusion network using two
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3D spatial spectral residual modules and one 2D separable spatial residual module. This
method constructs a cascade fusion model with intra-block feature fusion and inter-block
feature fusion. In [60], Wu et al. proposed a two-channel CNN network for learning deep
features of the training set to achieve higher accuracy classification. Additionally, the
multiscale nested U-Net in [61] and the multidimensional CNN model with fused attention
mechanism in [62] both make their own attempts at the model structure level.

In addition to the aforementioned models that aim to improve the connections between
samples and classes, there is another category of models that focus on increasing the
differentiability between classes (as depicted in Figure 2). The siamese network is a model
that measures the similarity of two inputs. By setting an appropriate loss function, the
siamese network can map samples into a feature space with improved separability, where
the distance between similar samples is reduced and the distance between dissimilar
samples is increased. Two siamese networks have been proposed for HIC-SS in [35]
and [63], respectively. These networks use the original training set to create positive and
negative sample pairs for siamese network training. The features mapped by the trained
siamese network are then used to train the classification model. In addition to siamese
networks, some authors have also proposed to learn the intrinsic relationship between
labeled and unlabeled samples with the aid of graph information to alleviate the overfitting
problem caused by fewer labeled samples [64].

Reduce
within-class

Enlarge
between-class

Class 1 Class 2

Class 3 Class 4

Class 5

Samples

Class 1
Class 2

Class 3 Class 4

Class 5

Figure 2. Two typical IS-based models. The top right model focuses on how to build a stronger
relationship between samples and classes (different shapes represent classification boundaries for
different classes). The lower right model focuses on how to increase the differentiability between
different classes (the hollow circles in the figure represent a class as a whole).

IS-based methods aim to maximize the potential of available data by enhancing the
efficiency of data utilization. This approach has been widely studied, and has a large
existing literature. In some scenarios, satisfactory results have been achieved, and this
method has provided valuable references for subsequent studies. However, the limitations
of IS-based methods are evident. Since the entire information for building the model still
essentially comes from a small number of labeled samples, the stability of the model suffers
more when the training samples are poorly represented.
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3.2. Method Based on Intra-Domain Sample Set Expansion and Pseudo-Label Generation

In contrast to the previous class of methods that prioritize data utilization efficiency,
the ISE-PG-based method emphasizes the quantity of data. These methods aim to address
the small-sample situation by increasing the number of available data. The selection of
samples and the generation of labels are crucial factors in this class of methods.

For a classification model, both knowledge and data are directly related to performance.
Knowledge refers to artificial experience that enables the model to differentiate between
categories, such as the reflective properties of a certain target on a particular waveband or a
certain association in the spatial distribution of targets. This knowledge can help the model
label unlabeled samples under certain constraints and expand the training set. Moreover,
knowledge is embedded in the data, and certain properties analyzed from specific samples
may apply to the entire dataset. The ISE-PG based classification method is built on this
foundation, and by introducing certain knowledge, the model can automatically select
samples and assign labels. However, this process contains uncertainty, resulting in pseudo-
labels with some degree of noise.

Spectral similarity serves as a foundation for sample selection and pseudo-label gener-
ation. As previously mentioned, HSI exhibit spectral mixing, causing some similar samples
to present not exactly the same spectral curves. Nevertheless, samples with similar spec-
tral curves still have a high probability of belonging to the same category in most cases.
Hence, it is feasible to utilize spectral similarity as a criterion for pseudo-label generation.
For instance, in [65], a hybrid label labeling model is proposed to label unlabeled data
based on the existing training set using spectral similarity. Similarly, in another study [66],
the authors assigned soft pseudo-labels by calculating the distance between unlabeled
samples and labeled samples, which are also essentially based on the spectral similarity
between samples.

In addition to spectral similarity, the spatial location relationship between samples can
also be exploited to generate data pseudo-labels, as illustrated in Figure 3a. This is mainly
related to the characteristics of HSI, where samples in a homogenous region are highly
likely to belong to the same class label. Several studies have leveraged this theoretical
basis, including Cui et al. who employed multiresolution segmentation to segment the HSI
and then randomly selected unlabeled pixels in the same region as the labeled pixels and
assigned them the same pseudo-label [67]. Similarly, Zheng et al. performed superpixel
segmentation of the HSI and selected superpixels that contained only one labeled sample.
The other unlabeled samples in this superpixel were then assigned the same pseudo-label
as the labeled sample [68].

In addition to the aforementioned methods, some methods utilize both spectral simi-
larity and spatial location relationships to determine the assignment of pseudo-labels. For
example, in [69], the authors select unlabeled samples by calculating the spatial euclidean
distance and spectral euclidean distance between samples. In another study, spectral angle
distance is employed to enhance the accuracy of the generated pseudo-labels based on
polygon segmentation results [70]. Similarly, the authors generated extended samples for
labeled samples through superpixel segmentation maps and spectral nearest neighbor
relationships in [71].

Methods that generate pseudo-labels by classification probabilities are also available,
as illustrated in Figure 3b. These methods typically involve multiple training processes. In
the previous iteration, the classifier is trained and then applied to the unlabeled data to
make predictions. Pseudo-labels are assigned to some of the unlabeled data based on the
prediction results. The pseudo-labeled data is then combined with the original data for the
next training. Samples are continually selected and pseudo-labels generated during the
multiple training runs until the stopping condition of the loop is satisfied [28,72,73].
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Figure 3. The current commonly used pseudo-label generation mechanisms. (a) Generating pseudo-
labels by spatial location relations. The blue squares are the original training set. The red line
indicates the segmentation result. The green squares are the extended data with pseudo-labels. The
pseudo-labels are generated by combining the spatial segmentation results of the images and the
original training set. (b) Generating pseudo-labels by classification probability. The blue squares
are the original training set. The different red colors represent the confidence of the test samples’
results in the previous classification; the darker the color, the higher the confidence. The extended
samples consist of samples with high confidence whose pseudo-labels are the predicted labels of the
previous classification.

The ISE-PG-based method has shown promise in addressing the issue of limited
training samples by leveraging certain knowledge to select samples and generate pseudo-
labels [68,70]. The incorporation of high-confidence pseudo-labels can mitigate the problem
of class overlap and enhance the clarity of class boundaries. However, if the generated
pseudo-labels are excessively noisy, they may negatively impact the training of the model.
Furthermore, overconfident pseudo-labeling can also have a negative impact on the model’s
performance. This is primarily due to the fact that such pseudo-labels may contain insuffi-
cient valid information, which could exacerbate the overfitting issue of the model.

3.3. Method Based on Extra-Domain Sample Set Expansion and Knowledge Transfer

In addition to the ISE-PG-based approach discussed above, there are also methods that
address the HIC-SS problem by considering the data quantity perspective. This approach
mainly takes into account the fact that in many cases there are limited data available in
the current operational domain, but data from other domains are relatively easy to obtain.
Thus, the challenge becomes how to utilize these other domains’ data for model training
and apply the transferable knowledge learned to the current HSI processing, which is an
interesting direction to explore [74–76].

Although this method emerged relatively recently, it has rapidly developed in recent
years. Currently, these methods are mainly based on meta-learning theory, and their core
mechanisms are roughly similar. Meta-learning is a form of implementation of few-shot
learning and can also be considered a type of transfer learning [77–79]. Specifically, the
focus of meta-learning is not on the model’s ability to perform a specific task, but on the
model’s ability to learn how to learn [80–82]. In this sense, the meta-learning model is
distinct from general machine learning models but is consistent with the way humans
learn [83]. When faced with a new situation where they have never encountered the
classes before, humans do not need a large number of new class samples to learn how to
distinguish them [84,85]. Instead, they can quickly and accurately identify new classes
based on just a few new class samples and previous learning experience [78]. This ability to
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build new models with only a few samples is generally lacking in current machine learning
methods and is urgently needed in many application scenarios.

The meta-learning small sample classification method can be divided into three main
stages: meta-learning on the source domain data, training on the target domain data,
and testing on the target domain data (as illustrated in Figure 4). The source domain
dataset contains a large number of data of different classes, which usually do not overlap
with the classes in the target domain dataset. Meta-learning facilitates the acquisition of
learning abilities by models during training, owing to its unique learning strategy. Unlike
general machine learning algorithms, meta-learning’s basic training unit is the task. In
meta-learning on the source domain data, the training process is called meta-training, and
the testing process is called meta-testing. In the meta-training, the model is trained using
a set of several different tasks. Each task has its own training set and test set. During the
meta-training process, the model learns a generalized learning strategy by learning on
these tasks so that it can quickly adapt to different tasks and data distributions. In the meta-
testing, the model is tested using a new set of tasks that are different from the meta-training.
These new tasks also have their own training and test sets, but do not overlap with the tasks
in meta-training. In meta-testing, the model uses a generalized learning strategy previously
learned in meta-training to quickly adapt and make predictions on the new tasks. Each
task consisting of a support set and a query set. To simulate a small sample classification
scenario, the classes included in the support set and query set are the same, but the number
of samples per class in the support set is smaller than that in the query set. Additionally,
the categories in the data are randomly selected from all categories in the dataset for each
task. During the learning process, the support set’s samples are explicitly labeled, whereas
the query set’s samples are considered to be unknown labeled. The algorithm parameters
are updated by predicting the labels in the query set and calculating the losses. Following
meta-training on the source domain data, a set of algorithm parameters F can be obtained,
representing the transferable knowledge obtained by meta-learning. During target domain
training, the algorithm parameters F obtained through meta-learning are involved in the
training process along with the labeled data from the target domain, in order to obtain a
model that can be used for classification in the target domain.

In terms of training process, most of these methods are metric-based meta-learning
models. In simple terms, these models use meta-training to obtain a feature extraction
module that embeds the input data into a deep metric space. Through feature embedding,
samples that belong to the same class can be more aggregated, while samples of different
classes are more dispersed. Since this module is obtained through meta-training, it can
effectively complete feature embedding to improve sample separability even when the
samples of new classes are small. A typical approach, such as deep few-shot learning
(DFSL) [26], employs metric-based meta-learning to achieve feature embedding by using
source domain data, and then uses k-nearest neighbor (KNN) or support vector machine
(SVM) for classification. This approach has influenced subsequent studies, and many meth-
ods have similar designs [33,34,86–88]. In [89], the authors also proposed a metric-based
meta-learning classification method based on adaptive subspaces and feature transfor-
mation. In addition to these methods mentioned above, there are some methods that are
worthy of attention. For example, Gao et al. proposed the unsupervised meta-learning
HIC-SS method [43]. Its unsupervised meta-learning task is constructed by generating mul-
tiple spatial spectral multi-view features for each unlabeled sample. Wang et al. explored
the possibility of using heterogeneous data for meta-training and proposed the use of the
RGB image dataset Mini-ImageNet for knowledge migration to help improve the accuracy
of HIC-SS [90]. Other researchers have proposed using graph neural networks to construct
metric-based meta-learning models [91,92], which have also achieved good classification
results. Moreover, several other articles have proposed metric-based meta-learning HIC-SS
methods [29,30,42,93].
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Figure 4. Schematic diagram of the meta-learning based methods, where different colors represent
different classes. First, meta-learning is performed on the source domain data. Meta-learning is
divided into meta-training and meta-testing. Both meta-training and meta-testing are task-based,
and each task contains the process of complete training and testing of certain categories. Thus, each
task corresponds to a classification model f . F can be obtained by performing meta-learning on these
tasks, which contains transferable knowledge (e.g., locally optimal algorithm parameters) for the
current scene. After completing the meta-learning in the source domain, F is applied to the training
of the classification model in the target domain, and the final classification model ft is obtained.

In addition to the metric-based meta-learning methods discussed earlier, some articles
also mention optimization-based meta-learning methods [94]. The core of the optimization-
based meta-learning approach is to improve the optimization algorithm to enable the model
to quickly adapt to new classification environments with only a small number of labeled
samples. One notable example is the HIC-SS algorithm proposed by Gao et al. [37], which
is built on a model-agnostic meta-learning mechanism.

The main idea behind the ESE-KT-based method is to transfer the knowledge obtained
from source domain to the target domain, thereby addressing the challenge of target
domain insufficient labeled data. Currently, this type of method is a key research direction
in the field of HIC-SS and is considered as one of the most likely directions to achieve
breakthroughs.

4. Performance

Taking SVM as the baseline [95], this section shows the performance of some HIC-SS
methods proposed in recent years, and the covered methods are shown in Table 1. Due to in-
consistent data and different number of training samples, direct comparison of the original
results does not reflect the differences between the methods. In this paper, these methods
are retrained and tested. To ensure the fairness and reliability of the experiments, all the
results in this section are the mean of ten experimental results. Meanwhile, the training and
testing sets used by all methods are the same for each run. In terms of evaluation indexes,
we follow the most common metrics such as overall accuracy (OA), average accuracy
(AA), and kappa coefficient to evaluate the performance of the methods comprehensively.
Moreover, running time is also taken into account for a more comprehensive evaluation of
the aforementioned methods.
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Table 1. Brief introduction of the method in this experiment.

Method Year

Based on intra-domain sample
set (IS)

Support vector machine (SVM) [95] 2002
Deep multiview learning CNN (DMVL) [96] 2021
Integrating hybrid pyramid feature fusion and coordinate attention CNN (IHP-CA) [58] 2022
Minimalistic fully CNN (MFCN) [97] 2022
S3Net: Spectral–spatial siamese network (S3Net) [35] 2022

Based on intra-domain sample
set expansion and pseudo-label
generation (ISE-PG)

Spectral–spatial region growing co-traning approach and SVM (CTA) [69] 2016
Superpixel-guided training sample enlargement and distance-weighted linear regression classifier
(STSE-DWLR) [68] 2019

Polygon structure-guided training sample enlargement and SVM (PSG) [70] 2022

Based on extra-domain sample
set expansion and knowledge
transfer (ESE-KT)

Deep relation network (RN-FSC) [29] 2020
Unsupervised Meta Learning CNN With Multiview Constraints (UM2L) [43] 2022
Deep cross-domain few-shot learning CNN (DCFSL) [33] 2022
Heterogeneous few-shot learning CNN (HFSL) [90] 2022

4.1. Datasets

Experiments will be performed on three famous datasets and one new dataset, namely,
Indian Pines (IP), Salinas Valley (SV), Pavia University (PU), and WHU-Hi-LongKou (LK).
The False color image, ground truth and the number of each category for four datasets is
shown in Table 2.

IP is collected by an airborne visible infrared imaging spectral sensor (AVIRIS) on
the Purdue University agronomy farm and its surrounding land. The spatial resolution is
20 m, the spectral resolution is 10 nm, and the spectral range is 400–2500 nm, containing
224 bands, of which 200 are effective. Sixteen types are covered in the IP, including farmland,
forest, and some buildings.

Table 2. The False color image, ground truth and the number of each category for four datasets.

Indian Pines Salinas Valley Pavia University WHU-Hi-LongKou

Color Land-cover type Samples Color Land-cover type Samples Color Land-cover type Samples Color Land-cover type Samples
Background 10,776 Background 56,975 Background 164,624 Background 15,458

Alfalfa 46 Brocoli-green-weeds-1 2009 Asphalt 6631 Corn 34,511
Corn-notill 1428 Brocoli-green-weeds-2 3726 Meadows 18,649 Cotton 8374

Corn-minitill 830 Fallow 1976 Gravel 2099 Sesame 3031
Corn 237 Fallow-rough-plow 1394 Trees 3064 Broad-leaf soybean 63,212

Grass-pasture 483 Fallow-smooth 2678 Painted metal sheets 1345 Narrow-leaf soybean 4151
Grass-trees 730 Stubble 3959 Bare Soil 5029 Rice 11,854

Grass-pasture-mowed 28 Celery 3579 Bitumen 1330 Water 67,056
Hay-windrowed 478 Grapes-untrained 11,271 Self-Blocking Bricks 3682 Roads and houses 7124

Oats 20 Soil-vinyard-develop 6203 Shadows 947 Mixed weed 5229
Soybean-notill 972 Corn-senesced-green-weeds 3278

Soybean-mintill 2455 Lettuce-romaine-4wk 1068
Soybean-clean 593 Lettuce-romaine-5wk 1927

Wheat 205 Lettuce-romaine-6wk 916
Woods 1265 Lettuce-romaine-7wk 1070

Buildings-Grass-Trees-Drives 386 Vinyard-untrained 7268
Stone-Steel-Towers 93 Vinyard-vertical-trellis 1807

Total samples 21,025 Total samples 111,104 Total samples 207,400 Total samples 220,000

SV was collected by AVIRIS in Salinas Valley, California, USA. It has a spatial resolution
of 3.7 m, a spectral resolution of 10 nm, and a spectral range of 400–2500 nm, and also
contains 224 bands, of which 204 are effective bands. The SV has 16 classes of target, all of
which are agricultural land types.
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PU was acquired by the satellite-based ROSIS-03 sensor at the University of Pavia,
Italy. The spatial resolution is 1.3 m, the spectral resolution is 4 nm, and the spectral range
is 430–860 nm, containing 115 bands, of which 103 are effective. There are nine types of
targets in PU, all of which are urban feature types.

LK was acquired by an 8 mm focal length Headwall Nano-Hyperspec imaging sensor
on UAV platform in Longkou Town, Hubei province, China. The spatial resolution is
0.463 m. The spectral range is 400–1000 nm, containing 270 bands. This scene is a simple
agricultural scene, which contains six crops and other three classes.

4.2. Sampling Strategy

Most current articles divide the original data into a training set and a test set by random
sampling. In the first set of experiments, we followed this convention. Five samples from
each category were randomly sampled separately as the training set, and all the remaining
samples were used as the test set.

In addition to random sampling, we also adopt a disjointed sampling. While random
sampling is commonly used in current HIC-SS research, it has certain limitations. Random
sampling usually exposes some test samples to the model during the training, as illustrated
in Figure 5 [98]. This will produce over-optimistic results on the test set [99], especially when
dealing with small samples. This is because in the spatial information introduction, most
existing methods deal with neighborhood slices centered on labeled samples. Additionally,
random sampling is not practical in practical applications because training and test samples
are often collected from different places. Therefore, it is essential to employ a more realistic
disjointed sampling. Specifically, we randomly select one sample in each class and select
the rest of the training samples in the neighborhood of that sample. As before, we use five
samples for training and the remaining samples for testing purposes.

(a) (b)

Figure 5. (a) Random sampling and (b) disjointed sampling. Each square in the image represents a
sample: dark blue represents the test sample, light blue represents the training sample, dark green
represents the test sample in the neighborhood of the training sample (gray points as an example),
and light green represents the other training samples in the neighborhood of the training sample. If
the spatial information of a training sample is extracted in a 3 × 3 neighborhood, the neighborhood
under random sampling will contain more test samples, which will lead to artificially high accuracy
when testing.

4.3. Performance Analysis

Tables 3–6 present the classification results of the aforementioned methods for the four
datasets under random sampling, with the corresponding classification maps displayed
in Figures 6–9. On the IP dataset, CTA achieved the best classification result with an OA
and AA of more than 80%, which was the only method to achieve such a high performance.
However, MFCN, PSG, and RN-FSC did not perform as well, with their OA not reaching
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60%. When we compare the performance of IS, ISE-PG, and ESE-KT methods, it is observed
that there are better and worse performing methods in each category. Overall, the ISE-PG-
based methods such as CTA and STSE-DWLR performed slightly better on the IP dataset.
We believe this is due to the lower spatial resolution of the IP data, which results in serious
spectral mixing among samples. The spectral representations extracted from the limited
training samples by most methods may not accurately describe the true characteristics
of the classes. On the other hand, ISE-PG-based methods usually take the neighborhood
relationship into account as an important basis for classification, and such an operation has
been experimentally proven to be effective.

Table 3. Classification results of IP dataset under random sampling.

Class
Methods

SVM DMVL IHP-CA MFCN S3Net CTA STSE-DWLR PSG RN-FSC UM2L DCFSL HFSL

Alfalfa 28.19 32.78 61.62 26.51 99.76 99.14 98.05 71.76 25.62 63.63 94.63 99.27
Corn-notill 39.74 77.49 79.12 46.47 47.38 77.13 57.81 28.53 59.10 60.01 44.26 57.62

Corn-mintill 37.05 68.86 55.64 41.70 58.82 71.96 74.10 39.66 30.24 67.55 44.28 70.19
Corn 26.06 65.47 90.98 46.16 89.61 71.82 97.24 29.15 57.44 67.41 76.47 91.42

Grass-pasture 42.93 81.54 91.78 64.19 78.97 92.76 85.75 70.86 52.87 82.01 75.31 72.03
Grass-trees 80.92 66.07 33.52 77.75 95.45 90.89 92.36 90.33 84.54 43.46 84.70 79.86

Grass-pasture-mowed 23.70 20.30 99.11 24.16 100 58.77 96.52 41.69 38.29 89.40 98.26 100
Hay-windrowed 92.34 93.95 24.68 91.77 83.30 97.39 100 95.08 93.58 20.72 84.33 97.55

Oats 12.92 15.09 74.42 7.58 100 81.21 98.67 3.53 15.58 50.36 100 100
Soybean-notill 38.63 69.37 84.86 55.44 57.23 69.32 73.96 43.98 37.98 78.08 61.74 57.96

Soybean-mintill 56.25 79.28 59.51 64.40 58.13 88.50 66.73 59.48 54.70 56.18 61.40 60.86
Soybean-clean 22.23 64.15 74.22 38.82 60.41 75.66 73.18 27.55 56.37 64.83 45.60 69.90

Wheat 83.20 53.13 93.93 56.21 99.05 83.99 100 78.58 52.75 84.44 97.95 98.40
Woods 83.40 89.63 62.06 87.18 83.16 97.91 92.94 89.87 88.00 61.74 84.90 93.75

Buildings-Grass-Trees-Drives 27.96 72.82 59.21 60.61 76.27 94.07 99.74 42.97 50.55 43.50 66.61 90.10
Stone-Steel-Towers 85.20 23.72 52.16 52.71 99.43 90.61 91.93 99.74 26.83 41.17 98.86 95.80

OA (%) 47.98 ± 2.60 67.52 ± 5.07 75.24 ± 3.11 57.59 ± 3.44 67.52 ± 3.41 82.87 ± 1.94 77.70 ± 4.24 48.94 ± 6.63 55.05 ± 5.22 63.08 ± 4.04 64.89 ± 2.57 72.21 ± 4.05
AA (%) 48.79 ± 1.81 60.86 ± 4.45 68.86 ± 3.63 52.61 ± 3.56 80.43 ± 1.35 83.82 ± 3.42 87.43 ± 1.86 57.05 ± 3.98 51.53 ± 3.21 60.87 ± 3.16 76.21 ± 2.13 83.42 ± 2.39

Kappa × 100 41.91 ± 2.57 63.67 ± 5.36 72.22 ± 3.35 52.37 ± 3.61 63.57 ± 3.58 80.56 ± 2.18 74.96 ± 4.60 43.43 ± 6.44 50.02 ± 5.53 58.83 ± 4.29 60.37 ± 2.89 68.75 ± 4.43

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 6. Classification maps of IP dataset under random sampling. (a) SVM. (b) DMVL. (c) IHP-CA.
(d) MFCN. (e) S3Net. (f) CTA. (g) STSE-DWLR. (h) PSG. (i) RN-FSC. (j) UM2L. (k) DCFSL. (l) HFSL.

On the SV dataset, the classification results of the methods are more consistent, with
fewer significant fluctuations compared to the previous set of experiments. Notably,
the effectiveness of each method is significantly superior to that of SVM. In this set of
experiments, DMVL, IHP-CA, CTA, and STSE-DWLR exhibit outstanding performance
with an accuracy rate above 90% for each metric. CTA and STSE-DWLR exhibit remarkable
stability on SV, achieving more than 95% classification accuracy. In addition, the four
IS-based methods are generally better than the other four ESE-KT-based classification
methods. This indicates that the classification methods using only intra-domain sample
sets can also achieve better results when similar ground targets are more clustered.
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Table 4. Classification results of SV dataset under random sampling.

Class
Methods

SVM DMVL IHP-CA MFCN S3Net CTA STSE-DWLR PSG RN-FSC UM2L DCFSL HFSL

Brocoli-green-weeds-1 89.94 97.46 99.92 86.27 99.91 100 99.40 97.90 83.09 94.28 99.32 99.27
Brocoli-green-weeds-2 97.36 99.89 99.63 92.43 94.24 99.93 99.85 99.71 95.35 94.80 99.26 93.03

Fallow 84.33 95.35 84.03 91.50 96.94 93.66 96.91 96.42 91.24 84.32 88.98 96.41
Fallow-rough-plow 99.31 69.46 99.00 91.99 98.80 92.01 99.82 98.96 90.29 93.31 99.61 99.59

Fallow-smooth 92.13 93.10 99.26 93.79 97.52 99.39 98.68 92.09 94.19 97.83 91.67 96.45
Stubble 97.13 94.89 97.47 99.78 99.28 99.78 99.92 97.08 99.77 95.19 99.34 99.65
Celery 96.58 97.98 94.37 90.91 98.89 99.66 99.80 99.42 93.08 88.90 99.34 97.70

Grapes-untrained 66.48 95.45 98.93 83.63 81.66 92.39 86.16 79.22 87.73 96.83 75.39 76.59
Soil-vinyard-develop 97.41 99.99 97.65 94.97 99.71 98.74 96.75 93.01 97.98 91.77 99.39 93.12

Corn-senesced-green-weeds 76.63 98.97 93.61 83.28 92.57 96.41 93.77 91.14 91.85 94.55 81.41 90.90
Lettuce-romaine-4wk 76.39 93.79 98.74 79.56 99.53 97.64 97.76 66.28 91.01 89.67 98.17 98.86
Lettuce-romaine-5wk 88.41 99.39 93.92 88.47 88.67 99.45 97.13 78.33 93.44 91.04 99.34 98.13
Lettuce-romaine-6wk 91.20 88.24 84.93 78.45 97.96 89.18 97.65 72.47 84.11 86.07 99.28 99.09
Lettuce-romaine-7wk 79.13 67.43 78.56 79.44 91.57 85.53 94.75 63.24 85.73 63.13 98.08 96.35

Vinyard-untrained 46.37 84.52 99.79 64.50 75.39 91.98 94.60 45.34 62.53 88.32 75.11 57.86
Vinyard-vertical-trellis 91.23 96.75 99.23 78.43 96.10 99.84 99.17 99.39 83.38 87.76 89.92 95.27

OA (%) 79.50 ± 3.67 92.33 ± 2.52 93.36 ± 1.49 83.89 ± 2.64 90.85 ± 1.29 95.67 ± 0.60 95.09 ± 2.47 82.02 ± 7.02 85.14 ± 4.30 85.90 ± 4.43 88.89 ± 2.16 88.54 ± 2.11
AA (%) 85.63 ± 2.23 92.04 ± 1.93 94.93 ± 1.20 86.09 ± 2.16 94.29 ± 1.20 95.98 ± 0.82 97.01 ± 1.59 85.63 ± 3.69 89.04 ± 2.07 89.86 ± 2.32 93.35 ± 1.37 93.71 ± 1.09

Kappa × 100 77.26 ± 4.47 91.48 ± 2.78 92.63 ± 1.65 82.17 ± 2.89 89.82 ± 1.44 95.18 ± 0.45 94.54 ± 2.75 80.01 ± 7.74 87.63 ± 3.67 84.42 ± 4.84 87.66 ± 2.36 87.26 ± 3.80

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 7. Classification maps of SV dataset under random sampling. (a) SVM. (b) DMVL. (c) IHP-CA.
(d) MFCN. (e) S3Net. (f) CTA. (g) STSE-DWLR. (h) PSG. (i) RN-FSC. (j) UM2L. (k) DCFSL. (l) HFSL.

On the PU dataset, the classification results of each method exhibit slight differences
compared to the previous two sets of experiments. In this set of experiments, HFSL
achieves the best classification results, not only exhibiting the highest average experimental
outcomes in OA, AA, and Kappa coefficients, but also maintaining low variance in each
metric, which reflects the remarkable stability of HFSL. Furthermore, IHP-CA, STSE-DWLR,
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and DCFSL demonstrate high classification performance. The excellent results of HFSL
and DCFSL validate the significance of ESE-KT-based methods. When the samples exhibit
a more dispersed distribution and the valid information contained in the neighborhood is
insufficient, the transfer of knowledge from other datasets provides a positive reference for
improving classification accuracy.

Table 5. Classification results of PU dataset under random sampling.

Class
Methods

SVM DMVL IHP-CA MFCN S3Net CTA STSE-DWLR PSG RN-FSC UM2L DCFSL HFSL

Asphalt 72.42 71.16 98.03 81.15 81.76 97.35 84.19 84.49 86.15 93.81 73.99 75.46
Meadows 82.96 93.94 64.11 87.59 75.51 92.96 73.72 86.92 97.43 55.88 84.80 90.49

Gravel 40.71 81.41 60.73 46.70 70.08 61.96 99.58 67.29 43.66 54.64 60.03 75.86
trees 67.90 47.77 92.29 65.85 85.83 45.43 85.89 73.02 71.61 79.33 93.01 95.28

Painted metal sheets 99.99 86.21 78.12 98.21 99.93 73.21 99.80 90.56 95.18 54.86 99.23 99.81
Bare soil 27.83 94.21 90.53 42.44 64.17 72.87 99.95 40.32 46.00 70.56 75.14 86.65
Bitumen 41.89 82.98 64.25 54.08 95.14 83.83 99.98 51.30 44.50 75.41 79.54 91.84

Self-blocking bricks 54.84 81.75 71.63 66.05 72.45 70.81 82.95 62.14 75.04 66.91 68.25 96.28
Shadows 81.75 23.81 87.46 91.09 94.90 71.31 64.16 89.83 76.27 88.08 97.73 99.06
OA (%) 59.54 ± 2.13 77.48 ± 7.24 80.46 ± 6.22 67.29 ± 5.37 77.15 ± 8.04 77.07 ± 5.13 82.78 ± 7.72 66.12 ± 8.55 71.94 ± 4.54 73.41 ± 6.23 80.51 ± 2.64 88.35 ± 3.58
AA (%) 63.36 ± 3.19 73.69 ± 4.77 78.84 ± 5.35 70.35 ± 3.92 82.19 ± 3.15 74.41 ± 3.52 87.80 ± 3.92 72.21 ± 7.09 70.93 ± 3.38 71.01 ± 3.78 81.30 ± 1.64 90.08 ± 2.26

Kappa × 100 49.49 ± 2.13 71.14 ± 8.12 75.30 ± 7.45 59.21 ± 6.07 71.02 ± 8.89 70.88 ± 5.90 78.49 ± 8.84 58.02 ± 8.85 64.92 ± 5.11 66.66 ± 7.05 74.80 ± 3.12 84.83 ± 4.42

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 8. Classification maps of PU dataset under random sampling. (a) SVM. (b) DMVL. (c) IHP-CA.
(d) MFCN. (e) S3Net. (f) CTA. (g) STSE-DWLR. (h) PSG. (i) RN-FSC. (j) UM2L. (k) DCFSL. (l) HFSL.

On the LK dataset, methods based on ISE-PG and ESE-KT achieve desirable results.
CTA, STSE-DWLR, DCFSL, and HFSL all exhibit OA of over 90%, while RN-FSC and
UM2L also demonstrate an OA of over 80%. However, the IS-based methods exhibit less
satisfactory results. Furthermore, due to the category imbalance of the LK data, most
of the algorithms showed significantly lower AA than OA, which was not seen in the
previous three sets of experiments. Among the three metrics, HFSL demonstrates the most
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outstanding performance. The experimental results on the PU and LK datasets prove that
HFSL is more appropriate for scenarios with higher spatial resolutions.

Table 6. Classification results of LK dataset under random sampling.

Class
Methods

SVM DMVL IHP-CA MFCN S3Net CTA STSE-DWLR PSG RN-FSC UM2L DCFSL HFSL

Corn 79.49 82.11 85.39 92.87 69.47 95.36 94.51 93.74 96.02 91.00 98.34 98.17
Cotton 26.58 91.56 91.20 61.56 87.28 72.26 97.04 51.42 86.79 24.33 87.96 93.85
Sesame 27.27 60.29 91.01 52.55 95.87 65.65 99.09 59.75 32.16 95.46 87.22 83.34

Broad-leaf soybean 93.11 86.58 58.25 96.06 54.63 96.88 87.22 97.30 97.07 50.17 88.40 82.73
Narrow-leaf soybean 27.30 44.23 97.26 35.12 93.80 56.83 94.23 66.72 55.25 77.10 89.56 94.27

Rice 78.71 76.33 99.07 95.74 78.64 98.71 95.57 94.05 72.51 99.32 91.94 92.46
Water 99.99 97.69 66.02 99.78 47.86 99.75 97.58 98.80 99.71 77.36 99.87 99.64

Roads and houses 50.51 30.80 41.49 86.28 41.99 74.12 67.97 81.64 74.06 62.77 76.18 84.20
Mixed weed 21.65 23.46 97.75 64.27 40.07 88.80 72.72 59.47 59.61 94.25 72.09 84.51

OA (%) 74.94 ± 2.85 75.82 ± 2.23 89.49 ± 4.51 87.19 ± 5.61 58.23 ± 4.82 92.92 ± 1.62 92.01 ± 2.39 89.64 ± 3.21 86.83 ± 2.89 84.67 ± 4.91 93.19 ± 2.66 92.24 ± 4.29
AA (%) 56.07 ± 2.36 65.90 ± 2.01 80.83 ± 2.71 76.03 ± 5.28 67.73 ± 2.42 83.15 ± 2.96 89.55 ± 1.38 78.10 ± 5.10 74.80 ± 3.29 74.64 ± 3.73 87.95 ± 2.91 90.35 ± 3.45

Kappa × 100 68.39 ± 3.37 69.57 ± 2.59 86.29 ± 5.41 83.65 ± 6.89 48.70 ± 4.70 90.82 ± 2.07 89.70 ± 2.98 86.59 ± 4.03 83.23 ± 3.50 80.61 ± 6.00 91.15 ± 3.39 90.23 ± 5.53

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 9. Classification maps of LK dataset under random sampling. (a) SVM. (b) DMVL. (c) IHP-CA.
(d) MFCN. (e) S3Net. (f) CTA. (g) STSE-DWLR. (h) PSG. (i) RN-FSC. (j) UM2L. (k) DCFSL. (l) HFSL.

Overall, the ISE-PG method represented by CTA and STSE-DWLR demonstrated
better classification results on data with lower spatial resolution under random sampling.
This is mainly due to the fact that as the spatial resolution decreases, spectral mixing
becomes more prominent and the reliability of the information extracted from a limited
label sample decreases. In this case, pseudo-labeled samples with both correctness and
representativeness can provide more valid information which can support model training.
ESE-KT methods such as DCFSL and HFSL demonstrate more competitiveness when the
resolution of the dataset is higher. When the spatial resolution is high, a small amount of
labeled data can provide relatively consistent information. At this time, it is more difficult
to continue to explore the potential of the target domain, which is a key factor limiting
the performance of IS and ISE-PG methods. In this case, the advantage of ESE-KT is
shown, and by seeking valid information from other domains, such methods bring the
possibility for further improvement of model performance. In addition, IHP-CA belonging
to IS is impressive in mining the available information in a small number of samples,
demonstrating better classification performance on all four datasets. This also shows that
the research on such methods is still of great importance in the current period.
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Tables 7–10 show the classification results of the above methods for the four datasets
under the disjointed sampling (the classification map is shown in Figures 10–13). As
predicted in the previous section, in this case, the classification results of all methods
show a significant decrease. Overall, it was found that some of the methods were less
powerful than SVM on some dataset. Without exception, all of methods introduced spatial
information in the model training, and all of them also achieved better results than the SVM
using only spectral information when sampled randomly. It can be inferred that under the
disjointed sampling, the effective mechanism of introducing spatial information in these
methods will be greatly negatively affected.

Table 7. Classification results of IP dataset under disjointed sampling.

Class
Methods

SVM DMVL IHP-CA MFCN S3Net CTA STSE-DWLR PSG RN-FSC UM2L DCFSL HFSL

Alfalfa 15.18 8.07 60.15 7.32 97.56 82.02 97.56 65.78 15.59 41.10 89.02 96.34
Corn-notill 37.80 73.47 37.67 27.16 25.81 62.18 31.19 39.18 42.57 34.74 18.95 33.31

Corn-mintill 24.54 64.02 33.26 29.41 30.05 51.27 37.05 26.13 31.22 39.40 28.22 23.04
Corn 18.20 49.21 87.56 21.99 58.75 41.98 72.89 24.10 30.20 30.27 41.90 53.84

Grass-pasture 51.48 68.29 77.49 22.62 49.81 70.37 53.45 68.01 45.36 57.28 41.86 42.97
Grass-trees 78.98 58.88 18.13 47.44 83.53 76.53 62.83 91.58 64.93 13.60 66.18 41.75

Grass-pasture-mowed 10.63 14.07 98.44 6.26 100 56.09 99.13 28.17 12.68 63.30 92.61 96.52
Hay-windrowed 89.04 77.28 4.94 60.94 42.18 88.51 88.60 95.53 90.19 5.45 42.77 71.78

Oats 8.46 13.83 61.68 3.05 98.67 36.08 100 0.91 4.34 38.00 98.04 94.75
Soybean-notill 37.53 63.20 64.76 25.62 46.69 48.09 54.87 46.09 34.36 62.89 45.69 39.80

Soybean-mintill 51.72 82.17 47.08 47.96 32.97 75.47 31.19 59.03 53.43 28.32 38.89 46.79
Soybean-clean 16.51 53.99 51.93 13.87 29.22 46.92 32.59 25.28 34.62 32.12 15.07 30.09

Wheat 76.07 33.92 84.00 23.24 98.55 62.30 100 68.42 18.11 59.80 79.50 85.55
Woods 77.63 82.27 51.11 69.46 70.47 86.14 79.38 91.90 85.76 43.71 75.48 74.10

Buildings-Grass-Trees-Drives 21.89 49.71 52.37 40.44 56.40 70.23 85.51 31.47 40.78 25.03 48.19 64.28
Stone-Steel-Towers 85.81 14.70 29.00 13.81 96.48 43.71 90.00 97.92 18.62 8.97 90.91 92.50

OA (%) 38.33 ± 3.68 38.14 ± 9.94 50.24 ± 6.16 27.79 ± 7.00 46.10 ± 5.86 58.24 ± 9.05 51.31 ± 4.95 40.49 ± 7.38 34.66 ± 7.66 31.96 ± 6.79 43.38 ± 5.71 47.67 ± 5.38
AA (%) 43.84 ± 2.52 50.44 ± 10.70 53.72 ± 3.48 28.79 ± 3.80 63.57 ± 3.12 62.36 ± 4.26 69.77 ± 2.59 53.72 ± 4.07 38.92 ± 2.79 36.50 ± 2.64 57.08 ± 3.21 61.70 ± 4.43

Kappa× 100 32.29 ± 3.55 34.50 ± 9.36 45.14 ± 6.04 21.95 ± 6.44 40.61 ± 5.89 53.48 ± 9.30 46.48 ± 4.86 34.88 ± 6.77 29.03 ± 7.57 26.66 ± 6.67 37.12 ± 5.49 41.77 ± 5.52

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 10. Classification maps of IP dataset under disjointed sampling. (a) SVM. (b) DMVL. (c) IHP-CA.
(d) MFCN. (e) S3Net. (f) CTA. (g) STSE-DWLR. (h) PSG. (i) RN-FSC. (j) UM2L. (k) DCFSL. (l) HFSL.
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Table 8. Classification results of SV dataset under disjointed sampling.

Class
Methods

SVM DMVL IHP-CA MFCN S3Net CTA STSE-DWLR PSG RN-FSC UM2L DCFSL HFSL

Brocoli-green-weeds-1 86.03 78.32 98.69 66.17 98.56 99.98 99.40 94.57 41.16 64.30 96.84 71.44
Brocoli-green-weeds-2 86.26 91.15 90.52 71.90 84.40 99.57 98.63 93.39 61.30 49.96 89.78 73.76

Fallow 71.71 72.68 74.97 62.75 61.72 88.31 60.39 88.93 66.79 53.45 48.21 55.84
Fallow-rough-plow 99.27 46.10 86.55 86.85 90.23 84.59 99.73 98.94 63.95 78.52 99.34 96.02

Fallow-smooth 81.30 82.83 99.66 81.50 96.30 85.97 97.55 85.20 72.46 87.48 84.01 87.36
Stubble 91.40 83.69 96.17 99.53 98.69 99.63 99.92 93.17 98.59 77.66 99.34 97.55
Celery 92.48 92.05 80.64 82.47 90.97 99.60 86.54 94.71 72.55 68.62 98.19 77.01

Grapes-untrained 60.75 88.51 95.69 58.70 59.42 87.89 69.69 59.23 63.23 88.49 52.99 58.63
Soil-vinyard-develop 90.63 99.93 97.78 89.67 97.12 97.60 95.12 90.80 92.12 69.54 96.00 79.97

Corn-senesced-green-weeds 72.05 82.02 84.84 70.04 61.19 93.54 72.03 84.57 70.34 52.35 51.83 59.15
Lettuce-romaine-4wk 55.62 69.25 76.35 45.50 95.93 69.43 95.78 62.92 49.09 63.34 78.02 95.54
Lettuce-romaine-5wk 77.05 85.82 57.61 70.83 67.26 91.37 70.43 65.59 62.95 63.91 95.29 80.00
Lettuce-romaine-6wk 81.12 59.47 62.82 43.87 75.93 79.14 96.36 56.33 59.44 48.90 96.84 90.96
Lettuce-romaine-7wk 66.39 51.45 58.39 60.40 78.37 72.19 84.28 68.27 61.80 43.54 96.08 79.16

Vinyard-untrained 41.68 71.68 97.72 46.36 67.28 64.20 69.76 33.56 54.53 41.93 58.67 51.19
Vinyard-vertical-trellis 61.50 70.86 99.70 51.51 81.37 99.53 92.37 95.06 61.57 48.27 78.89 62.86

OA (%) 70.62 ± 4.61 70.69 ± 15.06 81.51 ± 5.59 65.76 ± 4.56 78.12 ± 4.92 86.11 ± 3.70 83.02 ± 4.70 74.47 ± 9.26 62.17 ± 5.23 57.56 ± 6.93 76.15 ± 3.61 70.54 ± 2.83
AA (%) 75.95 ± 4.40 76.61 ± 6.27 84.88 ± 2.38 68.01 ± 5.91 81.55 ± 3.53 88.28 ± 2.59 86.75 ± 2.36 79.08 ± 7.30 65.74 ± 3.45 62.52 ± 5.22 82.52 ± 3.96 76.03 ± 4.76

Kappa × 100 67.48 ± 5.00 68.16 ± 16.05 72.02 ± 6.27 62.14 ± 4.92 75.76 ± 5.39 84.62 ± 4.06 81.15 ± 5.17 71.64 ± 10.20 68.19 ± 4.86 53.85 ± 7.06 73.58 ± 4.01 67.97 ± 3.53

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 11. Classification maps of SV dataset under disjointed sampling. (a) SVM. (b) DMVL. (c) IHP-CA.
(d) MFCN. (e) S3Net. (f) CTA. (g) STSE-DWLR. (h) PSG. (i) RN-FSC. (j) UM2L. (k) DCFSL. (l) HFSL.
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Table 9. Classification results of PU dataset under disjointed sampling.

Class
Methods

SVM DMVL IHP-CA MFCN S3Net CTA STSE-DWLR PSG RN-FSC UM2L DCFSL HFSL

Asphalt 56.84 51.33 96.31 51.03 41.96 82.45 60.04 94.86 56.04 78.51 65.57 52.69
Meadows 79.89 89.90 50.44 77.24 61.50 85.28 54.72 83.01 82.76 22.04 64.40 77.76

Gravel 33.46 39.30 62.73 17.25 47.38 42.89 87.60 48.73 38.03 27.04 49.32 24.57
trees 51.26 24.09 77.03 50.80 80.37 37.04 74.00 55.46 37.74 47.39 87.40 82.12

Painted metal sheets 100 54.45 51.18 74.30 99.59 56.52 85.77 89.52 75.79 39.17 98.31 99.94
Bare soil 33.21 59.93 62.49 40.77 41.32 40.67 91.00 31.20 36.51 21.10 33.39 43.48
Bitumen 39.13 52.64 34.68 29.42 97.67 62.36 99.46 44.88 42.24 47.70 71.58 52.61

Self-blocking bricks 54.82 52.51 42.15 46.74 69.67 56.92 61.75 58.19 57.74 40.67 48.77 69.03
Shadows 86.99 14.32 54.05 71.06 92.10 55.78 57.86 94.18 42.47 54.64 98.81 99.99
OA (%) 51.01 ± 9.70 49.22 ± 4.22 47.45 ± 5.23 50.83 ± 9.85 60.45 ± 9.44 54.12 ± 9.11 65.84 ± 8.91 59.17 ± 11.63 49.16 ± 13.39 46.09 ± 10.30 62.54 ± 6.38 67.20 ± 5.75
AA (%) 59.51 ± 2.76 48.72 ± 3.16 59.01 ± 4.72 50.96 ± 6.04 70.17 ± 6.31 57.77 ± 4.62 74.69 ± 4.18 66.67 ± 6.48 52.15 ± 8.89 42.03 ± 6.68 68.62 ± 2.44 66.91 ± 2.71

Kappa × 100 40.65 ± 9.55 40.12 ± 4.08 39.18 ± 5.26 38.50 ± 9.57 51.57 ± 9.37 45.09 ± 9.26 58.71 ± 9.59 50.40 ± 11.15 38.56 ± 12.73 34.00 ± 9.69 53.10 ± 6.56 57.44 ± 6.35

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 12. Classification maps of PU dataset under disjointed sampling. (a) SVM. (b) DMVL. (c) IHP-
CA. (d) MFCN. (e) S3Net. (f) CTA. (g) STSE-DWLR. (h) PSG. (i) RN-FSC. (j) UM2L. (k) DCFSL.
(l) HFSL.

In tests of IP data, most methods showed a 20–30% decline in classification accuracy
compared to random sampling. The most effective CTA’s OA also showed a decline of
about 25%. The classification accuracy of most methods was below 50%. It can be assumed
that under this condition, the above methods basically lost the ability to identify targets
in the IP dataset. In contrast, each method performs slightly better on SV data, with
classification accuracy decreasing in the range of 10–20% basically. Among them, IHP-CA,
CTA, and STSE-DWLR all achieved more than 80% classification accuracy and had more
reliable recognition ability for most categories in SV. Compared with IP, SV data have high
spatial resolution and less spectral mixing. Similar classes have more similar spectral curves
in SV. In addition, the similar samples in SV data are also more clustered in terms of spatial
distribution. These factors lead to a much lower impact on SV than on IP under disjointed
sampling. The test results on the PU data also showed a similar situation to IP. All methods
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showed a significant drop in effectiveness, with five methods performing below the SVM.
The overall accuracy of HFSL, which has the best classification result, also dropped sharply
from 88.35% to 67.20%. On the LK dataset, most methods exhibit a decrease in classification
accuracy of 10% to 30%. Similar to SV, similar samples are more clustered in LK, while
possessing a higher spatial resolution. However, the negative impact of disjointed sampling
on LK is evidently greater than that on SV. This is because there exist heterogeneous regions
in certain categories of LK, as illustrated in the false color image of LK shown in Figure 2
(Some of the same categories appear as different colors on the false color image). These
heterogenous regions exert a substantial impact on the performance of some methods
under disjointed sampling. In addition, almost all methods showed greater variance in all
three evaluation metrics and all four datasets under disjointed sampling. This indicates
that the stability of each method is also affected more by the change of sampling method.

Table 10. Classification results of LK dataset under disjointed sampling.

Class
Methods

SVM DMVL IHP-CA MFCN S3Net CTA STSE-DWLR PSG RN-FSC UM2L DCFSL HFSL

Corn 79.31 50.29 65.49 72.66 32.24 86.99 55.57 85.79 78.05 58.31 92.31 88.92
Cotton 15.09 95.30 62.78 32.48 72.93 51.39 91.20 37.36 58.35 7.24 67.67 97.16
Sesame 15.45 7.48 72.38 6.68 89.09 28.02 92.08 43.66 14.45 87.15 81.76 58.47

Broad-leaf soybean 79.64 72.70 13.36 86.33 31.21 89.99 51.76 83.67 87.01 26.69 76.24 60.15
Narrow-leaf soybean 18.95 17.36 85.27 20.07 68.38 37.56 94.95 40.50 29.62 36.47 60.33 63.42

Rice 61.40 61.97 91.51 48.35 28.82 95.77 61.04 76.09 33.66 99.16 73.86 51.18
Water 100 98.63 57.96 99.92 20.60 99.75 98.83 97.30 87.81 54.74 99.78 99.61

Roads and houses 62.16 48.02 27.27 48.95 31.50 61.56 27.94 76.33 55.12 60.78 41.57 49.80
Mixed weed 22.38 35.13 75.65 41.70 30.52 52.28 38.00 30.35 32.03 67.20 45.83 52.20

OA (%) 55.69 ± 8.23 49.08 ± 13.34 57.22 ± 10.47 63.40 ± 7.10 31.08 ± 6.81 75.27 ± 8.92 70.28 ± 4.10 73.00 ± 13.25 64.37 ± 9.01 65.88 ± 7.62 83.96 ± 6.78 78.42 ± 6.96
AA (%) 50.49 ± 5.84 54.10 ± 5.46 61.26 ± 5.59 50.79 ± 6.78 45.03 ± 5.13 67.03 ± 3.86 67.93 ± 4.60 63.45 ± 8.77 52.9 ± 5.44 55.31 ± 5.05 71.04 ± 6.22 68.99 ± 7.95

Kappa × 100 46.83 ± 9.21 40.41 ± 11.82 48.66 ± 10.54 55.41 ± 7.83 20.20 ± 4.50 69.37 ± 10.42 63.24 ± 4.60 66.73 ± 14.47 59.11 ± 14.82 58.09 ± 8.50 78.56 ± 8.07 72.78 ± 8.29

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 13. Classification maps of LK dataset under disjointed sampling. (a) SVM. (b) DMVL. (c) IHP-
CA. (d) MFCN. (e) S3Net. (f) CTA. (g) STSE-DWLR. (h) PSG. (i) RN-FSC. (j) UM2L. (k) DCFSL.
(l) HFSL.

4.4. Performance with Different Numbers of Training Samples

In order to show the performance of the methods more comprehensively, we tested
the classification results of all methods when the training samples were three to seven,
respectively. The classification results with random sampling are shown in Figure 14.
Under random sampling, most of the methods demonstrate a significant upward trend
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as the training sample size increases. On IP and SV, both CTA and STSE-DWLR maintain
quite excellent classification performance under different training samples. On PU, HFSL
has a clear advantage in classification performance. The situation demonstrated on LK is
more complicated. When the training sample is three, the advantages of DCFSL, HFSL,
and CTA are more obvious. However, when the training samples gradually increase, STSE-
DWLR and RN-FSC also demonstrate excellent competitiveness. The results under random
sampling are basically in line with our consistent intuition that an increase in the sample
size brings more valid information, which improves the classification results.

The classification results under disjointed sampling are shown in Figure 15. Under
disjointed sampling, as the training sample size is raised, all methods demonstrate a trend
that is inconsistent with that under random sampling, and do not show a significant
performance increase. This is because under disjointed sampling, the increased training
samples are obtained in the neighborhood of the original samples, and their features are
more similar to those of the original samples. Sample size increases of this magnitude
bring limited additional information for model training. This also shows that under this
sampling method, achieving accurate classification will face greater difficulties and has
higher requirements for the design of the model.
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Figure 14. Overall accuracy with different training sample sizes under random sampling. (a) IP.
(b) SV. (c) PU. (d) LK.
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Figure 15. Overall accuracy with different training sample sizes under disjointed sampling. (a) IP.
(b) SV. (c) PU. (d) LK.

4.5. Running Time

In addition to the classification accuracy, we also record the running times of all the
above methods, as shown in Table 11. Combining the classification accuracy and running
time, we can have a more comprehensive understanding of the performance of each method,
so that we can choose a more suitable one for various application scenarios.

Table 11. The consuming time (in seconds) of different methods for the IP, SV, PU and LK.

Datsets
Methods

SVM DMVL IHP-CA MFCN S3Net CTA STSE-DWLR PSG RN-FSC UM2L DCFSL HFSL

IP 3.61 2557.72 222.57 12.56 11.00 863.64 1.29 1.03 104.47 95.50 2316.97 916.69
SV 5.80 13,432.13 697.00 62.69 27.33 12,171.80 15.52 10.34 386.06 203.33 2428.09 1836.22
UP 4.86 10,721.28 407.73 125.70 18.70 8506.83 9.58 2.24 222.71 148.11 1369.20 749.72
LK 16.53 251,305.68 1869.83 17.46 289.54 13,547.5 237.11 4.03 406.75 225.21 6095.68 65,261.60

5. Perspectives

Achieving a model with outstanding performance while having a limited number of
labeled samples is an arduous task, as the efficacy of the model is positively correlated with
the number of training samples. Increasing the size of the training set is a direct approach
to obtain satisfactory models in many fields. However, due to the characteristics of HSI,
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increasing the training set is often a challenging task. Hence, it is crucial to explore accurate
classification methods for HSI that can perform well with a small number of samples.

In recent years, research on HIC-SS has been gradually increasing. From the current
research, we believe that the following directions are full of potential for the future.

There is still a significant gap between the performance of existing methods and the
actual demand, which makes it difficult to carry out practical applications. Although
the recently proposed methods have been tried from different perspectives and achieved
positive results, there is still considerable room for improvement.

In addition, it should be noted that most of the current research on HIC-SS is based
on random sampling. However, this sampling strategy produces overly optimistic test
results, and random sampling is not feasible in the reality that test samples and training
samples are often from different regions. When using disjoint sampling, the performance
of all methods decreases significantly, and some methods even lose the ability to identify
targets completely. At present, there are few studies for HIC-SS built on disjoint sampling,
and further research is needed.

In addition, transfer learning is currently being increasingly applied to solve HIC-SS,
and has produced many promising results. However, there are still some key issues need
to be further explored and demonstrated. On the one hand, the selection of source domains
needs a basis. The existing methods involve not only HSI (including homogeneous HSI
and heterogeneous HSI) but also other types of data (e.g., RGB images). The selection of
source domains directly affects the effectiveness of knowledge transfer, so how to select the
appropriate source domain for a specific target domain is a problem worth investigating.
On the other hand, how to learn better transferable knowledge, or what kind of transferable
knowledge is more effective for the target domain task, is also the focus of such methods.

In summary, despite the many advances in research on HIC-SS in recent years, there is
still much work to be done. Achieving a more stable and accurate HIC-SS will remain a
challenging task in the foreseeable future.

6. Conclusions

The lack of labeled samples is a major obstacle to achieve high-accuracy HSI classifica-
tion. In most cases, manual labeling of HSI is time-consuming and costly; therefore, HIC-SS
is a critical and urgent problem to be solved. In the past few years, HIC-SS has entered a
period of rapid development, and a series of methods have been proposed. In this paper,
we introduce a novel taxonomy and categorize some existing methods into three groups:
IS-based methods, ISE-PG-based methods, and ESE-KT-based methods. Compared with
the existing reviews, our proposed novel taxonomy is more conducive to the extraction
and analysis of method generalities, thus making the categories more distinctive and dis-
tinguishable from each other. Furthermore, this paper conducts experiments on several
recently proposed methods from each of the above three categories of methods under both
random and disjointed sampling, visually demonstrating the advantages and limitations
of relevant methods. Finally, we provide our perspectives on some current problems and
possible future approaches of HIC-SS, which may have practical implications for future
research. We believe that this paper is a good supplement to the existing review articles and
helps readers to have a more comprehensive understanding of the current research status
and future development trend of hyperspectral image classification with small samples.
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