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Abstract: Neural network models play an important role in crop extraction based on remote sensing
data. However, when dealing with high-dimensional remote sensing data, these models are suscep-
tible to performance degradation. In order to address the challenges associated with multi-source
Gaofen satellite data, a novel method is proposed for dimension reduction and crop classification.
This method combines the benefits of the stacked autoencoder network for data dimensionality
reduction, and the convolutional neural network for classification. By leveraging the advantages
of multi-dimensional remote sensing information, and mitigating the impact of dimensionality on
the classification accuracy, this method aims to improve the effectiveness of crop classification. The
proposed method was applied to the extraction of crop-planting areas in the Yangling Agricultural
Demonstration Zone, using multi-temporal spectral data collected from the Gaofen satellites. The
results demonstrate that the fusion network, which extracts low-dimensional characteristics, offers
advantages in classification accuracy. At the same time, the proposed model is compared with meth-
ods such as the decision tree (DT), random forest (RF), support vector machine (SVM), hyperspectral
image classification based on a convolutional neural network (HICCNN), and a characteristic selec-
tion classification method based on a convolutional neural network (CSCNN). The overall accuracy
of the proposed method can reach 98.57%, which is 7.95%, 4.69%, 5.68%, 1.21%, and 1.10% higher
than the above methods, respectively. The effectiveness of the proposed model was verified through
experiments. Additionally, the model demonstrates a strong robustness when classifying based on
new data. When extracting the crop area of the entire Yangling District, the errors for wheat and corn
are only 9.6% and 6.3%, respectively, and the extraction results accurately reflect the actual planting
situation of crops.

Keywords: multi-source remote sensing; crop-planting structure acquisition; multispectral;
characteristic dimensionality reduction; precision agriculture

1. Introduction

The real-time and effective extraction of agricultural distribution is a crucial prerequi-
site to the efficient management of crop planting in precision agriculture [1–3]. Traditional
approaches to obtaining crop-planting structures primarily involve field investigations
or manual segmentation, in conjunction with high-definition satellite imagery. However,
the efficiency of these methods is exceedingly low. In the case of planting types with
complex crop structures, extensive coverage, and significant temporal changes, they are
prone to human error, and cannot fulfill real-time requirements. In contrast, the utilization
of automatic crop recognition using machines has been demonstrated to be an efficient
and cost-effective alternative [4]. It also represents a vital direction for the advancement of
precision agriculture.
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Satellite remote sensing technology plays a crucial role in efficient land information
acquisition. By employing appropriate backend data-processing techniques, it becomes
possible to extract valuable agricultural information from satellite data [5–9]. This enables
efficient and real-time crop identification [10–20]. Among them, machine learning (ML) and
deep learning (DL) [21–28] methods have been proven effective in extracting agricultural
information from remote sensing data. These methods (ML and DL) utilize feature learning
to achieve target classification, leading to improved information extraction results. They
have become one of the main approaches to obtaining crop distribution information. In
the field of remote sensing image data analysis, ML methods, such as the support vector
machine (SVM), random forest (RF), and decision tree (DT) have demonstrated practicality
in various applications. These methods have been successfully utilized for tasks such as
corn-planting-area extraction [15], ground-object-type classification [16], and crop classi-
fication [20]. The application of ML methods in agricultural information extraction tasks
using remote sensing data has proven to be feasible and efficient. Furthermore, compared
to traditional ML methods, DL methods, particularly the convolutional neural network
(CNN), exhibit a superior ability to learn complex features [29]. Hu et al. [30] introduced
a DL method called hyperspectral image classification based on CNN (HICCNN), which
demonstrated excellent feature-learning capabilities in object classification. In their study of
crop classification based on the Sentinel-2 dataset, Seydi et al. [25] proposed a method that
combined CNN and a dual-attention module. This approach successfully classified various
crop types, such as alfalfa, broad bean, wheat, barley, and rape, and achieved excellent
classification results.

DL methods excel in performance by training model parameters with ample sample
data. However, obtaining comprehensive and accurate ground truth distribution infor-
mation can be challenging, especially in cases of complex crop-planting structures and
scattered planting areas. This limitation results in a scarcity of training samples, hindering
the classification ability of the model and, ultimately, impacting the accuracy of the crop-
planting information extraction. To tackle this issue, one approach is to increase the amount
of information available in the remote sensing data. By incorporating more dimensional
information for training purposes, and fully utilizing the original remote sensing data, it
becomes feasible to achieve a desirable classification accuracy with fewer samples [31,32].
Multi-temporal remote sensing images, acquired at different time points, capture tem-
poral changes in crops, and provide valuable information in the time dimension [33–36].
Zhang et al. [37] demonstrated the enhanced accuracy of crop identification through the
utilization of multi-temporal data, in a study based on Sentinel-2 data. Furthermore, lever-
aging data from multiple satellite sources can offer additional remote sensing information
from diverse angles and bands.

Balancing the contradiction between the input data dimension and model performance
degradation is crucial in achieving an optimal classification performance with limited
samples. When dealing with high-dimensional data, the Hughes phenomenon [38] can arise
if the input data have too many dimensions, thereby impacting the model’s performance.
One effective approach to address this challenge is to utilize stacked autoencoder (SAE)
networks, which excel in extracting low-dimensional characteristics [39–42]. The SAE
network consists of multiple autoencoders, stacked and interconnected to extract low-
dimensional features through an encoding and decoding process. Both SAE networks and
the CNN operate on the principle of gradient-descent-based forward propagation, and error
backward propagation. Therefore, combining the strengths of both approaches can result in
a characteristic dimension reduction, and an improved classification performance. In this
context, a model called the fused stacked autoencoder and convolutional neural network
(FSACNN) is proposed, to facilitate the extraction of crop-planting areas. The FSACNN
model can simultaneously perform data dimensionality reduction and classification tasks,
leveraging the advantages of stacked autoencoders and the CNN.

In this study, the experiments were conducted in Yangling District, known for its abun-
dant resources for wheat and corn cultivation. As a national agricultural demonstration
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zone, Yangling provides comprehensive and easily accessible data on the distribution and
area of various crops, which greatly facilitated the implementation of the experiments, and
the analysis of the data. Satellite images from Gaofen-1, 2, and 6, covering the research area,
were obtained. With the use of these remote sensing data, a multi-temporal dataset was
constructed, including spectral, texture, and vegetation indices, which served as inputs
for the fusion network. The proposed model, along with DT, RF, SVM, HICCNN, and the
characteristic selection classification based on a convolutional neural network (CSCNN)
models, was employed to classify crops in the study area. Additionally, the study veri-
fied the classification advantages of the low-dimensional characteristics extracted by the
proposed network.

2. Materials
2.1. Study Area

In this paper, the crop-planting area of Yangling Agricultural Demonstration Zone is
extracted. Yangling is China’s first national agricultural high-tech industry demonstration
zone, located in Shaanxi Province. The study area is depicted in Figure 1, where the red
box represents the coverage range of a scene captured by the Gaofen-6 satellite.
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Figure 1. Study area.

The study area encompasses diverse land-cover types, encompassing crops, industrial
crop plantations, residential houses, and greenhouses. The primary food crops cultivated
are wheat and maize. For the purpose of this study, the land-cover types were classified
into six categories: winter wheat, corn, other vegetation excluding winter wheat and corn
(such as grassland and forest land), bare land, buildings (including urban and rural houses,
and industrial plants), and greenhouses (including those covered with plastic mulch).

2.2. Dataset Selection and Data Processing

Due to cloud cover and rain, it is challenging for a single spectral satellite to obtain
continuous and high-quality images. However, the use of multiple satellites can provide a
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wider range of information, through angle differences. Thus, for this study, multispectral
images from Gaofen-1, Gaofen-2, and Gaofen-6 (GF-1, GF-2, and GF-6) were selected as the
raw data. These satellites are optical remote sensing satellites that can capture images in
the red, green, blue, near-infrared, and panchromatic bands [43,44]. The composite RGB
(red, green, blue) image obtained by the three satellites is shown in Figure 2. The area
circled in red represents the study area.
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Figure 2. Composite RGB image.

Based on the field investigation, it was observed that the color of the wheat crop
gradually deepened as it entered the jointing and heading stage in April. This change made
the crop characteristics more prominent, and facilitated the selection of the training samples
in the satellite images. Consequently, the satellite images captured between April and June
were carefully reviewed, and three cloud-free images were chosen as the multi-temporal
data sources for the experiment. These images were acquired using the high-resolution
cameras onboard the respective satellites, and their parameters [45] are presented in Table 1.

In the data acquisition process, each satellite provided a multispectral image with
four bands (red, green, blue, and near-infrared), as well as a separate panchromatic image.
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Before further analysis, the acquired remote sensing data underwent pre-processing steps
using ENVI software, to ensure the data were accurate and ready for subsequent analysis.
Firstly, radiometric calibration, atmospheric correction, and orthographic correction were
performed on the multispectral image of each temporal phase. Radiometric calibration is a
crucial step in the processing of multispectral imagery. It involves converting the raw sensor
measurements into physically meaningful units of radiance or reflectance. Following the
radiometric calibration, atmospheric correction was applied, to account for the influence of
the Earth’s atmosphere on the multispectral imagery. The orthographic correction aligned
the image with a geographic coordinate system, ensuring spatial accuracy, and allowing
for the precise measurement and analysis of features on the Earth’s surface. Then, the
panchromatic images for each phase underwent radiometric correction, and orthophoto
correction. For the radiometric calibration, the radiometric calibration tool in ENVI was
utilized, to calibrate the panchromatic data to the atmospheric apparent reflectance. Sub-
sequently, the radiometric calibrated data underwent orthophoto correction, using the
“RPC Orthocorrection Workflow” tool in ENVI. Finally, the multispectral and panchromatic
images were fused by Gram–Schmidt image fusion, to obtain the multispectral fusion
image. The sampling rate of the pre-processed GF-1 and GF-6 images was 2 m, and the
sampling rate of the GF-2 image was 0.8 m. In order not to lose image information, the
GF-1 and GF-6 data were resampled to 0.8 m, and accurately matched with the GF-2 image.

Table 1. The data acquisition dates and basic information of the main crops in the experimental area.

Satellite Spatial Resolution/m Band Acquisition Date

GF-1
2 Panchromatic 18 May 2021
8 Multispectral

GF-2
0.8 Panchromatic 4 May 2021
4 Multispectral

GF-6
2 Panchromatic 14 April 2021
8 Multispectral

In order to train a classification model, and accurately evaluate its classification ac-
curacy, reliable ground truth data are necessary. However, due to the large size of the
research area, obtaining complete ground truth data can be challenging. Therefore, sample
data from two representative regions were selected for the model training. Through field
investigations and the visual interpretation of high-resolution images, the distribution
data of six land types were obtained. These land types included winter wheat, corn, other
vegetation excluding winter wheat and corn (such as grassland and woodland), bare land,
urban (including urban and rural houses, industrial plants, etc.), and greenhouse structures
(made of plastic film or materials). Figure 3 displays the true distribution of these land
types on the ground.

To construct the input data for the crop classification model, it is important to include
characteristic information. This can be achieved by utilizing processed multi-spectral data
to derive spectral characteristics. Additionally, incorporating textural characteristics in
remote sensing image classification can be valuable in addressing the issue of “foreign
objects with the same spectrum” in optical remote sensing image interpretation. Among the
satellite images acquired, the GF-2 panchromatic image stood out, due to its highest spatial
resolution, at 0.8 m, and prominent textural characteristics. Therefore, textural characteris-
tics were extracted based on the GF-2 panchromatic images. The grey level co-occurrence
matrix (GLCM) method, initially proposed by Haralick [46], is widely employed in image
textural characteristic extraction. In this study, a set of 14 s-order statistics defined by
GLCM are utilized to represent the extracted textures. Considering the correlation between
the texture quantities and the computational requirements for high-resolution images,
eight commonly used GLCM texture measures, namely the mean, variance, homogene-
ity, contrast, dissimilarity, entropy, angle second-order matrix, and correlation [46], were
selected as the GLCM texture characteristics for this research.
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The utilization of vegetation indices is highly effective in distinguishing between
vegetation and non-vegetation areas, making this a promising approach to crop informa-
tion extraction. By leveraging multispectral data, three specific vegetation indices can be
calculated: the normalized differential vegetation index (NDVI), the ratio vegetation index
(RVI), and the anthocyanin reflectance index 2 (ARI2). The NDVI is widely used to assess
the growth status of vegetation [47]. On the other hand, the RVI serves as an indicator for
measuring the vegetation growth and abundance [48]. The ARI2 is commonly utilized in
vegetation health detection and crop yield analysis, among other applications. By com-
bining the spectral characteristics, the GLCM textural characteristics, and the vegetation
index characteristics, a 29-dimensional multi-temporal dataset is formed. Each character-
istic is assigned a corresponding identifier for subsequent analysis. Table 2 provides a
comprehensive list of all the characteristics, and their respective identifiers. The formula
for calculating the three vegetation indices is given below:

NDVI = (NIR− Red)/(NIR + Red) (1)

RVI = NIR/Red (2)

ARI2 = (2× Green− Blue− Red)/(2× Green + Blue + Red) (3)

Table 2. All characteristics used in this paper.

Feature Name Identifier of Feature

GLCM texture (mean, variance, homogeneity, contrast, dissimilarity,
entropy, angle second-order matrix, correlation) from GF-2 Ft-1~Ft-8

Multispectral features (red, green, blue, near-infrared) from GF-2 Ft-9~Ft-12
Multispectral features (red, green, blue, near-infrared) from GF-1 Ft-13~Ft-16
Multispectral features (red, green, blue, near-infrared) from GF-6 Ft-17~Ft-20

NDVI, RVI, ARI2 from GF-2 Ft-21~Ft-23
NDVI, RVI, ARI2 from GF-1 Ft-24~Ft-26
NDVI, RVI, ARI2 from GF-6 Ft-27~Ft-29

In Formula (1) to (3), NIR, Red, Green and Blue represent reflectance values of near-
infrared band, red band, green band and blue band respectively.
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3. Methodology

In this study, a crop classification model is developed, with the objective of improving
classification accuracy, utilizing multi-dimensional characteristics, consisting of multi-
temporal spectral data, textural characteristics, and vegetation index information, as the
input for DL algorithms. The aim is to take advantage of the diverse information sources,
to enhance the classification accuracy. Moreover, the high dimensionality of the input
characteristics can lead to the Hughes phenomenon, a practical challenge where increasing
the dimensionality of the data may result in a reduced classification performance. To
address this issue, the SAE network is integrated with a CNN architecture. This integration
effectively reduces the dimensionality of the data, while preserving the relevant information,
resulting in a crop classification model with the ability to handle higher-dimensional
input data.

3.1. Extraction Process of Crop-Planting Area

Figure 4 provides a flow chart illustrating the process of extracting the crop-planting
areas. The first step involves preprocessing the satellite images obtained at each time phase.
This preprocessing comprises radiometric calibration, atmospheric correction, orthographic
correction, and image fusion. The registration and fusion are conducted simultaneously, to
ensure accurate and merged images. Ground truth maps are created through field investi-
gations and visual interpretation, using ENVI software. These ground truth maps serve as
the reference for classification. Following this, the necessary classification characteristics
are constructed as input data for the model. The final step involves training the model,
using the constructed input data, and subsequently utilizing the trained model to classify
crop-planting areas.
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3.2. Data Dimensionality Reduction Method for Stacked Autoencoder Network

In the proposed method, the SAE is utilized as a multi-layer structure, consisting of
interconnected simple autoencoders [42]. Figure 5 illustrates the structure of a single-layer
autoencoder, comprising an input layer, an intermediate hidden layer, and an output layer.
Notably, the data dimension of the intermediate hidden layer is smaller than that of the
input layer. The purpose of the autoencoder is to reconstruct the input signal to match
the output, through the supervised training of the parameters [42]. By performing this
reconstruction, the autoencoder achieves an effective dimensionality reduction in the data
in the intermediate hidden layer.
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The dimensionality reduction is achieved through the following process. In the
autoencoder, the input data are x = {x1, x2, . . . , xn}, the intermediate hidden layer output
is h = {h1, h2, . . . , hm}, and the autoencoder output is y = {y1, y2, . . . , yn}. The encoding
and decoding process is as follows:

h = f (Wyx + by) (4)

y = g(Wzh + bz) (5)

Here, f (·) and g(·) are the activation functions of the encoding and decoding process,
which are generally sigmoid functions; Wy are the weight matrices between the neurons
in the input and middle layer; Wz are the weight matrices between the neurons in the
output and middle layer; by is the bias between the neurons in the input and middle layer;
and bz is the bias between the neurons in the output and middle layer. The autoencoder
continuously trains the parameters Wy, Wz, by, and bz by minimizing the loss function
through the back propagation algorithm. The loss function is the mean-square error (MSE)
between the output layer signals and the input layer signals. In this way, the autoencoder
realizes the dimension reduction of the original input data, without reducing its ability for
data information expression.

The SAE network is constructed by stacking multiple layers of single autoencoders, as
depicted in Figure 6. Each layer of the autoencoder is trained individually, and the output
of the previous layer serves as the input for the subsequent layer. This allows the network
to form a model with an enhanced capability for extracting low-dimensional characteristics,
compared to a single-layer autoencoder.

3.3. The Fusion Network Model of Stacked Autoencoder and CNN

Both the SAE and CNN networks share the fundamental principles of forward propa-
gation and error backpropagation using gradient descent. This commonality in the training
process provides a theoretical basis for network fusion. Taking advantage of the SAE
network’s excellent data dimensionality reduction capability, and the CNN network’s
classification advantages, an innovative network model that combines the SAE and CNN
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is constructed for the purpose of crop-planting area extraction. This model, known as the
FSACNN, consists of four main parts: data input, data dimension reduction, characteristic
extraction, and classification. The overall structure of the FSACNN method is presented in
Figure 7. Before being fed into the fusion network, the SAE network is pre-trained. Subse-
quently, the data are inputted into the trained data dimension reduction component for
dimensionality reduction, and the reduced-dimensional data are used as the input for the
classification component. Simultaneously, the parameters of the data dimension reduction
component are fine-tuned, by incorporating the classification results. This approach enables
the organic integration of the two networks, resulting in an overall improved performance.
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In the data dimensionality reduction part, the FSACNN method sequentially connects
four autoencoders, to achieve dimensionality reduction in the multi-temporal remote
sensing data. Once the dimension reduction is complete, the data can still be regarded as a
sequence that maintains intra-class correlation. Therefore, one-dimensional convolution
can be applied, to extract relevant characteristics from the data. This allows for effective
feature extraction, and subsequent classification tasks.

In the feature extraction part of the FSACNN method, a three-branch parallel structure
is constructed, using one-dimensional convolution, to enable the extraction of characteristics
from different perception fields [49]. Considering the high correlation between adjacent
points in the sequence, the first branch employs two convolutional layers, consisting of
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1 × 3 convolution kernels, to extract the features that capture the relationships between
neighboring points in depth. The second branch utilizes a single convolutional layer,
with a 1 × 5 convolution kernel, to extract sequence characteristics over a broader range.
The third branch incorporates a convolution layer with a 1 × 1 convolution kernel. This
operation can be seen as the entire sequence passing through a fully connected layer,
resulting in the sequence obtaining a single-point characteristic representation. Once the
sequence characteristics have been extracted, using the respective convolutional layers,
batch normalization operations and the linear rectifier function (ReLU) are applied, to
process the data. This helps to normalize and activate the extracted features, respectively.

After the three-branch network structure, the Add operation is used, to accumulate the
characteristic activation values extracted by the three branches and, finally, the probability
results of all classes are obtained using the Soft-max classifier, to complete the classification.
Meanwhile, the parameters of the dimension reduction part of the fusion model will be
continuously optimized during the training process, to achieve a better data dimension
reduction effect.

4. Experimental Results and Analysis

Firstly, regions A and B were classified. At this point, the experiment was conducted
under two conditions: the training data belonged to the classification area, and they did
not belong to the classification area. Subsequently, the performance of the dimensionality-
reduced characteristics, and their impact on the model classification accuracy, were ana-
lyzed. Finally, the main crop areas in the entire study area were extracted.

The F1-score, overall classification accuracy (OA), and kappa coefficient (kappa) [50]
were calculated, to evaluate the performance of the method. Among them, the F1-score
was used as an evaluation index of a single category, and the OA and kappa were used
as evaluation indicators for the overall classification. At the same time, the FSACNN
method was compared with the DT, RF, SVM, HICCNN, and CSCNN methods. Among
them, the CSCNN method used a correlation metric to automatically select the feature
combination with the highest correlation to the sample label data. Then, these features
were fed into the proposed CNN classification network for crop extraction. The parameter
settings for the various methods were as follows. Decision trees: there was no maximum
depth limitation, at least two samples were required for further node splitting, and the
Gini coefficient was used for splitting. Random forests: construct random forests with
100 decision trees, consider the number of features equal to the square root of the total
number of features when splitting nodes, and at least one sample was required in the
leaf nodes. Support vector machines: the penalty strength was set to 1.0, the Gaussian
radial basis function was used as the kernel function, and the reciprocal of the features
was used as the gamma value. The loss function for the CSCNN, HICCNN, and FSACNN
models was the cross-entropy function. The learning rate was set to 0.0001, and the training
iterations were set to 300 times.

4.1. Condition 1: The Training Samples Belong to the Classification Area

In this experiment, both the training and test data were selected from the same ex-
perimental area. The training data for region A consisted of a random sampled 10% of
each type of sample, while the crop-planting areas in region A were classified accord-
ingly. Similarly, the crop-planting areas in region B were classified in the same manner.
The obtained performance data for the different methods are presented in Tables 3 and 4.
Table 3 displays the classification accuracy of the various methods for region A, while
Table 4 shows the classification accuracy for region B. Upon examining the tables, it
becomes evident that the FSACNN, HICCNN and CSCNN methods outperform tradi-
tional ML methods, in terms of the accuracy for ground object classification within the
two experimental areas. The CSCNN method with feature selection operation performs
slightly better than the HICCNN. Notably, the FSACNN method exhibits a superior perfor-
mance compared to the HICCNN and CSCNN methods. Indeed, this suggests that utilizing
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feature dimensionality reduction networks for feature optimization yields better results
than simple feature selection methods, based on the correlation analysis. These findings
demonstrate that the FSACNN method, in particular, improves the accuracy of ground
object classification in both region A and region B, compared with traditional ML methods.

Table 3. Classification accuracy of each method for area A under condition 1.

Method
F1-Score OA

(%)
Kappa

Wheat Corn Other Vegetation Urban Bare Ground Greenhouse

DT 0.92 0.95 0.74 0.91 0.95 0.89 90.62 0.83
RF 0.94 0.98 0.79 0.94 0.99 0.95 93.88 0.88

SVM 0.94 0.97 0.79 0.91 0.97 0.88 92.89 0.87
HICCNN 0.98 0.99 0.92 0.98 0.97 0.96 97.36 0.95
CSCNN 0.99 0.98 0.94 0.98 0.98 0.96 97.47 0.96

FSACNN 0.99 0.99 0.95 0.98 0.99 0.98 98.57 0.97

Table 4. Classification accuracy of each method for area B under condition 1.

Method
F1-Score OA

(%)
Kappa

Wheat Corn Other Vegetation Urban Bare Ground Greenhouse

DT 0.89 0.83 0.76 0.94 0.89 0.78 88.04 0.74
RF 0.93 0.92 0.79 0.97 0.94 0.94 92.02 0.80

SVM 0.93 0.93 0.79 0.96 0.89 0.76 91.23 0.79
HICCNN 0.96 0.99 0.86 0.98 0.96 0.98 95.26 0.88
CSCNN 0.98 0.98 0.92 0.96 0.96 0.97 95.88 0.92

FSACNN 0.98 0.98 0.94 0.98 0.96 0.97 97.76 0.94

For region A, the OA and kappa coefficient of the FSACNN method reached 98.57%
and 0.97, respectively, and the OA was increased by 7.95%, 4.69%, 5.68%, 1.21%, and 1.10%,
respectively, compared with the DT, RF, SVM, HICCNN, and CSCNN. Compared with the
DT, RF, SVM, HICCNN, and CSCNN, the kappa coefficient increased by 0.14, 0.09, 0.10,
0.03, and 0.01, respectively. For region B, the OA and kappa coefficient of the FSACNN
method reached 97.76% and 0.94, respectively, and the OA was 9.72%, 5.74%, 6.53%, 2.50%,
and 1.88% higher than the DT, RF, SVM, HICCNN, and CSCNN. Compared with the DT,
RF, SVM, HICCNN, and CSCNN, the kappa coefficient was increased by 0.19, 0.14, 0.15,
0.06, and 0.02, respectively. Figures 8 and 9, respectively, show the classification results for
regions A and B, and the corresponding satellite imagery. Among the different methods, the
classification results of the DT method (as shown in Figures 8a and 9a) exhibit a noticeable
“salt-and-pepper” phenomenon. This phenomenon can be attributed to the influence of
“foreign matter with the same spectrum” between wheat, corn, and other vegetation types.
As a result, the classification results for winter wheat and corn can become mixed with
some other categories of vegetation. This issue leads to the blurring of boundaries between
crop-planting areas and other types of vegetation, especially in plots that are adjacent to
low-growing vegetation.

It can be seen from Figures 8b,c and 9b,c that the classification results for the SVM
and RF are similar to those of the HICCNN, CSCNN and FSACNN. However, there is still
a considerable amount of mixed classification between wheat and other vegetation. The
classification results obtained through the FSACNN method (Figures 8f and 9f) demonstrate
an overall reduction in salt-and-pepper noise. Additionally, the integrity of the distributed
crop-planting area is good, and the extraction accuracy surpasses that of the HICCNN and
CSCNN methods. This is because, compared with other methods, the FSACNN method
utilizes its data dimensionality reduction ability to mitigate any negative impact that high-
dimensional data may have on the model. Simultaneously, during the training process of
the FSACNN method, the batch normalization operation is introduced, to standardize the
input of each layer. This enables the network to continually adapt to new data distributions,



Remote Sens. 2023, 15, 3792 12 of 20

and optimizes the training effect of the network. However, from an objective standpoint,
it can be observed that the salt-and-pepper noise has not been entirely eliminated. Based
on the classification results, although the proposed method exhibits a relatively reduced
impact of salt-and-pepper noise compared to other methods, it is still slightly present.
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4.2. Condition 2: The Training Samples Do Not Belong to the Classification Area

In order to further analyze the adaptability of the FSACNN method to new data,
experiments were conducted using training samples that did not belong to the classification
area. Region A was chosen for analysis, due to the uniformity of each ground-cover type
in that area, which facilitated the analysis of the classification results. The model was
trained using training data from region B, and the crop-planting area in region A was
classified accordingly. The results are presented in Table 5 and Figure 10. Upon examining
Table 5 and Figure 10 together, it becomes apparent that several methods experience
a certain decline in prediction accuracy when predicting new data. Nonetheless, the
FSACNN method still produced the most favorable results. The OA and kappa coefficients
reached 87.15% and 0.83, respectively, while the F1-scores for wheat and corn reached
0.97 and 0.87, respectively.

Table 5. Classification accuracy of each method for area B under condition 2.

Method
F1-Score OA

(%)
Kappa

Wheat Corn Other Vegetation Urban Bare Ground Greenhouse

DT 0.86 0.73 0.34 0.66 0.74 0.72 72.92 0.62
RF 0.90 0.75 0.51 0.80 0.88 0.66 78.52 0.71

SVM 0.92 0.77 0.59 0.40 0.77 0.53 78.06 0.70
HICCNN 0.91 0.82 0.50 0.73 0.79 0.69 79.01 0.72
CSCNN 0.88 0.90 0.55 0.79 0.89 0.71 83.26 0.79

FSACNN 0.97 0.87 0.57 0.80 0.88 0.75 87.15 0.83

Compared to the FSACNN method, both the DT and RF classifiers exhibited a lower
classification accuracy. This can be attributed to the unbalanced distribution of training
samples for each type, and the significant differences in characteristics between regions A
and B. Additionally, Figure 10c reveals that the SVM struggles to effectively distinguish
between greenhouses and architectural structures. Furthermore, referencing Tables 3 and 5,
it can be observed that when classifying new data, the proposed method experienced a
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decrease of 11.42% in the overall OA, and a decrease of 0.15 in the kappa coefficient. On
the other hand, the HICCNN and CSCNN experiencd a decrease of 18.36% and 14.21% in
the OA, and a decrease of 0.23 and 0.18 in the kappa coefficient. Therefore, the FSACNN
method exhibits a stronger adaptability to new data, compared to the HICCNN and
CSCNN. When it comes to classifying new data, the CSCNN performs slightly better than
the HICCNN.
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The aforementioned results demonstrate that the FSACNN method displays a high
capability to differentiate various crops, vegetation, and other land-cover types. As a
result, it offers a strong applicability in accurately extracting crop-planting areas from
multi-temporal optical remote sensing data.

4.3. Performance Analysis of Characteristic Dimensionality Reduction

We randomly selected 10% of each class of samples from all the samples in region A
plus region B as training data for the training and characteristic dimensionality reduction
of the dimensionality reduction part of the fusion network. The dimensionality reduction
process was carried out with a structure of 29-18-12-6. As a result, six-dimensional reduced
features were obtained, denoted as Ft-30 to Ft-35. To evaluate the characteristics belonging
to each class, including all the characteristics before and after dimensionality reduction
(Ft-1 to Ft-35), the standard deviation was calculated. Additionally, the standard deviations
of the characteristics across all classes were also calculated.

Figure 11 plots the standard deviations of characteristics within the same category,
and for all categories. Figure 11a–f shows the standard deviation of various character-
istics belonging to wheat, corn, other vegetation, urban, bare ground, and greenhouses.
Figure 11g shows the standard deviation for each characteristic in all six categories. It can
be seen from this that the standard deviation of the characteristics after dimensionality
reduction is the lowest in the same category. Meanwhile, for all categories, the standard
deviation of the characteristics after dimensionality reduction is the highest. Therefore, it
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can be concluded that the reduced dimensionality characteristics have fused the expression
capabilities of the original characteristics. Compared to the original characteristics, the
reduced dimension characteristics provide the best uniformity for the same category, and
provide the best comparison between different categories.

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 22 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 11. Cont.



Remote Sens. 2023, 15, 3792 16 of 20Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 22 
 

 

 
(f) 

 
(g) 

Figure 11. Standard deviation of the various characteristics. (a) Wheat. (b) Corn. (c) Other vegeta-
tion. (d) Urban. (e) Bare ground. (f) Greenhouse. (g) All classes. 

The fusion model proposed in this paper was trained using the aforementioned train-
ing samples. The training was conducted under two scenarios: with characteristic dimen-
sionality reduction, and without characteristic dimensionality reduction. Additionally, 
10% of all samples were randomly selected as a test set, to evaluate the classification ac-
curacy. The results are presented in Figure 12. It can be observed that the model with 
characteristic dimensionality reduction exhibits an improved classification accuracy, com-
pared to the model without dimensionality reduction. Specifically, the OA and kappa co-
efficient increase by 1 percentage point and 0.03, respectively. Hence, it can be concluded 
that performing dimensionality reduction on high-dimensional characteristics before clas-
sification helps to alleviate the degradation in the model performance caused by the 
Hughes phenomenon. 

 
Figure 12. Classification accuracy before and after characteristic dimensionality reduction. 

4.4. Extraction of Crop Area in the Entire Region 
The model was trained using sample data from regions A and B. The area of the main 

crops was extracted from the entire study area. The planting distribution of wheat and 
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The fusion model proposed in this paper was trained using the aforementioned
training samples. The training was conducted under two scenarios: with characteristic
dimensionality reduction, and without characteristic dimensionality reduction. Addition-
ally, 10% of all samples were randomly selected as a test set, to evaluate the classification
accuracy. The results are presented in Figure 12. It can be observed that the model with
characteristic dimensionality reduction exhibits an improved classification accuracy, com-
pared to the model without dimensionality reduction. Specifically, the OA and kappa
coefficient increase by 1 percentage point and 0.03, respectively. Hence, it can be concluded
that performing dimensionality reduction on high-dimensional characteristics before clas-
sification helps to alleviate the degradation in the model performance caused by the
Hughes phenomenon.
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4.4. Extraction of Crop Area in the Entire Region

The model was trained using sample data from regions A and B. The area of the main
crops was extracted from the entire study area. The planting distribution of wheat and corn
in Yangling District is shown in Figure 13a,b. It can be observed that wheat is primarily
distributed in the northwest and northeast regions of Yangling District, as well as in the
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central area that spans from north to south. On the other hand, the distribution of corn
shows a relatively uniform pattern.
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According to publicly available data from the Shaanxi Provincial Bureau of Statistics,
the planting areas of wheat and corn in Yangling District for the year 2021 have been
obtained. Figure 14 illustrates a comparison between the government’s statistical data, and
the planting areas extracted in this paper. The results indicate that there is a discrepancy
between the extracted area and the official statistics. However, this discrepancy only
accounts for 9.6% and 6.3% of the total planting area, respectively. One possible explanation
for this discrepancy could be the variations in planting conditions caused by the differences
in the data collection time and the satellite imagery acquisition time. Additionally, it should
be noted that some errors might exist in the statistical yearbook data. Hence, the extracted
area could, to some extent, reflect the actual crop-planting situation.
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5. Discussion

In the classification experiments on the entire images of Region A and Region B, it
can be observed that traditional ML classification methods often exhibit a lower accuracy
due to significant class confusion in the classification results. This may be attributed to the
relatively insufficient feature learning capabilities of traditional ML methods, compared to
DL methods with complex network structures [51,52]. Another aspect worth discussing
is the model’s adaptability in classifying new data, which is also an important criterion
in evaluating the model. In experiments where the training samples do not belong to the
classified regions, the proposed model demonstrates a higher adaptability, compared to
other methods. This can be attributed to the strong feature learning capability of the CNN
classification network employed in the proposed model. This part of the network leverages
three branches, with different convolutional layers, to learn features more comprehensively.
Moreover, the introduced batch normalization operation enables the network to continu-
ously adapt to new data distributions. Therefore, this method could serve as a valuable
reference for other ground-information extraction tasks.

Although the effectiveness of this method has been well validated in the crop area
extraction experiments in Yangling, further research is needed concerning the crop-area
extraction on a larger scale. For larger-scale crop-area extraction tasks, the strategy for
selecting training samples may need to be adjusted slightly. It is important to avoid the
excessive concentration of samples during selection, to maintain their representativeness.
Additionally, the extraction of crop areas on a larger scale is subject to constraints imposed
by weather conditions, making it challenging to obtain cloud-free optical images for the
entire region. Therefore, it is necessary to consider integrating optical and SAR images in
future research, to mitigate the effects of weather. Furthermore, different types of ground
cover should be taken into account in large-scale scenarios; for instance, when dealing with
areas that include bodies of water, such as lakes, a mask operation could be performed
prior to crop classification recognition.

6. Conclusions

In this research paper, a novel approach called the FSACNN was proposed, specifically
for the task of extracting the crop-planting areas from high-dimensional characteristic input
classification patterns. The method combines data dimensionality reduction and classifica-
tion techniques, to optimize the extraction results. The performance of the FSACNN was
evaluated using a multi-temporal hyperspectral remote sensing dataset from the Yangling
Agricultural Demonstration Zone, and it was compared with other methods. The results of
the study indicate that the FSACNN method outperforms the compared methods, achiev-
ing a superior extraction effect for crop-planting areas. Moreover, the method demonstrates
a strong robustness when predicting new data, which has implications for other tasks
involving surface-information extraction. Comparisons with statistical data on crops in
the Yangling District demonstrate that the extracted crop-planting areas reflect the actual
planting situation, to a certain extent. It is worth mentioning that the data used in this
study came exclusively from optical satellites. The next focus of the research will be how to
apply the FSACNN method to other types of satellite data.
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