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Abstract: Forests cover approximately one-third of the Earth’s land surface and constitute the core
region of the carbon cycle on Earth. The paramount importance and multi-purpose applications of
forest monitoring have gained widespread recognition over recent decades. Polarimetric synthetic
aperture radar interferometry (PolInSAR) has been demonstrated as a promising technique to retrieve
the forest height over large areas with a limited cost. This paper presents an overview of forest
height inversion (FHI) techniques based on PolInSAR data. Firstly, we introduce the basic theories of
PolInSAR and FHI procedures. Next, we review the established data-based algorithms for single-
baseline data and describe innovative techniques related to multi-baseline data. Then, the model-
based algorithms are also introduced with their corresponding forest scattering models under multiple
data acquisition modes. Subsequently, a case study is presented to demonstrate the applicable
scenarios and advantages of different algorithms. Model-based algorithms can provide accurate
results when the scene and forest properties are well understood and the model assumptions are
valid. Data-based algorithms, on the other hand, can handle complex scattering scenarios and are
generally more robust to uncertainties in the input parameters. Finally, the prospect of forest height
inversion was analyzed. It is our hope that this review will provide guidelines to future researchers
to enhance further FHI algorithmic developments.

Keywords: forest height inversion; PolInSAR; microwave remote sensing

1. Introduction

Forest height inversion (FHI) is a remote sensing technique that has become increasingly
important for monitoring forest structure and biomass. This technique uses data from remote
sensing platforms, such as Light Detection and Ranging (LiDAR) or Synthetic Aperture
Radar (SAR), to estimate the height and structure of forest canopies. Compared to LiDAR,
SAR can obtain large-scale forest images at a low cost, with all-weather and all-day coverage.
Polarimetric SAR (PolSAR) provides more scattering mechanism information, distinguishing
between ground scattering and canopy scattering in forest images [1]. It has been widely
applied in land cover classification, ocean monitoring, disaster monitoring, and other
fields [2,3]. Interferometric SAR (InSAR) extracts vertical information information by using
the phase difference between two radar images but may not be sufficient for forest areas
due to multiple scattering mechanisms [4,5]. Polarimetric interferometric SAR (PolInSAR)
combines advantages of polarimetric and interferometric observations, providing sensitivity
to both scattering mechanisms and scatterer height [6]. It can extract height information
corresponding to different scattering mechanisms and is widely used in forest parameter
estimation, building height estimation, and other fields [7].
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Since the end of the 1990s, the PolInSAR technique has made significant advances [8].
Various airborne PolInSAR observation data are available currently, such as TropiSAR and
IceSAR from the European Space Agency (ESA), UAVSAR from the National Aeronautics
and Space Administration (NASA), and AfriSAR from the Deutsches Zentrum für Luft
und Raumfahrt (DLR). Spaceborne platforms include ALOS2, Radarsat-2, TerraSAR-X,
TanDEM-X and ROSE-L. Particularly, the ROSE-L mission is aimed at monitoring and
understanding various Earth processes with a specific focus on forest height inversion and
biomass estimation. In addition to the existing PolInSAR observation data, new platforms
are also being developed, such as BIOMASS and Tandem-L. BIOMASS is a spaceborne
P-band PolSAR mission of the ESA, which is expected to be launched in 2023 [9]. BIOMASS
will provide global forest height maps with unprecedented accuracy and resolution and
is expected to greatly promote research on the global carbon cycle and climate change.
Tandem-L is another spaceborne SAR mission currently being developed by DLR and is
expected to be launched in 2023 as well [10]. Tandem-L will have an L-band PolInSAR system
with a large antenna aperture, which will enable high-resolution imaging and polarimetric
tomography of the Earth’s surface. Tandem-L is expected to contribute greatly to research in
areas such as geology, cryosphere, and natural disaster monitoring as well as forest structure
and biomass estimation.

Remote sensing activities in forest observations have provided great opportunities
for the rapid development of FHI, and a large amount of multisource observation data
is about to make it possible to perform high-precision forest height inversion on a large
scale [11,12]. Therefore, we hope to write this review to help more readers understand the
basic FHI procedures and provide guidelines to future researchers to enhance further FHI
algorithmic developments. The remainder of this review is structured as follows: Section 2
introduces the basic theory of PolInSAR and FHI procedures. Section 3 introduces data-
based FHI algorithms. Section 4 reviews the established forest scattering models with their
corresponding inversion algorithms. Section 5 presents a case study to demonstrate the
applicable scenarios and advantages of different algorithms. Finally, Section 6 summarizes
the article and analyzes future development trends.

2. Basic Theories of PolInSAR and FHI Procedures
2.1. Interferometric Geometry and Vertical Wavenumber

Figure 1 is a schematic diagram of a typical scenario for interference measurement. θ, R,
and B represent the incident angle, slant range, and physical baseline, respectively, and B⊥ is
the interferometric baseline perpendicular to the line of sight. The vertical wavenumber is
one of the most important parameters in PolInSAR, directly determining the sensitivity of the
observed data to forest parameters and limiting the maximum ambiguity of height (AoH).
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Figure 1. Schematic diagram of a typical scenario for interference measurement.
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In a typical PolInSAR measurement system, as shown in Figure 1, the vertical wavenum-
ber can be expressed as:

kz =
4πB⊥

λR sin θ
(1)

where λ is the wavelength. Kugler et al. have conducted in-depth studies on this param-
eter, identifying the impact of different vertical wavenumbers on the observed results of
vegetation height [13]. A larger vertical wavenumber indicates a smaller ambiguity height,
which may lead to phase ambiguity when applied to tall forests. However, it exhibits higher
sensitivity to height and has the potential to achieve higher accuracy. These studies provide
valuable insights for the selection of baselines and the design of PolInSAR systems.

2.2. Data Representation of PolInSAR

The technology of polarimetric interferometric SAR (PolInSAR) was first introduced
by Cloude and Papathanassiou [6] and has made great progress in the following years. It
can generate multiple interferograms under different scattering mechanisms. The strong
application prospects in complex scattering environments, such as extracting terrain and
vegetation height in forest areas, make PolInSAR observations more and more common.

In general, a single polarization radar with a p-transmitted and q-received polarization
state can be expressed as Spq, p, q = H, V. In the case of reciprocal propagation media,
either scattering matrix can be equivalently represented by the corresponding Pauli vector.

k =
1√
2
[Shh + Svv, Shh − Svv, 2Shv]

T . (2)

The fully polarimetric radar image obtained from the two antennas at the two ends of
a baseline can be described using two Pauli vectors, k1 and k2. And the PolInSAR data can
be represented by the coherence matrix of these two Pauli vectors, which is written as a
6× 6 Hermitian matrix T6:

[T6] =

〈[
k1
k2

][
k†

1 k†
2
]〉

=

[
[T11] [Ω12]

[Ω12]
† [T22]

]
(3)

where † means conjugate and transpose. T11 and T22 are Hermitian matrices describing
the polarimetric characteristics, whereas Ω12 is a non-Hermitian matrix containing polari-
metric and interferometric information. The coherence in either polarization state can be
generalized by introducing two unit complex vectors ω1 and ω2 and projecting them onto
Pauli basis vectors k1 and k2 as follows:

γ(ω1, ω2) =

〈
ω†

1Ω12ω2
〉√(

ω†
1T11ω1

)〈
ω†

2T22ω2
〉 . (4)

2.3. Decorrelation Analysis

In PolInSAR systems, the interferometric coherence represented by γ is influenced by
various factors such as noise, baseline, and temporal variations. The magnitude of coherence
plays a crucial role in determining the quality of the obtained images. A decrease in coher-
ence may lead to increased interferometric phase errors, which significantly affect tasks like
height inversion. Therefore, the analysis of decorrelation phenomena is an essential aspect
of PolInSAR theory, and many researchers have conducted studies on various decorrelation
factors. The total interferometric coherence can be simply modeled as a product of several
main decorrelation components [14]:

γ̃tot = γSNR · γCoreg · γGeo · γAz · γv · γt . (5)
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in which the first four decorrelation factors correspond to system processing and the last
two factors correspond to scatterers and their motions. Table 1 contains brief descriptions
of each system contribution [7,15–17]:

Table 1. Descriptions of system decorrelation factors.

Decorrelation Factors Causation Expressions

γSNR Thermal Noise γSNR = 1
1+SNR−1

γCoreg Coregistration Errors γCoreg = sinc(πδrg)sinc(πδaz)

γGeo Difference of the Incidence Angles γGeo = max
{

1− |B⊥ |
B⊥,crit

, 0
}

γAz Doppler Shift γAz = 1− |∆ fd |
Bproc

In Table 1, SNR means the signal-to-noise ratio, δrg and δaz mean the coregistration
error in range and azimuth direction, B⊥,crit means the critical baseline of the interferometer,
∆ fd means the frequency difference, and Bproc means the processed Doppler bandwidth.

The other two factors are associated with the structure and temporal stability of
natural volume scatterers. γv arises from the interaction with a large number of volume
scatterers, while γt reflects the varying positions of scatterers during multiple observations.
These two forms of decorrelations exhibit different expressions depending on the models
used to describe scatterer distribution and scatterer motion. Section 4 will delve into these
differences in detail.

2.4. FHI Procedures

FHI is a key application of PolInSAR systems, capitalizing on their inherent strengths.
PolInSAR systems possess the capability to acquire polarimetric data, which contain valu-
able information about the scattering behavior of forested areas. By analyzing the po-
larization properties of the acquired signals, it becomes possible to distinguish between
the scattering characteristics of the surface and the canopy. This discrimination between
surface and canopy scattering enables the extraction of pertinent information regarding the
structure and composition of the forest canopy.

The overall workflow of FHI is depicted in Figure 2, which can be divided into three
parts: data preprocessing, inversion algorithms, and result evaluation. To provide readers
with a more complete understanding of the workflow, a concise overview of each procedure
is presented below.

2.4.1. Data Preprocessing

The data preprocessing procedure mainly contains registration, flat earth removal,
and filering.

Registration is the basis for interferometry processing. After registering two images,
the interferometric phase can directly reflect the distance difference between the scatterers
and the two radars. The distance difference is influenced not only by the height of scatterers
but also by the topographic phase. Therefore, it is necessary to remove the periodic effects of
the topographic phase prior to height inversion. Flat earth removal can significantly reduce
the density of phase fringes, allowing the interferometric phase to directly reflect the height
of scatterers [7].

SAR images are significantly affected by speckle noise, necessitating image filtering for
better interpretation and information extraction. Frequency domain filters are commonly
used for InSAR images, including the Goldstein filter, ESPRIT local frequency filter, and
window adaptive filter [18,19]. However, in the case of PolSAR filters, it is challenging
to consider multiple channels in the aforementioned methods. Therefore, spatial domain
filters are more mature and applicable, such as the multi-look filter, Lee filter, and nonlocal
filter [20–22]. For PolInSAR data, spatial domain filters are still more suitable due to the
larger number of channels [23–25]. Filtering can effectively retain texture information,
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improve the quality and interpretability of interferograms, and reduce noise effects, leading
to more accurate height inversion results.

Data-based Algorithms

Scattering Models Parameter Inversion

Coherence Optimization Algorithm

ESPRIT Algorithm

Scattering Decomposition Algorithm

Polarimetric Array Signal Algorithm

SKP Decomposition Algorithm

RVoG Model

S-RVoG Model

3L-RVoG Model

VS-RVoG Model

RVoG-vtd Model

RMoG Model

Optimal Algorithm

Three-stage Algorithm

Four-stage Algorithm

Baseline selection Algorithm

Baseline fusion Algorithm

Multi-baseline Model

Model-based Algorithms

Registration Flat Earth Removal Filtering

Performance Assessment Error and Precision Analysis

Data Preprocessing

Inversion Algorithms

Result Evaluation

Multi-Baseline

Single-Baseline

Figure 2. The overall workflow of FHI.

Figure 3 illustrates the preprocessing workflow with an intuitive view. After obtaining
the PolSAR images, registration is performed to align multiple images, and the coherence
phase image is obtained. Then, flat earth removal is applied to eliminate periodic stripes.
Subsequently, image filtering is performed to reduce the impact of noise and improve the
quality of the phase image.

PolSAR images

Registration Flat earth removal Image filtering

Phase images of coherence

Raw data

0

3

2

1

-3

-1

-2

0

3

2

1

-3

-1

-2

Figure 3. The intuitive view of data preprocessing.

2.4.2. Inversion Algorithms

The inversion algorithms encompass both data-based inversion methods and model-
based inversion methods, which are represented by the left and right branches in
Figure 2, respectively.

Data-based algorithms focus on analyzing the raw data to separate the different
scattering mechanisms present in the scene. This is achieved through various techniques,
such as decomposition methods or statistical approaches. By isolating the contributions of
the surface and canopy scattering, the phase information associated with each component
can be estimated. Height inversion is then performed by differencing the estimated phases.

In contrast, the model-based algorithms rely on a priori knowledge of the scene and
involve the construction of mathematical models that describe the interactions between
the radar waves and the forest. These models incorporate information about the forest
structure, vegetation characteristics, and other relevant parameters. Optimization functions
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or algorithms are then developed based on these models, and the parameters are estimated
by fitting the model to the observed data.

Inversion algorithms are the core focus of this review, and the specific algorithms will
be reviewed in detail in Sections 3 and 4.

2.4.3. Result Evaluation

During result evaluation, the performance of models and algorithms is primarily
assessed by comparing the estimated heights with reference ground truth values. The ref-
erence ground truth values can be obtained through field surveys. Additionally, due to
the higher accuracy, many researchers also use height estimates from LiDAR as reference
values. A combination of qualitative and quantitative approaches can be used to evaluate
the results. Qualitative comparison allows for a visual assessment of the results. Quantita-
tive comparison, on the other hand, involves using numerical metrics to assess the degree
of agreement between the estimated tree heights and the reference values. This can be
achieved through statistical measures such as the root mean square error (RMSE), bias, and
R2. RMSE and bias provide insight into overall prediction accuracy and systematic error,
while R2 offers information on model fit. These parameters serve as measures to assess the
accuracy and reliability of the models and algorithms in estimating tree heights.

In terms of error and accuracy analysis, some scholars have also conducted systematic
research [26,27]. Wang et al. established an analytical model for forest height estimation er-
ror including dependences on polarimetric system parameters including crosstalk, channel
imbalance, and system noise [28,29]. Riel et al. proposed simultaneously estimating height
and height uncertainty from PolInSAR data using a Bayesian framework [30]. Arnaubec et
al. utilized the adaptation of the Cramer–Rao bound (CRB) derived for full PolInSAR to
compact PolInSAR measurement to provide a general methodology to characterize this
loss of precision [31,32].

3. Review of Data-Based FHI Algorithms

The fundamental concept behind data-based FHI is to employ data analysis techniques
to distinguish various scattering mechanisms. This allows for the identification of ground
scattering centers and canopy scattering centers. The phase difference method is then
utilized to estimate the height inversion values.

In 1997, Cloude et al. proposed using the unconstrained coherence optimum method
to extract scattering centers [33]. Tabb and other scholars also proposed different coherence
optimization methods [34–37]. Yamada et al. analyzed the observation form of PolInSAR and
proposed a method of estimating the signal parameter via rotational invariance techniques
(ESPRIT) to estimate the phase center [38]. The distribution positions of phase centers at
different frequencies were also utilized to perform differential calculation [39,40]. Ballester-
Berman et al. utilized the scattering decomposition method to separate different scattering
mechanisms and extract the phase centers of each mechanism [41–43]. This method was
further developed by other researchers [44,45].

Representative methods under the multi-baseline condition include the polarimetric-
sensitive array method and the sum of Kronecker product (SKP) decomposition method.
The polarimetric-sensitive array method combines multi-baseline data into an array signal
and estimates the wave direction using a polarimetric-sensitive Direction of Arrival (DOA)
estimation method [46,47]. The SKP decomposition method is a multi-baseline extension
of the scattering decomposition method, which separates the ground phase and canopy
phase using matrix rearrangement and singular value decomposition (SVD), obtaining the
tree height inversion value [48,49].

In recent years, due to the gradual increase in observational data, some inversion
methods based on training or multisource data fusion have also emerged [50–53]. Some
scholars have also introduced machine learning methods into this field, realizing tree
height inversion through tools such as support vector machines and convolutional neural
networks [54,55]. In general, these data-based methods are more robust, and similar
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methods can be also applied to some other fields, such as biomass estimation, surface
parameter inversion, and artificial building height inversion [56–62].

Figure 4 illustrates some classical data-based inversion algorithms in both single-baseline
and multi-baseline scenarios. We will now provide a brief introduction to these algorithms.

Data-based Algorithms

Coherence Optimization 

Algorithm

ESPRIT Algorithm

Scattering Decomposition 

Algorithm

Polarimetric Array Signal 

Algorithm

SKP Decomposition 

Algorithm

Single-baseline

Multi-baseline

Extract scattering mechanisms 

corresponding to optimal coherence

Separate two signals in different 

directions

Distinguish surface and volume 

scattering components

Obtain power spectrum density in the 

vertical direction

Extract scattering phase centers using 

singular value desomposition 

Figure 4. The data-based inversion algorithms in both single-baseline and multi-baseline scenarios.

3.1. Data-Based FHI Algorithms for Single-Baseline Data
3.1.1. Coherence Optimization Algorithm

Coherence optimization is a fundamental step in PolInSAR data processing. It aims
to extract scattering mechanism vectors and obtain optimal coherence values, thereby
reducing potential errors and improving phase accuracy.

The classical method proposed by Cloude and Papathanassiou treats the transmit
and receive polarization states as independent optimization variables and formulates the
optimization problem as [6,33]:

γCloude
opt = max

ω1,ω2

〈
ω†

1Ω12ω2
〉√(

ω†
1T11ω1

)〈
ω†

2T22ω2
〉 . (6)

The optimizing process can be mathematically transformed into solving the eigenvalue
problem of 3× 3 matrices by using the Lagrange multiplier method:

[T22]
−1[Ω12]

†[T11]
−1[Ω12]ω2 = λω2

[T11]
−1[Ω12][T22]

−1[Ω12]
†ω1 = λω1

(7)

Tabb et al. proposed an alternative approach to obtaining the optimal coherence by
neglecting the baseline difference when the spatial and temporal baselines are small [34].
Specifically, they imposed the constraint of identical transmit and receive polarization
states, transforming the problem of optimal coherence into:

γTabb
opt = max

ω

〈
ω†Ω12ω

〉
〈ω†Tω〉

. (8)

Under this condition, the coherence optimization problem is equal to solving the
numerical radius of a matrix. Many researchers have proposed different solution methods
for this problem, such as the Phase Difference (PD) algorithm for phase separation and the
Maximum Coherence Difference (MCD) method for coherence separation [34,35].

Subsequently, the Multiple Scattering Mechanism (MSM) and Equal Scattering Mech-
anism (ESM) approaches are developed to extract projection vectors for multi-baseline
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data [63,64]. Tao et al. proposed a method to obtain the optimal coherence for the HH,
HV, and VV channels [65]. Some pixel-by-pixel scattering mechanism vector optimization
methods were proposed to enhance the quality of phase maps [66,67]. Based on these meth-
ods, DEM (Digital Elevation Model) inversion under a long temporal baseline has been
successfully implemented. As a fundamental process in PolInSAR, coherence optimization
has empowered scholars to extract and analyze dominant scattering mechanisms and phase
distributions, leading to the promise of more accurate classification and inversion tasks.

After coherence optimization, each eigenvalue (γopti , i = 1, 2, 3) is related to a pair of
eigenvectors. The eigenvectors corresponding to the maximum eigenvalue γopt1 represent
the ground-dominated scattering mechanism, while eigenvectors corresponding to the
minimum eigenvalue γopt3 represent the volume-dominated scattering mechanism. Then,
the forest height can be obtained by phase center differencing of two scattering mechanisms.

hv =
arg
(
γopt3

)
− arg

(
γopt1

)
kz

(9)

3.1.2. ESPRIT Algorithm

Yamada et al. conducted a thorough analysis of the data structure in PolInSAR and de-
veloped a signal estimation model based on ESPRIT [38]. Assuming repeat pass observation
in the forest scattering, there exist two or more dominant scattering centers. The main two
scattering centers are located on the ground and in the canopy. Thus, the observed signals
in pq-polarization (e.g., HH, HV, VH, and VV) in orbit-1 and 2 can be given by

E(pq)
1 =

D

∑
i=1

σis
(pq)
i ej 4π

λ ρ + n(pq)
1 (10)

E(pq)
2 =

D

∑
i=1

σis
(pq)
i ej 4s

λ (ρ+∆ρi) + n(pq)
2 (11)

where D and σis
(pq)
i denote the number of dominant scattering centers and the backscattered

component of the i-th scattering center in pq-polarization, respectively. ρ and ∆ρi denote
the slant-range distance and path-difference of the i-th local scatterer. n is additive noise.
The problem can be rewritten in matrix-vector notation and has the same form as those of
DOA estimation with arrays by the ESPRIT:

E1 =
[

E(HH)
1 , E(HV)

1 E(VV)
1

]T
= Sσ + n1 (12)

E2 =
[

E(HH)
2 , E(HV)

2 E(VV)
2

]T
= SDσ + n2 (13)

By applying the ESPRIT method, they successfully separated two signals in different
directions, which represent the ground scattering signal and the canopy scattering signal,
respectively. The phase difference of two signals can then be used to obtain tree height.

3.1.3. Scattering Decomposition Algorithm

Ballester-Berman et al. proposed the idea of using scattering decomposition to dis-
tinguish different scattering mechanisms [41]. Inspired by the Freeman three-component
decomposition, they performed a decomposition of the Ω12 matrix into surface, double-
bounce, and volume-scattering components. Considering a very thin cylinder approxima-
tion for the particles, which yields |SHH = 0| and |SVV = 1|, the cross-correlation matrix of
volume scattering Ωvol results in

Ωvol =

 3π
4 ejφv 0 π

4 ejφv

0 2 π
4 ejφv 0

π
4 ejφv 0 3π

4 ejφv

 = Fv

 1 0 1/3
0 2/3 0

1/3 0 1

 (14)
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Similarly to the volume case, the cross-correlation matrices of double-bounce scattering
Ωdb and surface scattering Ωsur f can be written as:

Ωdb = Fd

 1 0 α
0 0 0
α∗ 0 |α|2

 (15)

Ωsur f = Fs

 1 0 β
0 0 0
β∗ 0 |β|2

 (16)

By performing a three-component decomposition of the Ω12 matrix, one can obtain
coefficients Fv, Fd, and Fs corresponding to each component. These coefficients not only rep-
resent the intensity of the respective component but also contain phase information related
to the corresponding scattering mechanism. Therefore, tree height can also be inverted by
differencing the phase of volume scattering and HH or VV channel.

hv =
arg(Fv)− arg(γHH)

kz
(17)

3.2. Data-Based FHI Algorithms for Multi-Baseline Data
3.2.1. Polarimetric Array Signal Algorithm

The use of multi-baseline PolInSAR techniques enables the effective separation of scat-
terers with different scattering mechanisms in the vertical direction. This approach facilitates
a deeper understanding of the physical mechanisms between internal scatterers within a
forest and SAR signals. Researchers can gain insights into the complex interactions between
the forest structure and SAR signals, leading to a more comprehensive understanding of
forest scattering characteristics [46]. Assuming there are M antennas forming an M-channel
fully polarimetric SAR complex image, the data vector y is defined as:

y = [kT
1 , kT

1 , ...kT
M]T (18)

where ki =
1√
2

[
Shh

i + Svv
i , Shh

i − Svv
i , 2Shv

i

]T
. Considering that the targets within each reso-

lution cell are composed of D scatterers at different heights, the M-channel fully polarimetric
SAR complex image can be discretely represented as:

y =
D

∑
i=1

aixi + n (19)

where ai = χi ⊗ a(zi) is the polarimetric orientation vector. χi is a normalized complex
vector associated with polarimetric scattering characteristics of the i-th scatterer and a(zi)
is a complex vector corresponding to the height of the i-th scatterer zi:

a(zi) =


exp{−jkz(1)zi}
exp{−jkz(2)zi}

...
exp{−jkz(M)zi}

, i = 1, 2, . . . , D (20)

Here, y is a 3M-dimensional received signal vector containing complex amplitude
and phase information received by 3M antennas. ai is a 3M-dimensional scatterer response
vector representing the response of the i-th scatterer on the antennas. xi is a D-dimensional
scatterer coefficient vector representing the complex amplitude and phase information of
the i-th scatterer. n is a 3M-dimensional noise vector representing the noise component in
the received signal. The covariance matrix can be written as:
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Ry = ARxA† + Rn (21)

where A = [a1, a2, ..., aD]. After establishing the aforementioned signal model, the polari-
metric beamforming algorithm can be utilized for spectral estimation, enabling the retrieval
of the vertical distribution of scattered power. This algorithm employs multi-channel po-
larimetric SAR data to perform beamforming, which focuses and enhances the scattering
signals in specific directions.

Pb f (z) = λmax

(
B†(z)RyB(z)

)
(22)

with
(

B†(z)RyB(z)
)

χmax = λmaxχmax (23)

where B(z) = I3 ⊗ a(z). By applying the polarimetric beamforming algorithm, the power
spectrum density distribution of scatterers at different heights can be obtained, reflecting
the variations in scattering intensity along the vertical direction. From this power spectrum
density distribution, the canopy height can be extracted by identifying the height corre-
sponding to the strongest scattering signal. This approach facilitates the determination of
forest canopy height. In addition, inversion can also be performed using algorithms such
as polarimetric Capon and polarimetric MUSIC.

3.2.2. SKP Decomposition Algorithm

In a forest scene, the measured backscattered signals in various orbits and polarizations
are the combined effects of the interaction between the signals within the resolution cell
and the different scattering mechanisms. Assuming that the returned signals from each
scattering mechanism satisfy the following three conditions: (1) statistical independence
between different scattering mechanisms, (2) independence of the interferometric complex
coherence from polarization modes for each scattering mechanism, and (3) polarization
characteristics of each scattering mechanism being independent of the orbit, the polarimetric
interferometric complex coherence components can be expressed as follows:

Ry = E
[
yy†

]
=

L

∑
l

Cl ⊗ Rl (24)

There are multiple scattering mechanisms present, which can be categorized into two
types: surface scattering mechanisms originating from the ground and canopy scattering
mechanisms originating from the forest canopy. The surface scattering mechanisms, with
fixed phase centers at the ground, primarily include surface scattering from the ground,
second-order scattering between the ground and tree trunks, and second-order scattering
between the ground and forest canopy. The canopy scattering mechanism, with fixed phase
centers at the canopy, mainly arises from volume scattering within the canopy. Therefore,
the total number of contributing scattering mechanisms to the SAR signal, denoted as L, is
considered as 2. The polarimetric interferometric covariance matrix can be expressed as the
sum of the contributions from both surface and canopy scattering mechanisms [48]:

Ry = Cg ⊗ Rg + Cv ⊗ Rv (25)

According to the theory of singular value decomposition, the polarimetric interfero-
metric covariance matrix can be expressed as:

Ry = λ1U1 ⊗ conj(V1) + λ2U2 ⊗ conj(V2) = C̃1 ⊗ R̃1 + C̃2 ⊗ R̃2 (26)

Through singular value decomposition, the polarimetric scattering matrix and interfer-
ometric covariance matrix are obtained. However, these matrices do not correspond directly
to the true surface and volume scattering signals. Nevertheless, the true surface and volume
scattering signals can be obtained through simple calculations applied to these matrices.
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Therefore, one can obtain the interferometric phases of surface and volume scattering signals
and further obtain forest height.

4. Review of Model-Based FHI Algorithms

The core idea of model-based FHI is to establish a forest scattering model with tree
height as a parameter and then combine observation data to obtain the inversion values
through certain parameter estimation methods. The forest scattering model refers to a
mathematical representation that describes the interactions between electromagnetic waves
and various scattering components within a forested area. It characterizes how the radar
signals are scattered and propagated through the forest canopy, ground, and other vegeta-
tion elements. These models help relate the observable radar measurements to the physical
properties of the forest, enabling the retrieval of valuable information about the forest
structure and biomass.

The earliest forest scattering model was the random volume (RV) model proposed by
Treuhaft et al., which modeled forest leaves as a large number of randomly oriented scatterers
and derived the process of electromagnetic wave penetration and reflection in them [68]. Sub-
sequently, based on the RV model, Treuhaft et al. added consideration of ground scattering
and the interaction between the ground and volume scatterers, and they extended the model
to full polarization, obtaining the classic double-layer scattering model, the random volume
over ground (RVoG) model [69]. Based on this, scholars have optimized and expanded the
model for different application scenarios, such as the OVoG model for oriented scattering,
the S-RVoG model for sloping terrain, the 3L-RVoG model for tall tree species, the RVoG-vtd
model for long-term observation, and the RMoG model for motions of scatterers [70–74].
Cloude et al. proposed the Fourier–Legendre method to estimate forest vertical structure [75].
Many scholars have also conducted research and optimization in forest vertical structure
analysis and electromagnetic wave penetration energy functions [76,77]. Figure 5 presents the
differences between several typical forest scattering models from the perspective of scatterer
density distribution ρ(z) and scatterer motion variance distribution σ2(z).

Different models have different parameter inversion methods. For the RVoG model,
its unknown parameters are the ground phase, ground-to-volume ratio, tree height, and
extinction coefficient. In 2001, Papathanassiou et al. used a six-dimensional nonlinear
iterative method to solve this problem, which has a high complexity [78]. Subsequently, the
maximum likelihood methods which also need iterations are proposed [79–81]. In 2003,
Cloude et al. proposed a classic three-stage inversion method by analyzing the coherence
distribution patterns under different polarization states [82]. This method can efficiently
obtain the ground phase and volume coherence by fitting coherence points to a straight line,
thereby greatly reducing the complexity of inversion [83]. Simard et al. have used a four-stage
inversion method to deal with the additional unknown parameter problem brought by the
expanded model [84].

In the multi-baseline observation mode, the main methods for tree height parameter
inversion are baseline selection and baseline fusion. The baseline selection method selects the
most suitable baseline for inversion by analyzing factors such as noise conditions, decorrela-
tion, and height accuracy under different baselines. In 2010, Cloude et al. proposed the use
of the coherence height accuracy method to select baselines for inversion, which can reduce
the impact of noise and improve the accuracy of tree height inversion [7]. In 2011, Lee et al.
proposed using the coherence region to select baselines [85]. There are also methods that use
coherence parameters, coherence optimization, and support vector machines for baseline
selection [86–89]. The baseline fusion method is to extend the forest scattering model to
high-dimensional multi-baseline situations and estimate the tree height by comprehensively
utilizing data from all baselines, such as the Euclidean fusion and amplitude-phase fusion
methods [90–92].
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Figure 5. The difference between forest scattering models.

4.1. Model-Based FHI Algorithms for Single-Baseline Data
4.1.1. Models
RVoG Model

In 1996, Treuhaft et al. proposed the Forest Random Volume (RV) model and derived
expressions for the radar reflection and transmission in the volume scatterers, establishing
the relationship between the observed coherence and forest height [68]. Under the assump-
tion of a large number of randomly distributed scatterers, the model derives the radar
receive signal for single frequency and single scatterer backscattering. This signal is then
integrated in both the spatial and frequency domains, resulting in an expression for the
model function.

γv(hv, κe) =

∫ hv
0 exp(2κez/ cos θ) exp(jkzz)dz∫ hv

0 exp(2κez/ cos θ)dz
=

p
p1
· ep1hv − 1

ephv − 1
(27)

where {
p = 2κe/ cos θ

p1 = p + ikz
(28)

In this equation, the parameters determined by the observation system are the inci-
dent angle θ and the vertical wavenumber kz. The unknown parameters are the extinction
coefficient κe, ground phase φ0, and tree height hv.

In 2000, Treuhaft et al. proposed the widely used two-layer model known as the
RVoG model. Building upon the RV model, the RVoG model incorporates the modeling of
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ground scattering, including volume–ground scattering, ground–volume scattering, and
direct ground scattering [69]. In the case of single polarization, the model function of the
RVoG model can be expressed as follows:

γRVoG = exp(jφ0)

∫ hv
0 exp(2κez/ cos θ) exp(jkzz)dz + 4∆D

i∫ hv
0 exp(2κez/ cos θ)dz + 4∆D

i

(29)

where ∆D
i represents the component of ground scattering in the interferometric complex

coherence, incorporating the effects of ground roughness and dielectric constant.
Different polarizations will yield different responses. Taking into account the impact

of polarization states on the model, Cloude et al. provided the following form by deriving
the scattering components [82]:

γRVoG(ω) =
ω†(eiφ0 IV

2 + eiφ0 IG
2
)
ω

ω†
(

IV
1 + IG

1
)
ω

(30)

where the coherence matrices of volume scattering and ground scattering are abstracted
as symbols IV and IG, and the polarization states are described using the vector ω. Thus,
the coherence model γ(ω) can be obtained for arbitrary polarization states. Due to the
relatively small differences in the coherence matrices of ground scattering, when IG

1 ≈ IG
2 ,

the coherence points under different polarization states exhibit an approximately linear
distribution pattern with respect to the pure volume scattering points. This can be described
by the following equation.

γRVoG(ω)= ejφ0
µ(ω) + γv(hv, κe)

µ(ω) + 1
. (31)

Many researchers have conducted experiments and validations on the RVoG model, uti-
lizing P- L- and C-band PolInSAR data from both tropical forests and boreal forests [93–96].
Their research demonstrates that the RVoG model is suitable for short-baseline PolInSAR
data. The validity of the RVoG model fits better in the case of tropical forests compared to
boreal forests and performs better at the P band than the L band. Garestier et al. conducted
an experiment at the X-band and showed that the height inversion of a pine forest was
possible using PolInSAR X-band data and that the performance was more dependent on
the forest density than at lower frequencies [97]. Khati et al. also found that zero-temporal
baseline data at X-band can achieve satisfactory results [98].

3L-RVoG Model

In the two-layer RVoG model, it is assumed that the canopy extends from the crown to
the ground. However, natural vegetation has significant species and age-related variations
in vertical structure. For example, we see tall trees with a high thin canopy in pine trees. A
simple way to model this structure is to add an extra phase parameter to the two-layer RVoG
model, essentially making it a three-layer structure as shown in Figure 5. The essential
modification is to move the canopy away from the ground phase point, and this introduces
a new phase parameter φc as:

γ3L−RVoG(ω)= ejφ0
µ(ω) + ejφc γv(hv, κe)

µ(ω) + 1
. (32)

The 3L model extends the RVoG model to three layers: canopy layer, trunk layer, and
ground layer. It essentially expands the assumption of scattering object distribution to
adapt to various complex forest types and provides new insights for the development of
subsequent models.
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VS-RVoG Model

Many scholars improved the RVoG model by studying the vertical structure of forests.
In this paper, these models are collectively referred to as vertical structure random volume
over ground (VS-RVoG) models. Cloude et al. proposed a method for reconstructing the
vertical structure function using PolInSAR data [75]. They employed mathematical and
physical techniques to express the interferometric complex coherence as an integral of the
vertical structure function in the height direction. The vertical structure function was then
expanded in a Fourier–Legendre series form.

γVS
v (hv) =

∫ hv
0 f (z)ejkzzdz∫ hv

0 f (z)dz
= ei(kv)

∫ 1
−1(1 + ∑n anPn(z))eikvzdz∫ 1
−1(1 + ∑n anPn(z))dz

(33)

where kv = kzhv
2 . By inputting tree height and utilizing the interferometric complex coher-

ence values, the Legendre coefficients were determined, enabling the reconstruction of the
vertical structure function.

Subsequently, some researchers focus on modifying the expression of f (z) to update
the scattering model, such as [99]. Han et al. use an isotropic plate, isotropic dihedral, and
dipole particles to model vegetation scatterers [100]. By establishing different scattering
models for different forest types, the accuracy of the model can be effectively improved.

S-RVoG Model

When there is a certain slope on the ground, the extinction path changes, in which case,
the usage of the RVoG model inevitably introduces errors. Lu et al. extended the RVoG
model for the influence of terrain slope [71]. A scattering model considering the slope of the
terrain, named S-RVoG, was proposed. Due to the existence of the slope angle, the S-RVoG
model has the following changes compared to the RVoG model:

∆L′(z′) = 2(h′v + z′0 − z′)/ cos θ′

h′v = hv/ cos α
θ′ = θ0 − α,
k′z = kz sin θ/ sin θ′.

(34)

Therefore, the model is transformed into:

γS−RVoG(ω)= ejφ0
µ(ω) + γ′v(h′v, κe)

µ(ω) + 1
. (35)

γ′v(h
′
v, κe) =

∫ h′v
0 exp(2κez/ cos θ′) exp(jk′zz)dz∫ h′v

0 exp(2κez/ cos θ′)dz
=

p′

p′1
· ep′1h′v − 1

ep′h′v − 1
(36)

where {
p′ = 2κe/ cos θ′

p′1 = p′ + ik′z
(37)

The model has been further developed, and experimental results have demonstrated
that the model can compensate for the influence of slope on height inversion when a
Digital Elevation Model (DEM) is known [101,102]. This compensation helps to improve
the accuracy of parameter inversion.

RVoG-vtd Model

The temporal decorrelation is a major source of decorrelation especially under the
repeat-pass case [103]. Many factors cause temporal decorrelation, including wind effect,
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change of water content, plant growth, human disturbance, natural disasters, and so on [104].
When the RVoG model is adapted in a repeat-pass case, dealing with temporal decorrelation
becomes an essential step. Regarding this issue, Papathanassiou and Cloude proposed the
RVoG with volume temporal decorrelation (RVoG-vtd) model with the idea of compensating
for the effect of temporal decorrelation by adding real-valued factors [105]:

γvtd(ω)= ejφ0
γtgµ(ω) + γtvγG

v (hv, κe)

µ(ω) + 1
. (38)

where γtg and γtv are the temporal decorrelations of ground and volume, respectively.
Their values range from zero to one and are polarization independent. Assuming that the
scattering properties of the ground do not change in the time between the two observations,
that is, γtg = 1, the ground-to-volume ratio µ(ω) does not change, either. In this case, the
RVoG + VTD model becomes

γvtd(ω)= ejφ0
µ(ω) + γtvγv(hv, κe)

µ(ω) + 1
. (39)

Many researchers have conducted an analysis of temporal decorrelation and proposed
various inversion algorithms to address this issue [106,107]. Experimental results indicate
that in the case of repeat-pass interferometry, the model can effectively compensate for the
influence of temporal decorrelation and provide more reliable inversion results. However,
the inversion process of the model is relatively complex and may involve issues of ambiguity.

RMoG Model

Building upon the RVoG-vtd model, the temporal decorrelation factor γt is further
modeled. Assuming the motion of scatterers follows a Gaussian process with zero mean and
the variance of motion varies linearly with height, the expression for γtg which represents
the ground temporal decorrelation can be given as follows [72,73,108]:

γRMoG
tg = exp[−1

2
(

4π

λ
)2σ2

g ] (40)

where σ2
g means the motion deviation of scatterers at the ground. There is mutual coupling

between temporal decorrelation and volume decorrelation in the RMoG model. The model
can be expressed as follows:

γRMoG
v (hv, κe) = γRMoG

tg
p[e(p1+p2)hv − 1]

(p1 + p2)(ephv − 1)
(41)

where 
p = 2σ/ cos θ

p1 = p + ikz

p2 = −∆σ2

2hr
( 4π

λ )2

(42)

The explicit expression of the RMoG coherence is

γRMoG(ω)= ejφ0
γRMoG

tg µ(ω) + γRMoG
v (hv, κe)

µ(ω) + 1
. (43)

The random motion over ground (RMoG) model further compensates for temporal
decorrelation by modeling the motion of scatterers. It takes into account the variance changes
in the motion of scatterers at different heights, resulting in a more refined modeling ap-
proach. This allows for more accurate inversion results in specific environments. Moreover,
the increase in the number of parameters is not significant. Experimental validations have
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shown that the model can also produce satisfactory results under repeat-pass interferometry
conditions [109].

4.1.2. Algorithms
Optimal Algorithm

Since the proposal of forest scattering models, numerous researchers have studied the
problem of parameter inversion. Papathanassiou et al. were among the first to propose a
method based on six-dimensional nonlinear iterative optimization for solving the parameter
estimation problem [78]. They established a least-squares error function under the L2 norm.

ζ(x) = ‖A(x)− γ̃‖2
2 (44)

with γ̃ = [γ̃1, γ̃2, γ̃3]
T and x = [κe, hv, φ0, µ1, µ2, µ3]

T so that

x̂ = arg
(

min
x

ζ(x)
)

(45)

The optimization process involves minimizing the error functions of the three channels
to solve for the six-dimensional parameters. The Powell’s conjugate direction set iteration
method was employed during the optimization.

Consequently, Tabb et al. utilized the Wishart distribution of the scattering coherence
matrix and proposed a maximum likelihood inversion algorithm [79]. These optimization-
based methods are not only applicable to the RVoG model but also to models with numerous
unknown parameters like RMoG. By increasing the number of observations, these methods
can yield accurate inversion results. However, these optimization-based methods require
multiple iterations and have higher complexity, which limits their widespread application.

Three-Stage Algorithm

The three-stage inversion method proposed by Cloude et al. is based on the RVoG
model and greatly reduces the complexity of the inversion procedure [82]. Therefore, it
has been commonly used and has achieved great effect in many cases. The characteristic
whereby the coherence under different polarization states is distributed on a straight line
in the complex unit circle (CUC) has been used effectively to obtain the ground phase φ0
and volume coherence γv. The three-stage inversion process can be conducted as follows:

• Least squares line fit. The first stage is to find the best-fit line of interferometric coherence
values in different polarization modes, such as HH, VV, HH-VV, HH+VV, and HV.

• Ground phase removal. In the second stage, ground phase must be determined and
removed from the coherence. The phases of two intersection points of the straight line
and the CUC are the candidates of ground phase.

• Height and extinction estimation. The pre-calculate look-up table (LUT) of volume-
only coherence is employed to estimate vegetation height and mean extinction in the
last stage. The parameters are determined by minimizing the distance between the
calculated volume coherences and the observed volume coherence.

Based on the three-stage inversion method, if the extinction coefficient is set to 0, the
tree height can be directly inverted using the amplitude of the volume coherence. The ex-
pression is as follows:

hv =
2 SINC−1(|γv|)

kz
(46)

The method that solely utilizes the amplitude often leads to overestimation. Therefore,
a weighted inversion approach that combines both amplitude and phase inversion results
was proposed.

hv =
arg(γv)− φ0

kz
+ ε

2 SINC−1(|γv|)
kz

(47)
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The three-stage inversion method is the most commonly used inversion method for
the RVoG model, and its effectiveness has been confirmed by many researchers [110–113].
However, for models like RVoG-vtd and RMoG, the increase in unknown parameters can
lead to ambiguity in this inversion method. Therefore, additional steps are required to
estimate the remaining unknown parameters.

Four-Stage Algorithm

Due to the addition of another parameter, the solution is now ambiguous for single-
baseline data. Managhebi et al. proposed a four-stage inversion algorithm to solve the
ambiguous problem and keep the calculation complexity at a low level simultaneously [106].
The volume scattering phase center moves to the top of the canopy according to the higher
mean extinction value, which indicates that the relative position of the observed volumetric
coherence on the coherence line can be employed to limit the range of the mean extinction
coefficient. In this framework, an index was suggested to interpret the relative location of
the observed volume coherence, γv, on the coherence line as:

D.I =
A.L
V.L

(48)

wherein D.I is the distance ratio index of the ambiguous line length (A.L) and the visible
line length (V.L), as shown in Figure 6.

0

0

j
e

 

1je 
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Re( )

Im( )

v
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.A L

Figure 6. The complex unit circle in the four-stage inversion algorithm.

With the expectation that the mean extinction value and D.I. value are inversely related,
Managhebi et al. defined the mean extinction coefficient as the following linear function :

κe = aD.I + b (49)

where κe is the mean extinction coefficient, D.I is the distance ratio index, a and b are the
model parameters computed by least squares method using real L-band PolInSAR data pair.

The four-stage inversion process consists of the following four steps:

• Least squares line fit.
• Ground phase removal.
• Extinction estimation.
• Volume height and temporal decorrelation estimation.

The mentioned method first determines the extinction coefficient based on the distribu-
tion characteristics of coherence points. Then, the tree height and temporal decorrelation
factor are determined through the minimum distance of volume coherence. Some researchers
also proposed adaptively estimating the temporal decorrelation factor and then performing
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the inversion of tree height and extinction coefficient. The four-stage inversion method
incorporates additional steps to pre-estimate, empirically set, or train model parameters.
This approach allows for the expansion of the model while maintaining low inversion
complexity. The interplay between the model and inversion algorithms has contributed to
the significant development of tree height inversion techniques.

4.2. Model-Based FHI Algorithms for Multi-Baseline Data
4.2.1. Models

Under the multi-baseline condition, considering M different scattering vectors
k1, k2, . . . kM, there can be M(M− 1)/2 combinations corresponding to different baselines.
Each baseline combination allows the establishment of the aforementioned scattering model.
Therefore, by selecting a suitable set of N baseline combinations, the model can naturally
be extended to a high-dimensional tomographic model. Due to the fact that multi-baseline
data are mostly obtained from repeat-pass interferometry, we take the RVoG-vtd as an ex-
ample to introduce its high-dimensional extension model. For simplicity, we use numerical
superscripts to represent the baseline indices. The model can be expressed as follows:

γ1
vtd(ω) = ejφ1

0
µ1(ω)+γ1

tvγ1
v(hv ,κe)

µ1(ω)+1

γ2
vtd(ω) = ejφ2

0
µ2(ω)+γ2

tvγ2
v(hv ,κe)

µ2(ω)+1
...

γN
vtd(ω) = ejφN

0
µN(ω)+γN

tvγN
v (hv ,κe)

µN(ω)+1

. (50)

Due to the fact that vegetation height is not affected by the observation baseline, and
the variation of the extinction coefficient can be neglected when the observation angles are
relatively consistent, it is assumed in the multi-baseline model that the vegetation height
parameter hv and the extinction coefficient κe are the same for each baseline combination. It
is worth noting that although the parameter φ0 represents the surface phase, its value is not
only related to the surface height but also influenced by the baseline length and position,
resulting in different values for different baseline combinations. Similarly, the temporal
decorrelation parameter describes the effect of scatterer motion on radar coherence over
multiple observations, which is independent of baseline length but possibly affected by
different observation time windows.

4.2.2. Algorithms
Baseline Selection Algorithm

The spatial baseline length is a crucial parameter determining the vertical wavenum-
ber and plays an important role in linking forest parameters and the observed complex
coherence in polarimetric SAR data. Ideally, inversion based on different spatial baseline
lengths should yield similar results. However, in the presence of external disturbances, the
forest parameters and the contributions of external disturbances to the observed complex
coherence can vary with different spatial baseline lengths, leading to changes in the accu-
racy and robustness of the model inversion. Therefore, single-baseline PolInSAR data often
cannot simultaneously meet the requirements of accuracy and dynamic range. Utilizing
multi-baseline PolInSAR data for vegetation height estimation can effectively address this
issue and achieve large-scale high-precision estimation of vegetation height.

For each set of baselines, inversion methods based on forest scattering models can be
applied for tree height estimation. Different forest scenes correspond to different tree species
and tree heights, and their optimal interferometric baseline lengths also vary. Therefore,
the approach using multi-baseline PolInSAR can provide more robust and accurate results.
According to the analysis by Lee et al., the standard deviation of the interferometric phase
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divided by the vertical wavenumber can be defined as the uncertainty of interferometric
height [85]:

Huncertainty =
1
kz

ϕInt with ϕInt =

√
1−γ2

2LIntγ2 . (51)

In the equation, LInt represents the number of looks used in estimating the interfero-
metric coherence γ. When the amplitude of the interferometric coherence is reduced due to
factors such as noise and temporal decorrelation, the standard deviation of the coherence
coefficient ϕInt increases, leading to a decrease in the accuracy of height estimation. This
means that a smaller interferometric height uncertainty can ensure more accurate and
reliable inversion results. Therefore, it is possible to calculate the interferometric height
uncertainty for each baseline separately and select the baseline group that minimizes this
parameter to perform the height inversion task.

H1
uncertainty

(
k1

z, γ1, LInt
)

H2
uncertainty

(
k2

z, γ2, LInt
)

·
·
·

HN
uncertainty

(
kN

z , γN , LInt
)

. (52)

Many researchers have proposed various parameters to assist in baseline selection
based on this method. Babu et al. proposed the Coherence Parameter Product, Zhang et al.
proposed the Coherence Optimization Criterion, and subsequently, some researchers have
applied machine learning methods such as support vector machines (SVMs) to the baseline
selection approach to improve the accuracy of parameter inversion [87,114,115].

The baseline selection method effectively reduces the impact of non-volumetric scat-
terer decorrelation, such as noise decorrelation and temporal decorrelation, by considering
both baseline length and coherence uncertainty. This method improves the accuracy and
range of parameter inversion. However, by focusing only on the selected optimal baselines,
the method ignores the influence of other baselines, which can lead to discontinuities in the
inversion results.

Baseline Fusion Algorithm

After extracting the volume-only coherence points similarly to the single-baseline case,
the unknown parameters in the scattering model γl

v(hv, κe) for each baseline are only the
vegetation height (hv) and extinction coefficient (κe). By utilizing observations from multiple
baselines, these parameters can be jointly estimated. Therefore, by measuring the similarity
between the observed coherence (γl

ob) and the model coherence (γl
v(hv, κe)), the optimal

values of the parameters can be determined. The final estimation of vegetation height and
extinction coefficient is obtained by minimizing the distance between the observed and
model coherence points [92].

ĥv, κ̂e = arg min
hv ,κe

D(γob, γv). (53)

The distance mentioned above can be defined using the conventional Euclidean
distance as follows:

DEuc(γob, γv) =

√√√√ M

∑
l=1
||γl

ob − γl
v(hv, κe)||2 (54)

The summation is taken over all N coherence points obtained from multiple baselines.
The goal is to find the values of hv and κe that minimize this distance, resulting in the best-fit
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estimation for the vegetation height and extinction coefficient. Some researchers have also
defined the distance using manifold distances such as the amplitude-phase distance. This
distance measure takes into account both the amplitude and phase information of the
observed coherence points and the model coherence points. It can be defined as follows:

DAp(γob, γv) =

√√√√ M

∑
l=1

ξl(ρ
l
ob − ρl

v)
2
+ (1− ξl)(φ

l
ob − φl

v)
2 (55)

where ρ represents the amplitude of the coherence point, and φ represents the phase. ξl
denotes the weight of the amplitude information for the lth baseline, which is typically
determined based on the variance of the amplitude and phase distribution for that baseline.

The baseline fusion inversion method allows for the utilization of multiple baseline in-
formation, enabling the joint estimation of parameters and reducing parameter uncertainty.
This approach enhances the stability of the inversion process and improves the overall
robustness of the results.

5. Case Study and Algorithm Comparison

In this section, the P-band data from the AfriSAR campaign were selected for ex-
perimentation to showcase the results of the selected algorithms. The performance of the
algorithms, along with the underlying reasons, was analyzed. Based on this analysis, the
advantages, limitations, and suitable scenarios for different algorithms were determined.

5.1. Datasets

The research area of this study is located in the Lope National Park, on the west coast
of Africa, with a central coordinate of 11 degrees 30 min east longitude and 0 degrees
30 min south latitude. It covers an area of 4910 square kilometers and has been a wildlife
conservation area for over 70 years, encompassing a diverse range of habitats. Therefore, it
is an ideal test site for evaluating forest biomass and height.

The experimental dataset was provided by the German Aerospace Center and included
PolInSAR data and corresponding LiDAR data as ground truth. The PolInSAR data were
obtained from the AfriSAR project in 2016, with a P-band frequency of 435 MHz, a range
resolution of 3.84 m and an azimuth resolution of 1.75 m. The LiDAR data were acquired
using the Land, Vegetation, and Ice Sensor (LVIS), and in this study, LVIS RH100 data were
used to evaluate the results of the polarimetric SAR inversion.

Although LiDAR measurements provide high accuracy in height estimation, they
have a lower horizontal resolution of approximately 25 m. Therefore, PolInSAR images
often exhibit more speckle features and significant deviations when using a single pixel for
height estimation. In the subsequent quantitative analysis, this study used a block size of
50 × 50 pixels, considering the LiDAR resolution, which is a more reasonable approach.

To thoroughly compare and validate the algorithms, three areas with significant varia-
tions in vegetation height were selected as the study areas. The vegetation height in this
area mainly ranges from 0 to 50 m. The Pauli image and LiDAR image of these areas are
shown in Figure 7, where the x and y axes correspond to the range and azimuth directions,
respectively. In the Pauli image, blue represents the surface scattering component, red repre-
sents the double-bounce scattering component, and green represents the volume scattering
component. The LiDAR images show the height in meters.
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Figure 7. (a–c) The Pauli images and (d–f) LiDAR images of three areas.

5.2. Results and Discussion

The experimental results demonstrated the effectiveness of the selected algorithms
in Table 2 from P-band data. The reason for choosing these algorithms is their represen-
tativeness, low implementation complexity, and few parameters. These algorithms have
been widely used and studied in the field of FHI, making them essential candidates for
evaluation. The implementation does not require excessive empirical parameter settings,
and their procedures are generally well-established, leading to relatively stable and robust
results. However, it is essential to note that in inversion processes, the performance of these
algorithms may not be the most superior among similar approaches. The success of each
algorithm relies on various factors, including the specific characteristics of the forest being
studied, the quality of the SAR data used, and the specific objectives of the research.

Table 2. Selected algorithms for comparison.

Single-Baseline Multi-Baseline

Data-based algorithm ESPRIT algorithm Polarimetric array signal algorithm
Model-based algorithm RVoG-vtd four-stage inversion algorithm Baseline fusion algorithm

Prior to applying each inversion algorithm, the data undergo the same preprocessing
steps. The experimental results are shown in Figure 8.

Overall, the model-based algorithms perform better and achieve higher accuracy.
This is because most of the experimental scenarios are consistent with the model, and
after compensating for the time-decorrelation effects, the model-based algorithms can
comprehensively utilize both coherence amplitude and phase, resulting in more continuous
and reasonable results. On the other hand, these two data-based algorithms mainly rely
on the phase of the signals to determine the height, and the phase center (especially in the
case of single-baseline) may not be located at the ground or the top of canopy. Therefore,
there is greater uncertainty, especially in complex forest environments. Furthermore, the
results in Figure 8 also indicate that both data-based and model-based algorithms can
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effectively reduce the influence of noise and improve the accuracy of inversion when using
multi-baseline data.

height

(a1) (a2) (a3) (a4) (a5)

(b1) (b2) (b3) (b4) (b5)

(c1) (c2) (c3) (c4) (c5)

Figure 8. The experimental results of different algorithms in the three areas. (a–c) represent three
experimental scenarios, and (1–5) correspond to the inversion results of ESPRIT, polarimetric array
signal (PAS), RVoG-vtd four-stage inversion, baseline fusion method, and LiDAR measurements,
respectively.

Table 3. Quantitative comparisons of the employed methods.

Region1 Region2 Region3
Shrubs Forest All Region Shrubs Forest All Region Shrubs Forest All Region

ESPRIT 1.71 11.07 8.14 1.45 9.30 9.07 3.83 11.79 10.86
PAS 2.08 10.40 7.71 0.94 7.91 7.72 1.59 8.12 7.43

RVoG-vtd 7.93 8.23 8.09 8.66 7.38 7.45 8.52 5.17 5.87
Baseline fusion 3.54 6.17 5.11 7.18 4.82 4.97 3.74 5.62 5.42

Table 3 provides a quantitative comparison of different algorithms based on RMSE.
Data-based algorithms perform better in areas with low shrubs or grasslands (height < 10 m).
This is because in such areas, the dominant scattering comes from the branches of low
shrubs, which is inconsistent with the dominance of leaf scattering in forest scattering
models. Consequently, model-based algorithms tend to introduce biases. In contrast, data-
based algorithms do not rely on models but directly extract scattering center differences
from the data. Therefore, they can achieve robust inversion results in unknown complex
environments, even urban areas. Polarimetric array signal processing methods can further
leverage the advantages of multi-baseline observations to obtain more accurate phase
information of multiple scattering components, leading to more accurate inversion results
in most cases.

In dense forest areas (height ≥ 10 m), it can be observed that the four-stage inversion
method of the RVoG-vtd model performs better than data-based algorithms. This is be-
cause in dense forest areas, there are a large number of canopy scattering elements that
are approximately uniformly distributed, which aligns well with the assumptions of the
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models. However, using single baseline data alone is more susceptible to noise and other
disturbances, making it challenging to compensate for decorrelation effects effectively. As a
result, there is greater uncertainty in the estimation of surface phase and volume scattering
coherence points, leading to relatively poor inversion stability and accuracy. On the other
hand, baseline fusion methods can jointly estimate parameters by integrating information
from multiple baselines. The inversion results obtained through baseline fusion are usually
more continuous and exhibit stronger correlation with the LiDAR height image.

Both model-based and data-based algorithms have their advantages and limitations.
Model-based algorithms can provide accurate results when the scene and forest properties are
well understood and the model assumptions are valid. However, they are highly dependent
on the accuracy of the input parameters and can be sensitive to modeling errors. Data-
based algorithms, on the other hand, do not rely on explicit models of the scene. They
can handle complex scattering scenarios and are generally more robust to uncertainties
in the input parameters. However, in order to improve the inversion accuracy, they may
require a larger amount of data for training and can be limited by the availability of suitable
reference data for calibration and validation. Table 4 presents the advantages and limitations
of different algorithms.

Table 4. Advantages and limitations of different algorithms.

Algorithms Advantages Limitations

Data-based
algorithms

Single-baseline Low data requirements Low accuracy and significant sensitivity to noise

Multi-baseline Strong adaptability in
unknown scenarios

High requirements on
baseline geometry and data quality

Model-based
algorithms

Single-baseline High accuracy Strong input dependency

Multi-baseline High accuracy and
great continuity

High requirements on baseline
geometry and strong input dependency

6. Conclusions and Future Trends

In this paper, the basic principles and processes of PolInSAR tree height inversion were
introduced. Then, both data-based and model-based inversion algorithms were reviewed
in detail, considering single-baseline and multi-baseline cases. A case study was provided
to illustrate and compare different types of algorithms, highlighting their advantages and
limitations. Finally, based on the analysis of recent literature, the future development trends
in tree height inversion were identified as follows:

Potential impact of the low-frequency band (P-band): The re-reflections between the
forest and the surface depend on the wavelength range and lead to a decrease in the cor-
relation coefficient between radar images. The P-band shows advantages in determining
forest biomass, but due to its high penetration ability and peculiarities of scattering mecha-
nisms, errors may arise in locating ground scattering centers and canopy scattering centers.
Therefore, the possibilities of this band for forest height retrieval require further study.

Procedures for different forest types: The Earth’s surface is covered by various types of
forests, such as boreal forests, temperate coniferous and deciduous forests, and equatorial
rainforests. Different forest types may necessitate distinct algorithms and procedures for
tree height retrieval. We encourage further research by the scientific community to delve
deeper into different forest types to obtain more accurate and reliable results.

Multi-source data fusion: The precision of interferometric height estimation is influ-
enced by various data acquisition parameters, such as the frequency band, incidence angle,
baseline length, and interferometric pattern (single-pass or repeat-pass), which suggests
multi-baseline, multi-frequency measurements, and LiDAR-aided methods can promise
more accurate estimations. The increasing availability of forest remote sensing missions such
as GEDI and BIOMASS will provide new opportunities for multi-source tree height inversion.

Tree height inversion in large-scale scenes: Due to the difficulties in acquiring PolIn-
SAR data and LiDAR data, previous studies have mostly been limited to small study areas.
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Efforts could be made to extend tree height inversion techniques to large-scale areas to
further validate the effectiveness of the models and algorithms, considering the challenges
associated with computational complexity and data variation.

Integration of models and data: Some researchers are exploring inversion algorithms
that integrate both models and data. For example, supervised parameter training can be
used to reduce the hyperparameters in the scattering model, machine learning methods
can be employed for baseline selection, and the scattering model can be used to constrain
the results of SKP decomposition. Future research could focus more on integrating both
model-based and data-based approaches to take advantage of their respective strengths
and improve the accuracy and robustness of tree height inversion.

Tree height inversion is a focal and challenging issue in quantitative forest remote
sensing. It is our hope that this paper can help readers gain a better understanding of
tree height inversion and contribute to its further development, promoting environmental
protection and ecological research.
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The following abbreviations are used in this manuscript:

PolInSAR Polarimetric synthetic aperture radar interferometry
FHI Forest height inversion
LiDAR Light Detection and Ranging
ESPRIT Estimating signal parameter via rotational invariance technique
DOA Direction of Arrival
RMSE Root mean square error
SKP Sum of Kronecker product
RVoG Random volume over ground
RMoG Random motion over ground
CUC Complex unit circle
PAS Polarimetric array signal
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