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Abstract: The detection of infrared vehicle targets by UAVs poses significant challenges in the
presence of complex ground backgrounds, high target density, and a large proportion of small
targets, which result in high false alarm rates. To alleviate these deficiencies, a novel YOLOv7-
based, multi-scale target detection method for infrared vehicle targets is proposed, which is termed
YOLO-ViT. Firstly, within the YOLOV7-based framework, the lightweight MobileViT network is
incorporated as the feature extraction backbone network to fully extract the local and global features
of the object and reduce the complexity of the model. Secondly, an innovative C3-PANet neural
network structure is delicately designed, which adopts the CARAFE upsampling method to utilize
the semantic information in the feature map and improve the model’s recognition accuracy of the
target region. In conjunction with the C3 structure, the receptive field will be increased to enhance
the network’s accuracy in recognizing small targets and model generalization ability. Finally, the
K-means++ clustering method is utilized to optimize the anchor box size, leading to the design
of anchor boxes better suited for detecting small infrared targets from UAVs, thereby improving
detection efficiency. The present article showcases experimental findings attained through the use
of the HIT-UAV public dataset. The results demonstrate that the enhanced YOLO-ViT approach,
in comparison to the original method, achieves a reduction in the number of parameters by 49.9%
and floating-point operations by 67.9%. Furthermore, the mean average precision (mAP) exhibits
an improvement of 0.9% over the existing algorithm, reaching a value of 94.5%, which validates the
effectiveness of the method for UAV infrared vehicle target detection.

Keywords: unmanned aerial vehicle target detection; vehicle detection; infrared small target; deep
learning; Yolov7

1. Introduction

Over the past few years, small unmanned aerial vehicles (UAVs) have become increas-
ingly prevalent in both civilian and military contexts as an innovative image acquisition
platform. This is due to their low cost, high degree of flight flexibility, small size, excellent
concealment, and high level of efficiency [1]. One particular area of focus has been the
detection of vehicle targets using UAVs, which has garnered significant attention and has
been applied in a variety of domains, including traffic vehicle monitoring [2–4], accident
search and rescue [5,6], road planning [7], and military intelligence collection [8]. Currently,
with the continuous development of deep learning, vehicle detection in UAV-based sce-
narios as a hot topic in deep learning research has also achieved many good results [9–11].
However, the interference of weather and lighting with visible images, especially in night-
time conditions, poses a significant challenge to vehicle target detection tasks when using
only visible light detection [12]. Infrared imaging technology has strong anti-interference
ability, long detection distance, and all-weather detection advantages and has been applied
to infrared vehicle detection technology based on drone images [13,14]. Therefore, it is
of great importance and application to study how to accurately handle various complex
scenarios of UAVs vehicle detection technology. Detecting vehicle targets through infrared
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technology using UAVs poses implementation challenges. One of the primary obstacles
is the variable height of the UAVs and their large camera field of view, which can result
in significant variations in the scale of the infrared targets obtained, even for the same
target. Moreover, the targets are typically presented as dense small targets, and the lack
of color, texture, and other features in infrared images renders small targets vulnerable
to interference, thereby increasing the false alarm rate during detection. Consequently,
improving the accuracy of infrared vehicle target detection using UAVs has emerged as a
prominent research area.

In Microsoft Common Objects in Context (MS COCO) [15], small targets are defined
as targets with a resolution of less than 32 × 32 pixels, medium targets are larger than
32 × 32 pixels and smaller than 96 × 96 pixels, and targets larger than 96 × 96 pixels
are large targets. In complex backgrounds with significant noise, the detection of small
targets in infrared images is severely affected. Compared to traditional algorithms, deep-
learning-based object detection algorithms avoid the need for extensive manual design and
demonstrate superior performance in detection tasks. At present, deep learning algorithms
are classified into two categories. The first category includes two-stage algorithms that
are based on candidate regions, such as R-CNN [16] and its derived algorithms [17,18].
Although these algorithms can achieve higher accuracy, they are associated with speed and
efficiency issues. Liu Shunmin et al. [19] confirmed the effectiveness of faster R-CNN in
remote-sensing target detection on the NWPU VHR remote-sensing dataset. The second
category comprises one-stage algorithms such as SSD [20] and YOLO [21–23], which have
made specialized improvements to address speed and efficiency challenges. Chen et al. [24]
conducted a study on the detection of military and civilian vehicles on the edge devices of
drones using quantized SSD and YOLOv3 structures. However, due to the prevalence of
small targets and unclear target features in UAVs’ aerial image datasets, it is challenging
to achieve optimal results when applying general algorithms to infrared vehicle target
detection in UAVs.

In response to the problem of low detection accuracy caused by small targets and
multiple scales in infrared vehicle target detection of UAVs, this paper proposes a YOLO-
ViT-based method for infrared vehicle target detection of UAVs. Through the K-Means++
algorithm, the anchor box size is adjusted, and the lightweight MobileViT network is
used to replace the original backbone network, reducing the number of model parameters
while fully extracting the local and global features of the target. The C3-PANet structure
is proposed, which combines the feature recombination upsampling method CARAFE
and the C3 structure to reduce the number of model parameters while increasing the
feature receptive field, fully utilizing feature information, and improving vehicle detection
performance. The main work of this paper is as follows:

1. In this paper, we use the lightweight network MobileViT as the backbone network,
which combines the spatial inductive bias of CNNs and the global modeling capability
of transformers, reducing the model parameters and complexity.

2. The multi-scale C3-PANet structure is proposed, which uses the feature recombination
and upsampling CARAFE method to predict the upsampling weights based on the
feature map, and then recombines the features based on the predicted upsampling
weights to obtain a larger receptive field and enhance the perception ability of small
targets. The neck structure is improved by using the C3 structure and by stacking C3
modules to extract more effective features while reducing the number of parameters
and improving the detection accuracy of small targets.

3. A K-means++ clustering algorithm is introduced to cluster the dataset samples and
redesign the anchor box size to improve detection efficiency.

2. Related Work

UAVs exhibit multi-scale, multi-angle, and multi-vehicle characteristics, which pose
greater challenges for vehicle detection than ordinary road vehicles. To overcome these
challenges, researchers have proposed numerous enhancement methods that rely on UAV
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scenes. These methods aim to improve the performance of network target detection and
reduce false alarm rates for small targets. To this end, various techniques have been
employed, including the redesign of anchor boxes and feature extractors, the utilization of
data augmentation techniques, and a combination of different deep learning methods. As a
consequence, more appropriate vehicle detection tasks for UAV scenes have been proposed,
resulting in a significant improvement in the detection accuracy of vehicle targets.

The prior box is a predefined size box that predicts the boundary box of the target.
Through anchor boxes of different sizes, it can adapt to targets of different scales. Many
studies have shown that the size of anchor boxes has a crucial impact on vehicle detec-
tion [17–19,25]. Chen et al. [24] proposed a method based on SSD, which adjusts the size
of prior boxes to improve the detection accuracy of small targets. Mulan Qiu et al. [26]
proposed a drone road detection method ASFF-YOLOv5 based on multi-scale feature
fusion. By analyzing with the K-means++ clustering algorithm, the anchor box size is
reconstructed, and the ASFF detection head and SPPF spatial pyramid pooling structure
are used to improve feature scale invariance and enhance the target detection effect. To
address the impact of multi-scale on detection, Liu et al. [27] proposed a method called
CAFFNet for detecting traffic signs, which introduces a channel attention and feature
fusion multi-objective detection method, utilizing multi-scale contextual information to
reduce feature differences and improve detection accuracy. The model is trained using
class pairs of different feature scales and through a multi-scale fusion algorithm. In the
loss function, Gaussian distribution features are applied to enhance detection accuracy.
Liu [28] presented a dense-connection-based multi-scale fusion method called DMFFPN,
which fully utilizes the features of each convolutional layer through dense connections,
adopts a cascade architecture to enhance local generalization ability, and achieves good
results on the VisDrone dataset [29]. Sun et al. [30] developed the I-YOLO model, which
incorporates EfficientNet to improve the original network structure and enhance feature
extraction. Additionally, the U-Net residual network is utilized to reduce infrared noise,
and the K-means algorithm is employed to anchor box sizes, thereby improving the model’s
ability to detect road vehicles.

In order to improve the feature information extraction of small targets in models,
Tang et al. [31] introduced the hyper-RPN technique. This method combines feature
maps from various layers to effectively detect small vehicle targets by merging shallow
and deep feature information. Another approach to address this issue was proposed by
Zhu [32], who developed TPH-YOLOv5. This method incorporates a small target detection
head and integrates a transformer to enhance the structure of the remaining detection
heads, resulting in improved accuracy of target detection. In their research, Zuo et al. [33]
presented a pyramid structure called AFFPN that utilizes attention feature fusion. They
developed attention fusion modules that enhance the position and semantic information
of shallow and deep layers, resulting in improved target feature extraction and excellent
performance on public datasets. Yao et al. [34] introduced the FCOS model, which leverages
improved spatial feature fusion and traditional filtering methods to suppress background
noise and improve the detection of small targets. Additionally, Zhang et al. [35] proposed
a novel infrared target detection method known as CHFNet. This method employs a
local fusion HLF module as a cross-layer feature-fusion module, which effectively reduces
the loss of feature information and enhances the detection performance of weak infrared
targets. Li et al. [36] proposed the YOLO-FIRI model to improve the structure of the feature
extraction network and to use the multi-scale structure to improve the detection accuracy
of infrared small target detection. Dai et al. [37] proposed an infrared small target detection
method and designed an asymmetric contextual modulation module (ACMM) to better
extract target features. Zhang et al. [38] proposed ISNet and designed the Taylor finite
difference (TFD)-inspired edge block and two-orientation attention aggregation (TOAA)
block, which efficiently extracts weak infrared targets from blurred backgrounds with edge
features from the blurred background.
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According to the introduction of the transformer [39] in NLP, researchers have been ex-
ploring ways to apply it to computer vision. According to studies [40–42], the transformer
model has shown promising results in computer vision, opening up new possibilities
for the field. One such application is object detection, which Carion et al. [43] simplified
through their proposal of the DETR model. In addition, Dosovitskiy et al. [40] achieved
good results in image classification tasks with the ViT model, particularly when trained
with large amounts of data. In the domain of target detection, the transformer model has
been widely employed. In this regard, Liu et al. [44] incorporated an attention mechanism
into the network, which helped to enhance the receptive field and capture relevant infor-
mation regarding small infrared targets. On the other hand, Chen et al. [45] developed
the IRSFormer model that utilizes the transformer structure to extract features, encodes
the infrared images using HOSPT, and fuses feature information through a top-down
multi-scale fusion module TFAM structure. As a result, the detection efficiency of small
infrared targets has been significantly improved. Touvron et al. [46] proposed the DeiT
model, which compresses the ViT model by knowledge distillation, using soft distillation
and hard-label distillation methods by distilling the soft labels output from the teacher
model, and the actual labels predicted by the teacher network, respectively. After the
distillation of knowledge from the model, DeiT has fewer parameters and faster inference
and achieves good results. Rao et al. [47] proposed the DynamicViT model, which achieves
speedup by sparsifying the inputs of each layer in the transformer model and removing a
portion of redundant parameters, achieving good results.

3. Proposed Methodology, Tools, and Techniques

This section is divided into three parts, which introduce the general structure and
principles of the YOLO-ViT model, the high-altitude infrared dataset HIT-UAV [48,49], and
the evaluation metrics used to validate the methodology of this paper.

3.1. YOLO-ViT

This article proposes a YOLO-ViT-based UAV infrared vehicle target detection method,
as shown in Figure 1. The backbone network of the YOLO-ViT model uses the MobileViT
network structure, combined with the feature extraction capabilities of CNNs and trans-
formers, to generate multi-scale feature maps with richer details. The neck network adopts
the C3-PANet multi-scale feature-fusion structure, mainly composed of SPPCSPC module,
CARAFE upsampling module, C3 structure, and MP downsampling, which aggregates
upper- and lower-layer information through a bottom-up path, fuses feature maps that
retain more details and improves the accuracy of vehicle detection. Finally, the obtained
multi-scale feature maps are used to obtain prediction results through the detection head.

SPPCSPC represents a pyramidal pooling structure. The lack of feature information
in IR images, such as texture and color, when compared to visible images, causes MP. To
address this issue and to ensure that the features of IR images are fully utilized while
minimizing missed and false detections in detection results, the upsampling CARAFE
module with feature reorganization may be employed. This approach allows for better
utilization of information surrounding the features, increases the number of parameters
and calculations, and introduces only a limited number of the perceptual field of the feature
map, thus improving the feature extraction of small IR targets. Additionally, the model’s
power is enhanced by improving the bottleneck structure and introducing a C3 structure
to improve the model’s characterization. This approach lightens the neck structure while
enhancing the extraction and fusion of features.

3.1.1. Improved Backbone Network Based on MobileViT

In recent years, transformer models have gained popularity in various natural lan-
guage processing tasks owing to their ability to capture global information interactions.
However, these models tend to generate an excessive number of parameters during train-
ing, rendering them unsuitable for deployment on mobile hardware. As a solution to this
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problem, Apple proposed the MobileViT [50] network in 2021. This lightweight, general-
purpose, mobile-friendly transformer model combines the spatialized paranoid induction
capabilities of CNNs with the global processing ability of transformers. By doing so, it can
effectively learn both local and global features of an image while utilizing fewer parameters
and simpler training methods. This, in turn, improves the accuracy of target detection. In
light of these advantages, we have chosen to use the MobileViT network as the backbone
network for YOLO-ViT.
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The MobileViT architecture is primarily composed of two distinct blocks, namely
MV2Block and MobileViTBlock. The former is derived from the inverted residual block
(IRB) structure that was originally introduced in MobileNetv2 [51]. This block structure, as
illustrated in Figure 2, involves increasing the dimensionality of the feature map through
1 × 1 convolution, followed by processing using 3 × 3 depth separable convolution. The
MVBlock module serves to minimize the loss of feature information and enhance the
extraction of target features by modifying the dimensionality of the features in a manner
that first increases and then decreases it.
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The MobileViTBlock unit comprises three key components: a local information en-
coding module, a global information encoding module, and a feature-fusion module, as
illustrated in Figure 3. Initially, the feature map is reconstructed locally via 3 × 3 convolu-
tion, and subsequently, the number of channels is adjusted through the convolution of the
feature map. Following this, the global information encoding module is engaged, wherein
the global information is modeled for the features. In the third step, the number of channels
is adjusted back to the original input size by using a convolution layer and then stitched
with the feature map of the original input along the channel direction. Eventually, the
output fused feature map is obtained through the 3 × 3 convolution of the features. This
technique is capable of reducing computational effort while completely extracting the local
and global feature information.
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This study utilizes the MobileViT network as the foundation of the YOLO-ViT model,
wherein the global pooling and classification layers are omitted. The quantity of network
channels is documented in Table 1. The terminology used in Table 1 is defined as follows:
layer refers to the number of layers in the network; output size pertains to the resultant
image size; stride denotes the displacement of the convolutional kernel; number denotes the
number of modules; output channels refers to the number of input channels; ↓2 represents
downsampling. and L represents the number of transformer repetitions present in the
MobileViT architecture.

Table 1. The parameters of the MobileViT structure.

Layer Output Size Stride Number Output Channels

Image 640 × 640 1

Conv-3 × 3, ↓2
320 × 320 2

1 16
MV2 1 32

MV2, ↓2
160 × 160 4

1 48
MV2 2 48

MV2, ↓2
80 × 80 8

1 64
MobileViTBlock (L = 2) 1 64

MV2, ↓2
40 × 40 16

1 80
MobileViTBlock (L = 4) 1 80

MV2, ↓2
20 × 20 32

1 96
MobileViTBlock (L = 3) 1 96

3.1.2. Content-Aware Multi-Scale-Structure-Based C3-PANet

The detection of infrared vehicle targets by UAVs in complex backgrounds is a chal-
lenging task due to the multi-scale characteristics and high prevalence of small targets. The
good maneuverability of UAVs and the large field of view of aerial images offer potential
solutions to this problem. However, the lightweight MobileViT backbone network, while
reducing the model’s weight, can compromise the accuracy of detection. To overcome
these difficulties, we propose a multi-scale fusion network structure, C3-PANet, which op-



Remote Sens. 2023, 15, 3778 7 of 16

timizes the information propagation path by shortening it through a bottom-up approach,
merges multi-scale feature information, improves network performance using the CARAFE
upsampling operator and C3 structure, increases the perceptual field of the feature map,
and reduces the loss of feature information for small targets. By improving the perceptual
field of the feature map and reducing the loss of feature information for small targets, our
proposed network structure enhances the accuracy of detecting IR vehicle targets using
UAV-based systems.

The process of upsampling in CARAFE involves the use of an upsampling kernel,
which is applied to each position of the feature map, and then the dot product of pixels
in the corresponding neighborhood is taken from the input feature map. This technique
is also referred to as feature recombination. Traditional methods for upsampling, such
as nearest neighbor interpolation and bilinear interpolation, simply insert new elements
between pixels of the original image to increase the number of pixels without utilizing the
semantic information of the feature map. As a result, the obtained feature map has a small
perceptual field, and the feature information of the UAV infrared vehicle target is easily lost.
Wang et al. [52] proposed a novel upsampling method named CARAFE, which predicts the
size of the upsampling kernel from the input feature content while introducing only a small
number of additional parameters and computational effort. By using the predicted results
to guide the upsampling process, a larger field of perception can be achieved during the
upsampling operation, and the semantic information of the features can be fully utilized to
extract the target features.

The CARAFE upsampling operator is divided into two parts, the convolution kernel
prediction module and the feature recombination module, and the structure is shown
in Figure 4. In the convolution kernel prediction module, the size of the upsampled
convolution kernel is predicted by the convolution kernel prediction module for the target
location in the input feature map. The upsampling multiplicity is assumed to be σ, and
the input feature map χ is H ×W × C. Firstly, the channel C is compressed to Cm by
1 × 1 convolution to obtain a feature map χ′ of size H ×W × C, which reduces the
computational effort of subsequent operations. Secondly, the input feature map χ′ is
encoded into the encoder and the upsampling kernel wl′ is predicted by a convolutional
layer of kencoder × kencoder, and the number of output channels is σ2k2

up, which is expanded
to obtain an upsampling kernel of size σH× σW× k2

up. Finally, the softmax function is used
to normalize the predicted upsampling kernels so that the convolutional kernel weights
sum to 1.

In the feature reorganization module, the obtained upsampled kernel is used for
feature recombination to extract the target features. For each target position of the output
feature map, it is mapped back to the input feature map by taking a region of size kup × kup
centered on the target and making a dot product with the upsampling kernel obtained from
the prediction of the position of that point, resulting in a feature map of size σH × σW × C.
The calculation method is as follows:

χ′l′ =
r

∑
n=−r

r

∑
m=−r

wl′(n,m) · χ(i+n,j+m) (1)

where (i, j) denotes the location of the point, r = kup/2. Using a content-aware upsampling-
based approach, it is possible to obtain feature maps containing semantic information,
focusing more on features from local regions and improving the detection accuracy of
small targets.

The C3 module is a suggested framework in the YOLOv5 network that aims to
augment the depth of the network and the perceptual field of the feature map while also
enhancing the capacity to extract features. This module comprises three Conv modules
and one BottleNeck module, as illustrated in Figure 5. The BottleNeck module leverages
a residual connection to decrease the dimensionality of the feature map by means of the
convolution operation, thus attaining global spatial information. Ultimately, a residual
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structure is used to sum the input and output, which mitigates the issue of gradient
disappearance.
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3.1.3. K-Means++ Clustering Algorithm

The K-means clustering algorithm is a type of centroid-based clustering that groups
samples iteratively into classes. This process is carried out in such a way that the sum
of distances between each sample and the midpoint or mean of its respective class is
minimized. Distance, in this context, is used to measure the similarity or difference between
samples, with smaller distances indicating more similarity between samples and larger
distances indicating more difference. However, the algorithm’s convergence is heavily
reliant on the initialization of cluster centers, which is random. To address this issue, the
K-means++ clustering algorithm [53] has been developed. This algorithm improves the
initialization process by randomly selecting a point as the initial center and then selecting
the next point based on its furthest distance from the previous point until an initialized
centroid is completed. Following this, cluster analysis is performed.

The detection of targets produces various bounding boxes with different scaling ratios
and aspect ratios, each with a pixel as the center. These boxes, referred to as anchor boxes,
can affect the accuracy of the model when they are too large or too small. Small targets
are typical of UAV aerial images and often exhibit characteristics such as occlusion and
multi-scale. Oversized anchor boxes can result in the loss of targets. To improve the ability
to learn the position and size of infrared targets, the K-means++ algorithm is utilized to
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cluster a dataset of UAV infrared vehicle targets. This generates a dataset that is more
appropriate for multi-scale UAV infrared vehicle targets. The resulting dataset is expected
to be of greater utility for infrared target detection.

First, a sample point is randomly selected from the data set χ as the first initial cluster
center ci, then the shortest distance D(x) between each sample and the sample point is
calculated, then the probability P(x) of each sample point being the next cluster center is
calculated, and the probability is calculated as follows:

P(x) =
D(x)2

∑x∈χ D(x)2 (2)

The maximum probability is selected, and the corresponding sample points are used
as the next class of centers, iterating until k clustering centers are generated. In this paper,
the HIT-UAV dataset was selected for cluster analysis to obtain nine anchor frames {8, 16},
{9, 23}, {4, 22}, {16, 35}, {23, 27}, {31, 46}, {39, 28}, {51, 68}, and {85, 106}.

3.2. Datasets

This paper utilizes the YOLO-ViT method to assess its efficacy in detecting small
infrared targets of vehicles in UAV applications. The HIT-UAV dataset is chosen for
comparative experiments due to its public availability and comprehensive coverage. This
dataset represents a notable contribution to the field as it is the first high-altitude UAV
infrared dataset that includes images captured at different altitudes, viewing angles, and
object types in Figure 6. The dataset consists of 2898 thermal infrared images with a
resolution of 640 × 512 and contains 24,899 labels in five categories, namely Person, Car,
Bicycle, OtherVehicle, and DontCare. To simplify the dataset, the DontCare category was
removed, and the Car and OtherVehicle categories were merged into a single Vehicle
category. This resulted in three categories, namely Person, Vehicle, and Bicycle, with a total
of 2866 images.
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In this paper, the dataset was divided into three parts using a ratio of 7:2:1. This
resulted in a train set of 2008 images, a test set of 571 images, and a validation set of
287 images. According to the information provided in Table 2, the final dataset consists
of 17,118 labels for small targets that are below 32 × 32 pixels in size, 7249 labels for
medium targets below 96× 96 pixels, and 384 labels for large targets. It is worth noting that
the smallest target in the HIT-UAV dataset only occupies 0.01% of the image pixels. This
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dataset fulfills the criteria for detecting high-altitude small infrared targets using unmanned
aerial vehicles.

Table 2. Number of tags for small, medium, and large targets in HIT-UAV dataset.

Small
(0, 32 × 32)

Medium
(32 × 32, 96 × 96)

Large
(96 × 96, 640 × 512)

HIT-UAV 17,118 7249 268
Train set 12,045 5205 268
Test set 3331 1379 70

Validation set 1742 665 46

3.3. Assessment Indicators

This article utilizes a selection of evaluation metrics, namely precision (P), recall (R),
F1 (F1-score), AP (average precision), mAP (mean average precision), parameters, GFLOPs,
and FPS. The F1-score is calculated as a weighted average of confidence and recall, while
both AP and mAP serve as ultimate evaluation metrics that gauge the detection accuracy
of the model. The model size and algorithmic complexity are measured by the parameters
and GFLOPs, respectively. The evaluation parameter equations are provided below.

Precision =
TP

TP + FP
, (3)

Recall =
TP

TP + FN
, (4)

F1-score =
2 ∗ P ∗ R

P + R
=

2TP
2TP + FP + FN

, (5)

AP =
∫ 1

0
P(r)dr, (6)

mAP =
∑N

i=1 APi

N
. (7)

In the context of classification, the terms true positive (TP), false positive (FP), and
false negative (FN) are commonly used to refer to samples that are correctly identified,
incorrectly identified, and missed, respectively. N is a variable that represents the number
of categories being classified.

4. Experimental Results
4.1. Experimental Platform and Parameter Settings

In order to evaluate the effectiveness of the YOLO-ViT model, a comparison test and
an ablation experiment were designed. The hardware platform settings applied during
these experiments have been presented in Table 3.

Table 3. Experimental platform configuration.

Names Related Configurations

Graphics processing unit NVIDIA Quadro GV100
Central processing unit Inter Xeon Platinum 8151+++

GPU memory size 32 G
Operating system Win 10

Computing platform CUDA10.2
Deep learning framework Pytorch
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4.2. Comparison Algorithms

In order to evaluate the usability and efficacy of YOLO-ViT for detecting infrared
vehicles in UAV scenarios, a comparative study is conducted with various advanced
algorithms under identical conditions. All experimental models were trained without
pre-training weights, and training was recommenced. The input image size of the model
was adjusted to 640 × 640, with the batch size set at 16 and the number of iterations at
300 epochs. The training results indicate a 0.9% increase in mAP for YOLO-ViT in contrast
to the original YOLOv7s, along with a 0.5% increase in AP for detecting the vehicle target,
and a 52.6% decrease in parameters and 69.3% decrease in computational effort. With a
significantly lower model complexity, YOLO-ViT achieves higher accuracy in detecting
UAV infrared vehicle targets. These findings validate the effectiveness of the proposed
method for infrared vehicle detection in UAV-based scenarios. The outcomes of this study
are presented in Table 4.

Table 4. Performance comparison table between YOLOViT and YOLOv7.

Parameters GFLOPs Precision Recall(%) F1(%) APVehicle (%) mAP(%)

YOLOv7s 36.5 M 103.2 90.2 88.4 89.3 97.6 93.6
YOLO-ViT 17.3 M 33.1 90 91.3 90.6 98.1 94.5

To further validate the reliability of YOLO-ViT, we chose other models from the YOLO
series as the baseline and conducted experiments on the HIT-UAV UAV infrared target
dataset. This dataset acquires targets at heights of 60–130 m, which results in complex
and variable image backgrounds and highly variable target scales. Moreover, most of the
targets are small, leading to a significant challenge in detection. The results presented in
Table 5 demonstrate that YOLO-ViT has significant advantages in detecting infrared vehicle
targets for UAVs. Specifically, when the input resolution is 640 × 640, YOLO-ViT improves
AP by 0.5%, 1.0%, and 1.1% for pedestrians, vehicles, and bicycles, respectively, compared
to YOLOv5s with the same F1-score. However, the model complexity was 17.2% and 62.5%
lower than YOLOv5m and YOLOv5l, respectively. Although the F1-score is lower than
YOLOv5m and YOLOv5l by 0.3% and 0.6%, respectively, the model achieves better mAP.
Additionally, when compared to the current state-of-the-art algorithm YOLOv8s, YOLO-
ViT improves the F1-score by 0.3% and mAP by 1.0%. Notably, the detection accuracy AP
for vehicles is improved by 1.8%, demonstrating a significant improvement in detection
accuracy. The experimental outcomes described above demonstrate that the YOLO-ViT
model, as proposed in this research paper, can attain superior detection accuracy and
precision in identifying infrared vehicle targets, regardless of their overhead angles and
sizes, even in the presence of intricate ground backgrounds. Furthermore, this model
exhibits varying degrees of enhancement in detecting smaller targets, such as pedestrians
and bicycles, highlighting its practical significance.

Table 5. Performance comparison with advanced algorithms.

Model Size Parameters F1 (%) APPerson (%) APVehicle (%) APBicycle (%) mAP (%)

YOLOv5s 640 7.0 M 90.6 92.8 97.1 91.0 93.7
YOLO5m 640 20.9 M 90.8 92.2 96.6 90.9 93.2
YOLO5l 640 46.1 M 91.2 93.2 96.9 90.6 93.6
YOLO7s 640 36.5 M 89.3 92.1 97.6 91.2 93.6
YOLO8s 640 11.2 M 90.3 92.6 96.3 91.5 93.5

YOLO-ViT 640 17.3 M 90.6 93.3 98.1 92.1 94.5

The results of different algorithms shown in Figure 7 reveal the significant improve-
ment achieved by the YOLO-ViT approach for infrared target detection in UAVs. The
YOLO-ViT method has demonstrated its ability to increase detection accuracy and decrease
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the number of missed targets by learning feature information of infrared targets at various
scales. Despite its proficiency, false alarms may still occur in dense target scenarios.
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technique facilitates a clear understanding of the algorithmic results.

4.3. Ablation Studies and Analysis

In order to verify the effectiveness of the YOLO-ViT model proposed in this study, a
series of ablation experiments were conducted on the HIT-UAV dataset to assess the impact
of every individual module on YOLO-ViT. Specifically, the ablation experiment utilized an
input image size of 640 × 640, a batch size of 16, and each network underwent training for
300 epochs. The outcomes of the experiments are presented in Table 6.

Table 6 presents that YOLO-ViT detection accuracy is notably improved under the
same settings after optimizing the network structure as compared to the original YOLOv7.
The upgraded MobileViT-based backbone network led to a 34.3% reduction in model
complexity, a 1.5% decrease in mAP, and a 0.4% reduction in AP for vehicle detection
accuracy. However, the AP for pedestrian and bicycle accuracy values for small targets
were reduced by 1.8% and 1.3%, respectively. The improved MobileViT-based backbone
network effectively reduced model complexity. The addition of the content-aware CARFE
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upsampling operator resulted in a 0.2 M increase in parameters, a 0.1% increase in mAP,
and AP values of 91.6%, 97.9%, and 91.4%, respectively. The F1-score also increased by 0.1%.
Furthermore, the improved C3 module increased mAP by 0.6%, and there were 0.3%, 0.1%,
and 1.2% accuracy improvements for different scales of targets. The modules mentioned
above have the potential to enhance the detection accuracy of small targets by expanding
the field of perception and optimizing the network structure in YOLOv7. Additionally,
the K-means++ algorithm was utilized to pre-process the images and adjust the anchor
frame size for small target detection, resulting in a more optimal anchor frame size. The
performance of the modified algorithm was compared to the original algorithm, revealing
a significant improvement in the F1-score of 1.2%, as well as an increase in AP accuracy,
specifically by 1.3%, 0.5%, and 1.1%, respectively. Furthermore, there was an improvement
of 1.1% in mAP, which substantially enhanced the accuracy of target detection.

Table 6. Ablation experiments based on the HIT-UAV UAV infrared dataset.

Yolov7 MobileViT CARAFE C3 K-Means
++

Parameters
F1
(%)

AP50 mAP
(%) FPS

Person Vehicle Bicycle
√

36.2 M 89.3 92.1 97.6 91.2 93.6 54√ √
23.8 M 87.5 90.3 97.2 88.9 92.1 39√ √
36.4 M 89.4 91.6 97.9 91.4 93.7 51√ √
29.9 M 89.9 92.4 97.7 92.4 94.2 60√ √
36.5 M 91.5 93.4 98.1 92.6 94.7 54√ √ √
26.7 M 89.2 90.0 97.4 90.3 92.6 37√ √ √ √
17.3 M 89.6 90.6 97.6 90.5 92.9 40√ √ √ √ √
17.3 M 90.5 93.3 98.1 92.0 94.5 41

Figure 8 demonstrates the superiority of the YOLO-ViT algorithm over the original
algorithm in the domain of infrared vehicle target detection. The effectiveness of the
enhanced modules in improving the accuracy of infrared target detection is also noteworthy.
Therefore, the YOLO-ViT algorithm is a more appropriate solution for the task of infrared
target detection in UAV scenarios.
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5. Conclusions

In this paper, we proposed a novel method, YOLO-ViT, for the detection of small and
multi-scale infrared targets in the UAV scene. In the proposed method, a MobileViT-based
backbone network is incorporated (blended) with the YOLOv7 model as the fundamental
framework. The design of this network reduces the complexity of the model, enhances
feature information fusion, and makes it more compatible with mobile devices. Moreover,
the network’s generalization is improved by incorporating the lightweight CARAFE upsam-
pling and C3 modules, which increases the feature map’s perceptual field while reducing
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computational efforts and improving feature extraction and fusion of small infrared targets.
To account for the specific characteristics of small targets in UAV aerial images, the K-
Means++ clustering algorithm is used to preprocess the images and recalculate the anchor
frame size, rendering it more suitable for IR target detection in UAV scenes. According to
the results of the experiment, the proposed method exhibits a substantial reduction in both
parameters and computational effort, amounting to 52.6% and 69.3%, respectively, when
compared to the original YOLOv7. Furthermore, the mean average precision (mAP) has
demonstrated an improvement of 0.9%, including a 0.5% enhancement in the accuracy of
detecting vehicle targets. This reduction in the model complexity has rendered YOLO-ViT
more precise and efficient in detecting infrared vehicle targets for UAVs, thereby making it
a practical solution for UAV detection deployment.
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