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Abstract: Over one hundred spatiotemporal fusion algorithms have been proposed, but convolu-
tional neural networks trained with large amounts of data for spatiotemporal fusion have not shown
significant advantages. In addition, no attention has been paid to whether fused images can be used
for change detection. These two issues are addressed in this work. A new dataset consisting of nine
pairs of images is designed to benchmark the accuracy of neural networks using one-pair spatiotem-
poral fusion with neural-network-based models. Notably, the size of each image is significantly
larger compared to other datasets used to train neural networks. A comprehensive comparison of
the radiometric, spectral, and structural losses is made using fourteen fusion algorithms and five
datasets to illustrate the differences in the performance of spatiotemporal fusion algorithms with
regard to various sensors and image sizes. A change detection experiment is conducted to test if it
is feasible to detect changes in specific land covers using the fusion results. The experiment shows
that convolutional neural networks can be used for one-pair spatiotemporal fusion if the sizes of
individual images are adequately large. It also confirms that the spatiotemporally fused images can
be used for change detection in certain scenes.

Keywords: spatiotemporal fusion; Landsat; MODIS; neural networks; dataset

1. Introduction

High-spatial-resolution satellite sequence data can be used to observe changes on
Earth. However, it is difficult to obtain satellite data with both high temporal resolution
and high spatial resolution. For example, the Landsat-8 Operational Land Imager (OLI) [1]
sensor has a ground resolution of 30 m, but it takes at least 16 days for it to obtain a
repeatable image of the same location. In contrast, the Moderate-resolution Imaging
Spectroradiometer (MODIS) obtains an image every half a day but with a coarse 500 m
ground resolution. Some new satellites have high-resolution capabilities. For instance,
Sentinel-2 provides 10 m ground resolution with a five-day revisiting period; these values
are 16 m and 4 days, respectively, for Gaofen-1. However, adverse weather conditions
make these satellite images far less available, as would be expected. Thus, spatiotemporal
fusion algorithms have been designed to combine images from different sources in order to
obtain data with both high temporal resolution and high spatial resolution.

In the past twenty years, more than one hundred spatiotemporal fusion algorithms
have been proposed [2]. In recent years, many spatiotemporal fusion algorithms based on
convolutional neural networks (CNNs) have emerged to challenge the classic algorithms
represented by the spatial and temporal adaptive reflectance fusion model (STARFM) [3]
and flexible spatiotemporal data fusion (FSDAF) [4]. Various models, including deep
convolutional spatiotemporal fusion networks (DCSTFN) [5]; enhanced deep convolutional
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spatiotemporal fusion networks (EDCSTFN) [6]; spatiotemporal adaptive reflectance fusion
models using generative adversarial networks (GASTFN) [7]; and spatial, sensor, and
temporal spatiotemporal fusion (SSTSTF) have been proposed. These models contributed
to building a common framework for spationtemporal fusion algorithms that employs the
use of two streams and the stepwise modeling of spatial, sensor, and temporal differences.
In recent works [8–15], multiscale learning, spatial channel attention mechanisms, and edge
reservation have been introduced into CNNs for the extraction and integration of features.

Most CNN-based algorithms use large amounts of time-series training data, while
traditional algorithms perform better using one-pair training. Time series data allow
an algorithm to learn the trends seen in changes in features over the course of seasons.
Traditional algorithms lack the ability to learn big data and therefore are not good at
anticipating temporal trends. A few algorithms, such as enhanced STARFM [16], attempt
to make interpolations in the time dimension with two pairs of sequences. However, it is
time-consuming to collect long time series data. Data preparation takes up to one or two
years after a satellite is launched, resulting in the inability to synthesize data during this
period. Considering the limited lifetime of satellites and the emergence of new satellites,
there is still a need for research on one-pair spatiotemporal fusion.

Whether end-to-end CNNs can be used for one-pair spatiotemporal fusion is not
known yet. This question may be partially addressed by paying attention to the sizes
of the individual images used for this purpose. In the datasets most commonly used to
train CNNs [17], each image is 1720× 2040 and 3200× 2720, respectively. Although a
standard Landsat scene has 6000× 6000 pixels before it is geometrically corrected, the
scene’s reduced size may not be adequate for the process of training a CNN. It is a known
fact that CNNs require multiple pairs of images in their training process. If a single pair of
images is sufficiently large, can a CNN be used for one-pair spatiotemporal fusion? This is
the question we want to explore.

As far as land cover changes are concerned, it is not clear whether change detection
can be performed on fused images of land cover successfully. Some works have shown
that the images predicted by spatiotemporal fusion can be applied for some interpretation
and inversion tasks. For example, the authors of [18] found that by mapping planting
patterns and paddies to the spatiotemporally fused images obtained from a phenology-
based fusion method, the accuracy of rice recognition can exceed 90%. In [19], the land
surface temperature was quantitatively predicted with spatiotemporally fused images,
with the results showing that the average deviation was within about 2.5 K; furthermore,
the R2 scores were greater than 0.96. Although room exists for further improvements, these
values are approaching those necessary for practical use. As an important downstream task,
change detection has not been investigated in terms of its relationship to spatiotemporal
fusion; therefore, this will be investigated in this work.

The exploration of the accuracy of and potential for change detection with the use of
spatiotemporal fusion constitutes the research goal of this article. In addition to collecting
the three existing commonly used spatiotemporal fusion datasets [3,17], this paper produces
a new dataset, which we partly use for mosaicking purposes [20]. Each image in the new
dataset has 5792 columns and 5488 rows, which is much larger than the images in the
commonly used datasets; therefore, this new dataset may benefit the performance achieved
by CNN-based one-pair spatiotemporal fusion methods. A time series dataset [21] for
super-resolution tests is also harnessed for fusion. Fourteen representative algorithms
are tested on these five datasets. Compared with the existing studies, our work shows
the performance boundary and limitations of the spatiotemporal fusion algorithms in a
comprehensive way, allowing some new conclusions to be drawn.

The contributions of this paper can be summarized as follows:

1. A new dataset is designed for one-pair spatiotemporal fusion with CNN-based models.
2. A comprehensive comparison involving 14 fusion algorithms and 5 datasets is given

to illustrate the differences in the performance of spatiotemporal fusion algorithms
with regard to various sensors and image sizes.
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3. The feasibility of the use of spatiotemporal fusion for change detection is investigated.

The rest of this paper is organized as follows. Section 2 provides a survey of the existing
fusion algorithms. Section 3 presents the datasets, methods, and metrics used to compare
the performance of these algorithms, and our new dataset is proposed. Section 4 gives the
experimental results via a comparison of our results with fourteen state-of-the-art methods
on five datasets. In Section 5, the reconstructed results are tested for change detection. The
performance threshold, stability, and potential of each algorithm are discussed in Section 6.
Section 7 gives the conclusions.

2. Background and Related Work

Spatiotemporal fusion consists of two types of remote sensing images, as shown in
Figure 1. One type has high temporal and low spatial resolutions (hereinafter referred to
as low-resolution or coarse-resolution images). The other type has high spatial and low
temporal resolution (hereinafter referred to as high-resolution or fine-resolution images).
The spatiotemporal fusion is to predict the missing high-resolution image on the prediction
date t2 by utilizing the low-resolution image at t2 and at least one pair of high- and low-
resolution images for reference at ti (where i 6= 2).

Figure 1. Data for Spatiotemporal Fusion.

Existing spatiotemporal fusion methods can be categorized as weight-based, unmixing-
based, learning-based, and hybrid methods. Weight-function-based methods apply a linear
model to multi-source observations of pure coarse-resolution pixels, and further utilize
a weighting strategy to enhance predictions for mixed pixels. These methods exploit
the spatial dependence of spectrally similar pixels to reduce the uncertainty and block
artifacts in fusion results. The fusion is performed locally, which leads to fast and linear
processing speeds. Besides the classic STARFM algorithm [3], enhanced STARFM [16],
linear injection [22], and Fit-FC [23] are also typical weight-based methods. However,
strategies that relies solely only on pixel similarity fail to maintain structure and detail, so
that complex regions require higher coarse image resolution.

Following the framework proposed by Zhukov et al. [24], unmixing-based
methods [25–28] employ spatial unmixing techniques for fusion, which estimate the high-
resolution endmembers by unmixing the coarse-resolution pixels using the class scores
explained by the reference image. Due to the wide spectrum and large resolution ratio,
the unmixing-based methods may be prone to errors in abundance estimation, spectral
variations, and nonlinear mixing.

Learning-based methods take advantage of recent advances in machine learning [29]
to model the relationship between inputs and outputs, which include dictionary learning,
extreme learning machine, random forest, Bayesian framework, and convolutional neu-
ral networks. The dictionary-pair-based algorithms [30–33] use sparse representation to
establish connections between high- and low-resolution images. Deep neural networks
have replaced them for learning large volumes of data more efficiently. Using complex
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network structures, neural network learning has the potential to map spatial, temporal,
and sensor relationships between images from different sources, as have been proposed for
spatiotemporal fusion [6,20,34–37]. These methods have significant modeling advantages,
but suffer from the quality and size of the training data. Low-quality data will train worse
nonlinear relationships than dictionary learning. The fusion effect of inadequate training
may also be inferior to that of traditional weight or unmixed based models. Therefore,
neural network methods are not easily used for the spatiotemporal fusion of one pair.

Hybrid methods combine the advantages of diverse categories to pursue better per-
formance. The flexible spatiotemporal data fusion (FSDAF) algorithm is an important
representative that harnesses weight and unmixing for spatiotemporal fusion. Its revisions,
such as SFSDAF [38], FSDAF 2.0 [39], and EFSDAF [40], can also be categorized into this
type. Other hybrid studies [28,41] integrated weight and unmixing strategies, too. Our
previous work [42] is also a hybrid type, which integrates the results of FSDAF and Fit-FC
to enhance performance.

A typical spatiotemporal fusion uses three images, but a few studies have attempted
to reduce the number of input images to two. Fung et al. [43] utilized the optimization
concept in the Hopfield neural network for spatiotemporal image fusion and proposed a
new algorithm named the Hopfield neural network Spatio-temporal data fusion model
(HNN-SPOT). The algorithm uses a fine-resolution image taken on an arbitrary date and a
coarse image taken on the forecast date to derive a synthesized fine-resolution image of the
forecast date. Subsequently, Wu et al. [44] also achieved data fusion only using the other
two images as input. They proposed an efficient fusion strategy that degenerates the high-
resolution images of the reference date to obtain simulated low-resolution images, which
can be combined with any spatiotemporal fusion model to accomplish the fusion with
simplified input. On the three spatiotemporal fusion algorithms of STARFM, STNLFFM,
and FSDAF, experiments were carried out on the datasets of MODIS, Landsat, and Sentinel-
2 land surface reflectance product, and the results suggest that the fusion performance
with only two input images is comparable to or even superior than that of three input
images. Tan et al. [36] proposed the GAN-based spatiotemporal fusion model (GAN-STFM)
with a conditional generative adversarial network to reduce the number of model inputs
free of the time restriction on reference image selection. Liu et al. [45] presented a GAN
survey for remote sensing fusion.

Some algorithms focus on improving the fusion speed of spatiotemporal fusion.
Li et al. [46] proposed an extremely fast spatiotemporal fusion method with local nor-
malization to extract spatial information from the prior high-spatial-resolution images and
embeds that information into the low-spatial-resolution images in order to predict the miss-
ing high-spatial-resolution images. Gao et al. [47] proposed an enhanced FSDAF (cuFSDAF)
with GPUs of different computing capabilities to process datasets of arbitrary size.

It is well-known that the performance of spatiotemporal fusion algorithms is unstable.
Therefore, several studies have analyzed the impact of factors such as time interval, regis-
tration error, number of bands, and clouds. The experiment conducted by Shao et al. [48]
originating from an enhanced super-resolution convolutional neural network demonstrated
that the number of input auxiliary images and the temporal interval (i.e., the difference
between image acquisition dates) between the auxiliary images and the target image both
influence the performance of the fusion network. Tang and Wang [49] analyzed the in-
fluence of geometric registration errors on spatiotemporal fusion. Subsequently, Wang
et al. [50] studied the effect of registration errors on patch-based spatiotemporal fusion
methods. Experimental results show that the patch-based fusion model SPSTFM is more
robust and accurate than pixel-based fusion models (such as STARFM and Fit-FC), and
for each method, the effect of the registration error is greater for heterogeneous regions
than for homogeneous regions. Tan et al. [6] proposed an enhanced deep convolutional spa-
tiotemporal fusion network (EDCSTFN) and found that multiband deep learning models
slightly outperform single-band deep learning models. Luo et al. [51] proposed a generic
and fully automated method (STAIR) for spatiotemporal fusion to impute the missing-
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value pixels due to cloud cover or sensor mechanical issues in satellite images using an
adaptive-average correction process to generate cloud- or gap-free data.

Spatiotemporal fusion has the potential to construct results whose resolution exceeds
that of high-resolution reference images. Chen and Xu [52] proposed a unified spatial–
temporal–spectral blending model to improve the utilization of accessible satellite data.
First, an improved adaptive intensity–hue–saturation approach was used to enhance the
spatial resolution of Landsat Enhanced Thematic Mapper Plus (ETM+) data; then, STARFM
was used to fuse the MODIS and enhanced Landsat ETM+ data to generate the final syn-
thetic data. Wei et al. [53] fused 8-m multispectral images with 16-m wide-field-view images
to reduce the revisiting time of the 8-m multispectral images to 4 days from the original 49
days. The fused results are further improved to 2 m using the panchromatic band.

The data used for spatiotemporal fusion are largely either the Landsat series or MODIS
data, but spatiotemporal fusion for other satellites is also being explored, too. For example,
Rao et al. [54] conducted spatiotemporal fusion of the LISS sensor (23.5 m with a 24-day
revisiting period) and the AWiFS sensor (56 m and a revisiting period of 5 days) on the
Indian satellite Resourcesat-2 to obtain synthetic data with a ground resolution of 23.5 m
and a revisiting period of 5 days. Similar studies were performed between Sentinel-3
and Sentinel-2 [23], SPOT5 and MODIS [55], Landsat Thematic Mapper (TM) and Envisat
Medium Resolution Imaging Spectrometer (MERIS) [56], Planet and Worldview [57], and
the multispectral sensors within Gaofen-1 [53].

Although the performance of spatiotemporal fusion algorithms is far from perfect,
they have been put to practice. For example, Ding et al. [18] used the fusion results to
extract rice fields. Xin et al. [58] used the fusion results to improve the near-real-time
monitoring of forest disturbances. Zhang et al. [59] utilized the NDVI data obtained via
spatiotemporal fusion to establish a grassland biomass estimation model for monitoring
seasonal vegetable changes. In terms of water applications, Guo et al. [60] proposed a
spatiotemporal fusion model to monitor marine ecology through chlorophyll-a inversion.
In addition to conventional remote sensing applications, spatiotemporal fusion is also
applied to synthesize surface brightness temperature data [19,61]. Shi et al. [62] proposed
a comprehensive FSDAF (CFSDAF) method to observe the land surface temperature in
urban areas with high spatial and temporal resolutions.

3. Preparation for Comparison
3.1. Datasets

Most spatiotemporal fusion studies were conducted between the Landsat series and
MODIS Terra. Both are in sun-synchronous orbits at an altitude of 705 km and captured
between 10:00 a.m. and 10:30 a.m. local time. The spectral response curves of commonly
used data sources are shown in Figure 2. The mean absolute deviations between MODIS
and Landsat-5, Landsat-7, and Landsat-8 are 0.1704, 0.1524, and 0.3301, respectively.

Four Landsat datasets have been prepared for the experiment and comparisons. All
Landsat images are the product of surface reflectance obtained after atmospheric correc-
tion. The pixel values are then magnified by a factor of 10,000 and quantized with 16-bit
integers so that they fall within the theoretical range of 0 to 10,000. Besides the Landsat-7
and Landsat-8 sources, we also tested a time-series FY4ASRcolor dataset from the FY4A
Meteorological Satellite. The FY4ASRcolor images are from two separate cameras of the
same satellite. The summaries of all the datasets are given in Table 1 and will be detailed
as follows.



Remote Sens. 2023, 15, 3763 6 of 30

Figure 2. Spectral response functions of Landsat series and MODIS.

Table 1. Summary of the datasets.

Columns * Rows * Bands Amount Location

L7STARFM 1200 1200 green, red, NIR 3 Canada (104◦W, 54◦N)
CIA 1408 1824 blue, green, red,NIR 17 Australia (34.0034◦E, 145.0675◦S)
LGC 3184 2704 blue green, red, NIR 14 Australia (149.2815◦E, 286 29.0855◦S)
L8JX 5792 5488 blue, green, red, NIR 9 China (115.8247◦E, 25.9868◦N)
FY4ASRcolor 10,992 4368 blue, red–green, VNIR 165 whole China

* The columns and rows of CIA and LGC are smaller than the original sizes after the black borders are removed.

3.1.1. L7STARFM

L7STARFM contains three pairs of Landsat-7 ETM+ and MODIS images that were
captured on 24 May 2001; 11 July 2001; and 12 August 2001, respectively. All images consist
of green, red, and near-infrared bands that are derived from the surface reflectance products.
The image sizes are 1200 × 1200. The ground resolution of Landsat-7 images is 30 m, while
it is 500 m for MODIS. The data were first used in STARFM [3] and have been tested in
numerous works for traditional one-pair algorithms including weight-based, unmixing-
based, and dictionary-learning-based methods, which have no complex architectures for
training; therefore, the dataset is named L7STARFM. The dataset is available at https:
//github.com/isstncu/l8jx (accessed on 20 July 2023).

3.1.2. CIA

The CIA dataset [17] is widely used to benchmark spatiotemporal fusion algorithms.
Seventeen cloud-free Landsat7 ETM+ to MODIS image pairs were captured between
October 2001 and May 2002, a time when crop phenology has significant temporal dynamics.
Geographically, the area covered by the CIA dataset is the Coleambally Irrigation Area
(CIA) in southern New South Wales, Australia (34.0034◦E, 145.0675◦S). Each image spans
43 km from north to south and 51 km from east to west. The total area is 2193 km2 and
consists of 1720 columns and 2040 rows at a ground resolution of 25 m. Each image consists
of six bands. The dataset is available at https://data.csiro.au/collection/csiro:5846v1
(accessed on 20 July 2023).

In the test, the blue, green, red, and near-infrared (NIR) bands of CIA images are used,
and the image size is reduced to 1408 columns and 1824 rows by removing the blank areas
outside the valid image scope. The blank areas are cropped because the algorithms do
not account for invalid data during processing, which may result in significant errors in
training and reconstruction. The neural-network-based algorithms require a large amount
of data for training. Therefore, the training data come from the 10 images in 2002, while the
validation dataset comprises 5 images from 2001. Other algorithms can perform one-pair
spatiotemporal fusion, in which the reference times are 5 January 2002; 13 February 2002;
11 April 2002; 18 April 2002; and 18 April 2002, respectively, and the prediction times are 4

https://github.com/isstncu/l8jx
https://github.com/isstncu/l8jx
https://data.csiro.au/collection/csiro:5846v1
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December 2001; 2 November 2001; 17 October 2001; 9 November 2001; and 25 November
2001, respectively.

Other algorithms can perform one-pair spatiotemporal fusion, in which the reference
time is 5 January 2002, 13 February 2002, 11 April 2002, 18 April 2002, and 18 April 2002,
respectively, and the prediction time is 4 December 2001, 2 November 2001, 17 October
2001, 9 November 2001, and 25 November 2001, respectively.

3.1.3. LGC

The Lower Gwydir Catchment (LGC) study site [17] is located in northern New South
Wales, Australia (149.2815◦E, 29.0855◦S). Fourteen cloud-free Landsat Thematic Mapper
(TM) and MODIS image pairs across the LGC were taken from April 2004 to April 2005.
The LGC dataset spans the Gwidir river with a width of 80 km from north to south and
68 km from east to west and an total area of 5440 km2. The images have 3200 columns
and 2720 rows with a ground resolution of 25 m. LGC experienced severe flooding in
mid-December 2004, resulting in approximately 44% of the area being submerged. Due to
the different spatial and temporal changes caused by flood events, the LGC dataset can be
considered a dynamically changing site. The dataset is available at https://data.csiro.au/
collection/csiro:5847v1 (accessed on 20 July 2023).

Similar to the CIA dataset, the blue, green, red, and NIR bands of the LGC dataset are
extracted after removing the outer blank areas within the images, so 3184 columns and
2704 rows remain. When used for neural network evaluation, the nine images from 2004
are used for training, while the four images from 2001 are to be reconstructed. The dates
to be reconstructed are set as follows: 3 April 2005; 2 March 2005; 13 January 2005; and 29
January 2005. Other algorithms use one-pair fusion, where the corresponding reference
images are 2 May 2004; 26 November 2004; 28 December 2004; and 28 December 2004.

3.1.4. L8JX

The L8JX dataset is designed by us to test the availability of neural networks for
one-pair spatiotemporal fusion. Landsat-8 OLI images were captured in December 2017,
October 2018, and November 2017, respectively. The corresponding low-resolution images
are the synthesized 8-day MODIS MOD09A1 products. Each image has the blue, green,
red, and NIR bands. According to the grid rule of Landsat satellites, these images cover
Jiangxi Province in China. The path numbers are 121, and the row numbers are 41, 42, and
43, respectively. The dataset is given the name L8JX for abbreviation, which has 9 pairs
of images.

Due to the tilt of the orbit, there are black borders around the image content. In order
to remove the useless space in the images, additional processing was carried. The original
Landsat-8 images were rotated counterclockwise by approximately 13 degrees, and then
the common areas without black borders were extracted. The entire dataset was then
divided into three scenes that are geographically connected through small overlapping
areas, which can be used as the ground truth to benchmark spatiotemporal fusion or
mosaicking algorithms. Each image in L8JX has 5792 columns and 5488 rows. The 8-day
MODIS images were rotated, and the blank areas were also removed at the same time. The
dataset is available at https://github.com/isstncu/l8jx (accessed on 20 July 2023).

3.1.5. FY4ASRcolor

The FY4ASRcolor dataset [21] is proposed for testing the super resolution of low-
resolution remote sensing images. The FY4ASRcolor dataset spans the blue (450–490 nm),
red–green (550–750 nm), and visible near-infrared (VNIR, 750–900 nm) bands. The ground
resolutions are 1 km for the high-resolution part and 4 km for the low-resolution part.
Images in the dataset were captured on 16 September 2021. Each image in L8JX has
10,992 columns and 4368 rows. All the bands are in a 16-bit data format with 12-bit
quantization, meaning that each digital number ranges from 0 to 4095. The dataset is
available at https://github.com/isstncu/fy4a (accessed on 20 July 2023).

https://data.csiro.au/collection/csiro:5847v1
https://data.csiro.au/collection/csiro:5847v1
https://github.com/isstncu/l8jx
https://github.com/isstncu/fy4a
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FY4ASRcolor can be used to test spatiotemporal fusion because it comprises time-
series data. The images in FY4ASRcolor are all captured by the Advanced Geostationary
Radiation Imager (AGRI) camera with full disc scanning covering China (region of China,
REGC) with a 5-min time interval for regional scanning. Because of the continuous change
in solar angle, the radiation values can change dramatically over large time intervals. Since
the daily radiative variation is repetitive, the spatiotemporal fusion of FY4ASRcolor can be
used to assess the feasibility of learning the variation pattern throughout a year.

The FY4ASRcolor dataset gives another chance of spatiotemporal fusion within homo-
geneous platforms instead of heterogenous platforms. The high- and low-resolution images
in FY4ASRcolor are acquired by separately mounted sensors of the same type. Different
from MODIS and Landsat, each pair of images in the FY4ASRcolor dataset was taken
simultaneously using the same sensor response. The sensor difference in FY4ASRcolor is
much smaller compared to the L7STARFM, CIA, LGC, and L8JX datasets, as the average
absolute error is 29.63. Usually, the sensor difference is hardly modeled, as it is stochastic
and scene-dependent. The minimal sensor difference in the FY4ASRcolor dataset makes
it ideal for conducting spatiotemporal fusion studies, as it eliminates the fatal sensor dis-
crepancy issue in fusing MODIS and Landsat. A similar work was carried out by us for the
spatiotemporal–spectral fusion of the Gaofen-1 images [53]. However, there is only a 2-fold
difference in spatial resolution.

3.2. Methods

Fourteen spatiotemporal fusion algorithms covering three categories are collected
for evaluation. These algorithms include STARFM [3], Fit-FC [3], VIPSTF [63], FSDAF [4],
SFSDAF [38], SPSTFM [30], EBSCDL [31], CSSF [33], BiaSTF [34], DMNet [35], EDCSTFN [6],
GANSTFM [36], MOST [20], and SSTSTF [37].

STARFM, Fit-FC, and VIPSTF-SW are weight-based methods. STARFM is a classic
and widely used spatiotemporal fusion approach. Fit-FC addresses the problem of dis-
continuities caused by clouds or shadows in spatiotemporal fusion. VIPSTF is a flexible
framework with two versions, VIPSTF-SW and VIPSTF-SU, where the weight-based ver-
sion (VIPSTF-SW) will be used and abbreviated as VIPSTF. VIPSTF produced the concept
of a virtual image pair (VIP), which makes use of the observed image pairs to reduce the
uncertainty of estimating the increment from fine-resolution images.

FSDAF and SFSDAF are hybrid methods. FSDAF is a spatiotemporal fusion framework
that is compatible with both slow and abrupt changes in land surface reflectance and
automatically predicts both gradual and land cover changes through an error analysis in
the fusion process. SFSDAF is an enhanced FSDAF framework that aims to reconstruct
heterogeneous regions undergoing land cover changes. It utilizes sub-pixel class fraction
change information to make inferences.

SPSTFM, EBSCDL, and CSSF are dictionary-learning-based methods. SPSTFM trains
two dictionaries generated from coarse- and fine-resolution difference image patches at
the given time to build the coupled dictionaries for reconstruction. EBSCDL fixed the
dictionary perturbations in SPSTFM using the error-bound-regularized method, which
leads to a semi-coupled dictionary pair to address the differences between the coarse- and
fine-resolution images. Compressed sensing for spatiotemporal fusion is addressed in
CSSF, which explicitly describes the downsampling process and solves it using the dual
semi-coupled dictionary pairs.

In the comparison methods, STARFM, BiaSTF, DMNet, EDCSTFN, GANSTFM, MOST,
and SSTSTF are coded with Python. The PyTorch framework is used for deep learning.
Fit-FC, VIPSTF, SFSDAF, SPSTFM, EBSCDL, and CSSF are coded with MATLAB. FSDAF is
coded with Interactive Data Language (IDL). All hyperparameters are set according to the
original articles. The experimental conditions are presented in Table 2.
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Table 2. Hardware and software for experiments.

Hardware
RAM CPU GPU

128GB Intel Xeon E5-2682 v4 @ 2.50GHz nVidia Tesla V100

Software
Python CUDA PyTorch

3.6.2 10.2 1.2.0

BiaSTF, DMNet, EDCSTFN, GANSTF, MOST, and SSTSTF use convolutional neural
networks for fusion. BiaSTF models the sensor differences as a bias, which is modeled
with convolutional neural networks to alleviate the spectral and spatial distortions in
reconstructed images. DMNet introduces multiscale mechanisms and dilated convolutions
to capture more abundant details while reducing the number of trainable parameters. EDC-
STFN is an enhanced deep convolutional spatiotemporal fusion network with convolutional
neural networks used to extract details of high-resolution images and residuals between
all known images. GANSTF introduces the conditional generative adversarial network
and switchable normalization technique into the spatiotemporal fusion problem, where the
low-resolution images at the given time are not needed. MOST cascades enhanced deep
neural networks and trains the spatial and sensor differences separately to fuse images
quickly and effectively. SSTSTF proposes a step-by-step modeling framework, and three
models have been designed based on deep neural networks to explicitly model the spatial
difference, sensor difference, and temporal difference separately. In the training stage,
BiaSTF, DMNet, MOST, and SSTSTF can be trained with only one pair, while EDCSTFN
and GANSTF need two or more pairs to learn temporal changes. Training parameters are
given in Table 3 for CNN-based algorithms, where the average training time is also given
by training the first band of the L8JX dataset twice.

Table 3. Parameters for CNN training.

Algorithm Optimizer Initial Learning Rate Epochs Batch Size Patch Size Training Time (s)

BiaSTF Adam 0.0001 300 64 128 × 128 10,647
DMNet Adam 0.001 60 32 60 × 60 15,609
EDCSTFN Adam 0.0001 60 36 256 × 256 3036
GANSTFM Adam 0.0002 300 32 256 × 256 18,445
MOST Adam 0.0001 300 16 54 × 54 18,566
SSTSTF Adam 0.0001 300 36 256 × 256 25,427

3.3. Metrics

Metrics are also used to assess the performance of the synthesized images. Root mean
square error (RMSE) measures the radiometric discrepancy. Spectral angle mapper (SAM),
relative average spectral error (RASE) [64], relative dimensionless global error in synthesis
(ERGAS) [65], and Q4 [66] measure the color consistency. Three metrics are used to measure
the structural similarity, including the classic structural similarity (SSIM), the normalized
difference Robert’s edge (ndEdge) for edge similarity, and the normalized difference local
binary pattern (ndLBP) for textural similarity. To help readers understand the digital
trends, the negative SSIM (nSSIM) and negative Q4 (nQ4) are used instead of the standard
definitions.

To establish the metrics, the LandSat images taken at a specific time are used as the
ground truth. To evaluate the spectral consistency with SAM, RASE, ERGAS, and nQ4, the
NIR, red, and green bands are used, but not the blue band. The ideal results are 0 for all the
metrics.

RMSE is calculated as

RMSE =

√
1
N ∑N

i=1 (xi − yi)
2 (1)



Remote Sens. 2023, 15, 3763 10 of 30

where x and y are two single-band images sharing the same pixel quantity N, and i is a
pixel location.

For a reference image x and an evaluation image y, the spectral angle SAM metric
between y and x is calculated using the normalized correlated coefficient as follows:

SAM = arccos
(
〈x, y〉
‖x‖‖y‖

)
(2)

where 〈x, y〉 is the inner product between x and y.
For a reference image x and an evaluation image y, the RASE metric for y to reference

x is calculated as

RASE=
RMSE(x−y)

x̄
=

√
1

N·C ∑N·C
i=1 (xi−yi)

2/x̄ (3)

where RMSE is the root mean square error between two images (calculated using pixels in
all bands), N is the number of pixel locations (product of the width and height), and C is
the number of bands.

The ERGAS metric is calculated as

ERGAS =
1
r

√
1
C ∑C

c=1
RMSE(xc − yc)

2

x̄2
c

(4)

where C is the number of total bands in an image, xc is the cth band of image x, yc is the cth

band of image y, and x̄c is the mean value of xc. r is the resolution ratio between high- and
low-resolution images which is initially defined for pansharpening. For example, r is set
to 2 to evaluate the LandSat-7 fusion between the 15m panchromatic band and the 30 m
multispectral bands. For hyperspectral visualization, r is set to 1.

Q4 is defined by

Q4 =
4 ·
∣∣cov

(
zx, zy

)∣∣ · |z̄x| ·
∣∣z̄y
∣∣[

cov(zx, zx) + cov
(
zy, zy

)](
|z̄x|2 +

∣∣z̄y
∣∣y) (5)

where two quaternion variables are defined as

zx = ax + i · bx + j · cx + k · dx (6)

zy = ay + i · by + j · cy + k · dy (7)

where i, j, and k are basic notations of a quaternion.
For a color image x, ax is 0, and bx, cx, and dx correspond in turn to pixel values of the

three bands. This forms a column vector of quaternions. Analogously, ay is 0, and by, cy,
and dy correspond in turn to pixel values of the three bands of the image y. z̄x and z̄y are
the mean values of quaternion vectors zx and zy, respectively.

For a quaternion notation z = a + ib + jc + kd, the modulus |z̄| is calculated using

|z| = |z · z∗| =
√

a2 + b2 + c2 + d2 (8)

where z∗ is the conjugate of z and defined by

z∗ = a− ib− jc− kd. (9)

The covariance between quaternion vectors zx and zy is

cov
(
zx, zy

)
=

(zx − z̄x)
T(zy − z̄y

)∗
N

. (10)
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Instead of the standard Q4 index, the negative Q4 (nQ4) is used, which is defined as

nQ4 = 1−Q4 (11)

nSSIM is calculated using

SSIMx,y =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

)
nSSIM = 1− SSIM

(12)

where x and y are two single-band images, µx and µy denote the mean values, σx and σy
denote the standard deviations, and σxy is the covariance between x and y. c1 and c2 are
small constants to avoid zeros.

Robert’s edge (Edge) is used to measure the edge features of fused images by detecting
local discontinuities. For an image x, the edge discontinuity at the coordinate (i, j) is
defined as Edgei,j

Edgei,j =
∣∣xi, j − xi+1, j+1

∣∣+ ∣∣xi, j+1 − xi+1, j
∣∣ (13)

where xi,j is the pixel value at the location (i, j).
A Robert’s edge image is generated after the point-by-point calculation for the image x,

which can be defined as Edgex. By denoting the Robert’s edge images for the fused image
and the ground truth image as EdgeF and EdgeR, respectively, the normalized difference
Edge index (ndEdge) between them is calculated as

ndEdge =
EdgeF − EdgeR
EdgeF + EdgeR

(14)

It should be noted that the ndEdge’s calculation involves only 10% of locations with higher
Edge values which are determined from EdgeR. For a multiband image, after finding the
ndEdge of each band, the average of these values yields a total ndEdge.

The local binary pattern (LBP) is an operator that describes the local texture character-
istics of an image. In a 3× 3 window, the center pixel is adjacent to 8 pixels. The adjacent
locations are marked as 1 if their gray values are larger than that of the center pixel, and 0
otherwise. By concatenating the eight comparison results, an 8-bit binary digit is obtained
ranging from 0 to 255, which we call the LBP code of the center pixel. The point-by-point
calculation for each point gives an LBP image.

By denoting the LBP images for the fused image and the ground truth image as LBPF
and LBPR, respectively, the normalized difference LBP index (ndEdge) between them is
calculated as

ndLBP =
LBPF − LBPR
LBPF + LBPR

(15)

Similar to the calculation of multiband ndEdge, after finding the ndLBP for each band of a
multiband image, the average of these values is the total ndLBP.

In order to present the radiometric error with a percentage indicator, the relative
uncertainty is evaluated, which is defined as

uncertainty =
absolute error

measured value
. (16)

The mean relative uncertainty of a single-channel image is the mean value of relative
uncertainty across all pixel locations. The best uncertainty is given to represent the optimal
performance that the state-of-the-art algorithms can reach.
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The mean value (mean) and correlated coefficient (CC) are also calculated. The mean
value is an indicator for data range, and CC illustrates the similarity between the reference
images and the target images.

4. Experimental Results for Spatiotemporal Fusion

All five datasets were tested using fourteen algorithms from three categories, and the
results were evaluated using the RMSE, SAM, RASE, ERGAS, nQ4, nSSIM, ndEdge, and
ndLBP. The scores are listed in Tables 4–17. It is noticed that offline training was involved
for the neural-network-based methods when the CIA and LGC datasets were tested.

Although some spatiotemporal fusion algorithms suggest fusion strategies with two
or more known pairs, only the one-pair fusion is tested in this paper. As a matter of fact,
any algorithm for one-pair fusion can be transformed into multi-pair fusion. When two
or more reference pairs are provided, temporal constraints or combination policies may
dominate the fusion performance, which is an open topic linked to practical use. For
example, Chen et al. [67] has explored this issue of selecting the best reference image when
multiple reference sources are given. This issue is as complex as a one-pair fusion, which
cannot be adequately presented in a limited space.

4.1. CIA Results

Five images from the CIA dataset were tested at different time intervals. Table 4
presents the RMSE scoring results on the CIA dataset. Compared to other methods,
the weight-based method achieves the highest scores, with Fit-FC having a significant
advantage. STARFM performs best for the fourth image. Neural-network-based methods
do not perform as well as hybrid methods, but outperform dictionary-learning-based
methods. Additionally, SSTSTF outperforms other neural-network-based methods.

Table 4. RMSE evaluation on the CIA (LandSat-7) dataset.

target 4 December 2001 2 November 2001 17 October 2001 9 November 2001 25 November 2001
reference 5 January 2002 13 February 2002 11 April 2002 18 April 2002 18 April 2002
band blue green red NIR blue green red NIR blue green red NIR blue green red NIR blue green red NIR
mean 713 1069 1474 2550 507 783 988 2376 469 708 859 2431 439 724 971 2207 502 841 1203 2234
CC 0.822 0.805 0.861 0.393 0.413 0.435 0.406 −0.418 0.231 0.262 0.249 −0.210 0.382 0.310 0.330 −0.172 0.446 0.334 0.315 −0.149

STARFM 125.7 186.5 293.4 526.3 175.1 221.8 362.1 913.7 169.8 200.3 324.5 846.9 86.3 115.2 189.9 465.2 151.5 203.5 345.0 624.4
Fit-FC 101.0 145.5 223.5 457.9 131.0 170.4 261.6 562.7 148.3 187.0 284.7 671.2 119.9 162.3 247.5 556.3 136.7 187.0 296.1 473.2
VIPSTF 120.3 176.1 223.2 464.0 162.7 207.9 292.1 613.3 168.3 203.1 312.2 711.6 144.1 194.5 286.8 583.6 157.6 225.6 346.7 491.1
FSDAF 114.5 168.3 256.5 481.0 162.4 205.6 328.1 825.4 173.2 200.9 319.9 856.2 143.1 179.5 287.1 704.0 146.8 198.4 328.7 621.7
SFSDAF 117.5 171.8 269.2 482.5 160.0 202.6 320.9 823.6 173.6 201.7 316.3 854.6 146.4 184.4 292.4 708.4 152.5 203.8 335.4 627.5
SPSTFM 156.4 239.1 366.1 733.4 234.2 301.8 497.5 1260.6 208.4 248.4 419.4 1172.2 183.0 240.3 391.1 992.8 175.9 250.8 427.8 899.1
EBSCDL 136.9 204.8 315.4 604.6 188.9 241.0 392.1 1080.7 178.2 209.0 340.4 1003.0 153.1 197.5 315.2 837.1 154.7 214.4 357.1 748.9
CSSF 139.3 208.5 321.8 602.2 195.4 249.5 408.8 1091.9 184.8 217.1 354.0 1025.9 156.5 203.5 325.2 869.9 158.0 221.2 371.0 774.3
BiaSTF 138.5 207.7 317.7 584.3 192.0 238.4 384.8 1032.0 197.9 229.5 349.1 971.0 152.2 196.5 312.0 820.6 165.6 220.9 359.2 737.7
DMNet 120.8 167.2 256.7 544.9 170.1 211.4 376.3 940.3 156.2 206.8 330.6 909.2 140.1 180.3 294.0 769.4 154.1 212.9 345.9 682.9
EDCSTFN 121.3 185.1 263.2 764.8 201.3 239.1 418.8 1245.6 164.2 205.1 363.8 985.6 141.3 184.6 315.9 823.8 149.0 213.0 388.2 748.8
GANSTFM 142.6 187.0 275.0 539.3 169.8 197.4 303.7 893.0 184.8 200.5 330.6 908.1 135.2 170.2 268.2 738.1 131.4 180.3 313.2 617.5
MOST 123.7 163.4 253.6 571.6 164.8 209.7 342.6 802.8 193.0 220.0 377.5 957.8 143.6 184.8 298.0 733.6 146.1 201.1 341.0 671.1
SSTSTF 129.0 182.4 291.3 530.6 138.9 178.2 291.7 827.5 154.1 193.5 298.7 851.6 124.6 162.5 256.0 670.6 158.6 211.3 323.4 551.8

uncertainty *(%) 11.0 10.8 12.6 15.7 20.4 17.6 25.5 24.4 22.2 18.9 31.1 25.9 18.2 13.9 18.9 20.3 24.3 17.5 25.0 19.8

* The uncertainty values are the lowest values across all fusion results.
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Table 5. Spectral Consistency Evaluation on the CIA (LandSat-7) Dataset.

target 3 December 2001 1 November 2001 16 October 2001 8 November 2001 24 November 2001
reference 4 January 2002 12 February 2002 10 April 2002 17 April 2002 17 April 2002
metric SAM RASE ERGAS nQ4 SAM RASE ERGAS nQ4 SAM RASE ERGAS nQ4 SAM RASE ERGAS nQ4 SAM RASE ERGAS nQ4

STARFM 0.083 0.215 0.194 0.216 0.184 0.421 0.348 0.655 0.133 0.402 0.339 0.635 0.127 0.229 0.190 0.162 0.085 0.300 0.270 0.593
Fit-FC 0.052 0.180 0.157 0.218 0.100 0.269 0.241 0.337 0.114 0.326 0.292 0.454 0.090 0.280 0.244 0.436 0.067 0.238 0.227 0.427
VIPSTF 0.069 0.185 0.167 0.209 0.130 0.297 0.274 0.437 0.127 0.348 0.316 0.561 0.100 0.301 0.276 0.532 0.082 0.260 0.260 0.526
FSDAF 0.070 0.194 0.174 0.188 0.166 0.381 0.316 0.614 0.135 0.405 0.338 0.647 0.110 0.347 0.289 0.606 0.084 0.296 0.263 0.585
SFSDAF 0.068 0.197 0.178 0.204 0.164 0.379 0.312 0.610 0.135 0.404 0.337 0.626 0.112 0.350 0.294 0.590 0.086 0.300 0.268 0.573
SPSTFM 0.110 0.290 0.255 0.286 0.249 0.580 0.477 0.644 0.190 0.550 0.445 0.850 0.152 0.485 0.398 0.965 0.118 0.416 0.355 0.904
EBSCDL 0.088 0.242 0.215 0.242 0.208 0.491 0.391 0.739 0.152 0.468 0.372 0.772 0.126 0.407 0.328 0.728 0.100 0.347 0.297 0.686
CSSF 0.093 0.243 0.217 0.245 0.218 0.498 0.402 0.728 0.157 0.479 0.384 0.812 0.130 0.422 0.340 0.796 0.103 0.359 0.308 0.750
BiaSTF 0.093 0.237 0.213 0.244 0.209 0.471 0.380 0.721 0.153 0.458 0.378 0.697 0.127 0.399 0.324 0.685 0.101 0.344 0.298 0.656
DMNet 0.075 0.213 0.183 0.223 0.186 0.432 0.353 0.695 0.143 0.429 0.353 0.764 0.113 0.374 0.303 0.736 0.091 0.322 0.283 0.716
EDCSTFN 0.083 0.282 0.225 0.286 0.243 0.558 0.427 0.643 0.169 0.464 0.377 0.859 0.131 0.400 0.322 0.808 0.108 0.352 0.306 0.809
GANSTFM 0.063 0.215 0.192 0.299 0.158 0.402 0.316 0.764 0.163 0.428 0.350 0.735 0.119 0.357 0.285 0.689 0.078 0.290 0.252 0.632
MOST 0.059 0.220 0.185 0.302 0.159 0.375 0.319 0.617 0.180 0.456 0.385 0.783 0.128 0.361 0.300 0.637 0.090 0.315 0.276 0.608
SSTSTF 0.058 0.215 0.193 0.301 0.144 0.374 0.295 0.583 0.138 0.400 0.326 0.541 0.102 0.327 0.266 0.507 0.072 0.273 0.256 0.469

Table 6. Average nSSIM/ndEdge/ndLBP evaluation on the CIA (LandSat-7) dataset.

target 3 December 2001 1 November 2001 16 October 2001 8 November 2001 24 November 2001
reference 4 January 2002 12 February 2002 10 April 2002 17 April 2002 17 April 2002
metric nSSIM ndEdge ndLBP nSSIM ndEdge ndLBP nSSIM ndEdge ndLBP nSSIM ndEdge ndLBP nSSIM ndEdge ndLBP

STARFM 0.299 0.298 −0.036 0.691 0.345 −0.040 0.708 0.396 −0.064 0.161 0.166 −0.077 0.659 0.388 −0.056
Fit−FC 0.276 0.094 −0.069 0.591 0.172 −0.063 0.658 0.299 −0.070 0.629 0.292 −0.066 0.607 0.315 −0.061
VIPSTF 0.283 0.141 −0.068 0.716 0.130 −0.067 0.797 0.185 −0.069 0.752 0.288 −0.063 0.722 0.302 −0.059
FSDAF 0.232 0.262 −0.078 0.646 0.328 −0.079 0.709 0.370 −0.085 0.677 0.382 −0.080 0.645 0.369 −0.075
SFSDAF 0.257 0.296 −0.077 0.642 0.345 −0.080 0.704 0.383 −0.086 0.675 0.412 −0.083 0.647 0.397 −0.078
SPSTFM 0.298 0.302 −0.064 0.788 0.332 −0.059 0.853 0.366 −0.069 0.813 0.391 −0.065 0.774 0.373 −0.060
EBSCDL 0.288 0.298 −0.079 0.715 0.323 −0.080 0.747 0.359 −0.087 0.716 0.385 −0.080 0.684 0.365 −0.076
CSSF 0.289 0.297 −0.052 0.747 0.323 −0.048 0.792 0.360 −0.051 0.760 0.384 −0.045 0.730 0.364 −0.040
BiaSTF 0.294 0.297 −0.079 0.697 0.323 −0.080 0.727 0.360 −0.088 0.703 0.385 −0.083 0.671 0.366 −0.079
DMNet 0.272 0.121 −0.093 0.704 0.190 −0.100 0.759 0.213 −0.106 0.728 0.243 −0.100 0.705 0.237 −0.094
EDCSTFN 0.306 0.125 −0.094 0.768 0.186 −0.102 0.786 0.191 −0.109 0.739 0.220 −0.103 0.729 0.185 −0.097
GANSTFM 0.340 0.052 −0.086 0.695 0.181 −0.091 0.795 0.263 −0.097 0.694 0.268 −0.091 0.657 0.209 −0.085
MOST 0.316 0.079 −0.087 0.663 0.213 −0.096 0.839 0.249 −0.102 0.678 0.259 −0.096 0.615 0.238 −0.090
SSTSTF 0.367 0.087 −0.083 0.622 0.185 −0.090 0.668 0.259 −0.094 0.662 0.288 −0.088 0.626 0.255 −0.085

Table 7. RMSE evaluation on the LGC (LandSat-5) dataset.

target 3 April 2005 2 March 2005 13 January 2005 29 January 2005
reference 2 May 2004 26 November 2004 28 December 2004 28 December 2004
band blue green red NIR blue green red NIR blue green red NIR blue green red NIR
mean 702 1004 1224 2094 711 995 1185 2350 636 902 1005 2286 635 925 1023 2421
CC 0.576 0.535 0.538 0.362 0.500 0.463 0.431 0.452 0.759 0.781 0.800 0.806 0.739 0.744 0.759 0.688

STARFM 152.1 180.5 214.8 331.3 140.3 183.8 234.8 436.5 109.0 124.2 156.6 343.7 136.0 168.1 198.1 441.6
Fit-FC 171.1 188.4 203.2 316.3 166.4 178.8 219.3 425.7 116.6 114.9 143.8 293.9 140.4 161.8 192.2 420.5
VIPSTF 177.8 207.4 216.6 319.2 181.8 207.4 239.0 414.7 126.7 134.1 151.5 301.8 159.6 189.7 205.2 412.8
FSDAF 139.5 165.3 194.4 319.3 137.2 183.3 235.6 412.7 110.8 131.4 170.2 320.7 135.6 168.2 205.1 422.6
SFSDAF 143.8 171.7 200.7 328.5 137.9 183.8 235.6 412.7 105.0 126.7 163.0 348.3 131.8 166.5 199.8 442.1
SPSTFM 197.6 248.1 320.1 543.4 188.1 263.4 360.5 632.8 158.1 168.8 280.0 460.9 181.5 208.1 316.8 638.0
EBSCDL 151.4 183.0 222.1 384.5 144.8 194.4 249.4 470.6 123.2 139.1 172.8 330.5 144.1 172.8 204.0 457.6
CSSF 154.9 188.6 229.8 392.6 143.4 194.6 252.1 455.1 107.5 154.6 166.3 326.0 135.4 172.7 203.4 446.6
BiaSTF 144.8 179.9 222.2 375.7 148.0 191.4 242.9 432.8 101.4 119.0 160.8 329.8 125.5 156.2 195.6 437.1
DMNet 147.9 187.7 213.1 322.8 163.4 206.1 255.4 438.2 102.6 126.7 157.9 302.4 147.2 183.4 221.3 438.2
EDCSTFN 139.1 151.2 185.2 328.8 148.4 150.1 216.1 442.1 118.5 140.6 172.5 363.2 139.2 187.1 218.5 454.7
GANSTFM 122.6 157.0 173.8 282.4 110.2 135.3 196.8 379.5 89.3 109.2 164.5 337.6 121.9 157.3 196.3 426.7
MOST 128.7 151.7 177.6 297.3 117.1 137.5 195.0 366.8 95.6 109.1 177.8 333.4 125.5 152.8 191.7 430.3
SSTSTF 128.1 155.1 195.5 294.6 119.9 143.2 199.3 366.8 97.6 115.5 171.3 326.3 134.2 157.2 188.5 386.1

uncertainty *(%) 13.0 10.9 10.6 9.5 12.2 10.4 13.1 10.1 10.8 9.2 11.3 9.5 13.1 12.2 14.0 11.3

* The uncertainty values are the least values across all fusion results.
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Table 8. Spectral Consistency Evaluation on the LGC (LandSat-5) Dataset.

target 3 April 2005 2 March 2005 13 January 2005 29 January 2005
reference 2 May 2004 26 November 2004 28 December 2004 28 December 2004
metric SAM RASE ERGAS nQ4 SAM RASE ERGAS nQ4 SAM RASE ERGAS nQ4 SAM RASE ERGAS nQ4

STARFM 0.064 0.174 0.171 0.290 0.068 0.202 0.190 0.237 0.063 0.164 0.148 0.134 0.065 0.203 0.186 0.152
Fit-FC 0.063 0.169 0.169 0.271 0.071 0.195 0.182 0.223 0.062 0.143 0.133 0.096 0.066 0.194 0.179 0.139
VIPSTF 0.068 0.176 0.180 0.307 0.079 0.199 0.196 0.238 0.068 0.150 0.144 0.112 0.073 0.198 0.193 0.149
FSDAF 0.061 0.164 0.159 0.267 0.069 0.195 0.187 0.217 0.059 0.160 0.152 0.117 0.064 0.198 0.186 0.144
SFSDAF 0.063 0.169 0.164 0.276 0.068 0.195 0.187 0.218 0.063 0.167 0.152 0.127 0.066 0.203 0.186 0.152
SPSTFM 0.098 0.272 0.256 0.573 0.105 0.296 0.280 0.586 0.073 0.233 0.226 0.229 0.084 0.294 0.268 0.326
EBSCDL 0.072 0.192 0.182 0.320 0.069 0.217 0.202 0.267 0.063 0.164 0.157 0.120 0.068 0.210 0.192 0.158
CSSF 0.074 0.197 0.188 0.340 0.072 0.212 0.201 0.260 0.061 0.164 0.160 0.120 0.069 0.206 0.190 0.154
BiaSTF 0.071 0.189 0.180 0.311 0.069 0.203 0.194 0.222 0.061 0.159 0.146 0.112 0.068 0.200 0.180 0.141
DMNet 0.067 0.172 0.172 0.300 0.077 0.209 0.203 0.249 0.067 0.150 0.144 0.115 0.071 0.208 0.199 0.164
EDCSTFN 0.057 0.163 0.153 0.308 0.065 0.197 0.175 0.265 0.077 0.176 0.162 0.134 0.080 0.213 0.201 0.182
GANSTFM 0.055 0.147 0.145 0.216 0.059 0.171 0.155 0.177 0.060 0.162 0.145 0.103 0.067 0.196 0.180 0.141
MOST 0.059 0.152 0.146 0.219 0.059 0.167 0.153 0.165 0.060 0.162 0.150 0.102 0.067 0.196 0.177 0.138
SSTSTF 0.057 0.155 0.152 0.204 0.054 0.169 0.156 0.159 0.055 0.160 0.148 0.095 0.062 0.181 0.171 0.114

Table 9. Average nSSIM/ndEdge/ndLBP evaluation on the LGC (LandSat-5) dataset.

target 3 April 2005 2 March 2005 13 January 2005 29 January 2005
reference 2 May 2004 26 November 2004 28 December 2004 28 December 2004
metric nSSIM ndEdge ndLBP nSSIM ndEdge ndLBP nSSIM ndEdge ndLBP nSSIM ndEdge ndLBP

STARFM 0.375 0.350 −0.116 0.353 0.328 −0.088 0.213 0.293 −0.078 0.225 0.266 −0.074
Fit−FC 0.366 0.276 −0.124 0.356 0.250 −0.117 0.188 0.210 −0.108 0.226 0.255 −0.101
VIPSTF 0.485 0.210 −0.117 0.479 0.171 −0.115 0.260 0.157 −0.097 0.296 0.169 −0.094
FSDAF 0.357 0.356 −0.136 0.341 0.351 −0.125 0.176 0.306 −0.114 0.202 0.290 −0.109
SFSDAF 0.362 0.385 −0.137 0.346 0.304 −0.123 0.189 0.300 −0.116 0.206 0.273 −0.110
SPSTFM 0.558 0.376 −0.106 0.545 0.332 −0.110 0.251 0.295 −0.095 0.299 0.263 −0.091
EBSCDL 0.390 0.372 −0.139 0.367 0.310 −0.134 0.204 0.281 −0.115 0.217 0.245 −0.111
CSSF 0.427 0.371 −0.090 0.388 0.311 −0.100 0.194 0.279 −0.079 0.218 0.245 −0.076
BiaSTF 0.387 0.372 −0.139 0.354 0.311 −0.134 0.203 0.278 −0.116 0.213 0.242 −0.112
DMNet 0.418 0.183 −0.167 0.383 0.109 −0.151 0.252 0.073 −0.138 0.285 0.044 −0.134
EDCSTFN 0.365 0.101 −0.175 0.363 0.125 −0.158 0.240 0.060 −0.143 0.275 0.015 −0.138
GANSTFM 0.292 0.106 −0.153 0.273 0.167 −0.139 0.181 0.198 −0.128 0.213 0.170 −0.123
MOST 0.317 0.107 −0.156 0.286 0.139 −0.144 0.190 0.170 −0.132 0.220 0.142 −0.127
SSTSTF 0.288 0.232 −0.152 0.275 0.265 −0.138 0.183 0.246 −0.124 0.208 0.218 −0.119

Table 10. RMSE evaluation on the L8JX (LandSat-8) dataset.

target row 41, 3 October 2018 row 42, 3 October 2018 row 43, 3 October 2018
reference row 41, 1 November 2017 row 42, 1 November 2017 row 43, 1 November 2017
band blue green red NIR blue green red NIR blue green red NIR
mean 343.5 570.3 486.9 2820.9 332.0 557.6 449.5 2773.4 334.8 558.1 437.0 2900.7
CC 0.725 0.805 0.773 0.833 0.575 0.679 0.723 0.829 0.439 0.560 0.608 0.826

STARFM 153.2 163.8 231.0 388.3 210.1 217.0 254.3 380.4 275.0 277.6 306.9 414.1
Fit-FC 148.4 155.0 215.8 387.5 208.6 214.8 247.2 374.5 273.7 275.7 302.0 406.6
VIPSTF 144.4 152.2 210.9 374.5 207.3 213.2 246.3 363.9 271.5 272.8 299.8 398.3
FSDAF 147.9 159.2 221.4 376.9 208.5 214.6 249.4 380.2 273.6 276.3 306.2 419.1
SFSDAF 149.5 162.9 226.6 389.7 209.2 216.0 251.5 379.3 274.2 277.5 306.8 413.1
SPSTFM 158.9 167.0 250.1 367.6 208.9 214.4 255.6 358.2 274.7 277.7 313.7 405.7
EBSCDL 153.5 165.7 234.9 389.3 210.0 216.9 254.4 393.7 274.2 277.8 308.1 430.9
CSSF 150.8 162.2 230.5 378.1 208.6 215.2 251.4 386.1 273.7 277.3 307.6 429.2
BiaSTF 150.3 162.4 224.8 385.7 210.4 219.1 254.0 394.3 274.2 279.2 309.3 442.6
DMNet 134.6 145.1 212.1 925.7 203.5 218.4 246.0 638.5 269.9 275.5 301.7 672.2
EDCSTFN 153.6 144.3 252.3 829.3 203.5 214.4 246.4 619.3 269.4 271.1 308.6 625.6
GANSTFM 150.1 165.7 237.7 394.5 207.6 215.2 257.2 343.0 269.7 275.9 310.4 377.1
MOST 144.5 166.0 231.5 402.2 204.6 213.1 252.6 347.6 267.4 274.1 308.4 381.3
SSTSTF 132.6 151.1 202.8 389.6 205.2 215.6 247.1 387.4 266.2 270.7 300.9 420.1

uncertainty * 18.3% 10.9% 18.4% 10.5% 14.3% 10.8% 15.7% 9.1% 17.3% 10.9% 17.6% 10.0%

* The uncertainty values are the lowest values across all fusion results.
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Table 11. Spectral consistency evaluation on the L8JX (LandSat-8) dataset.

target row 41, 3 October 2018 row 42, 3 October 2018 row 43, 3 October 2018
reference row 41, 1 November 2017 row 42, 1 November 2017 row 43, 1 November 2017
metric SAM RASE ERGAS nQ4 SAM RASE ERGAS nQ4 SAM RASE ERGAS nQ4

STARFM 0.058 0.215 0.330 0.205 0.043 0.232 0.404 0.247 0.043 0.260 0.504 0.286
Fit-FC 0.052 0.210 0.310 0.224 0.040 0.228 0.395 0.280 0.042 0.256 0.497 0.330
VIPSTF 0.050 0.204 0.304 0.217 0.036 0.224 0.393 0.255 0.038 0.253 0.493 0.305
FSDAF 0.053 0.208 0.318 0.200 0.039 0.230 0.398 0.246 0.044 0.261 0.502 0.295
SFSDAF 0.054 0.214 0.325 0.217 0.039 0.231 0.401 0.256 0.043 0.260 0.503 0.300
SPSTFM 0.067 0.212 0.350 0.183 0.040 0.224 0.403 0.218 0.045 0.259 0.511 0.262
EBSCDL 0.057 0.216 0.335 0.198 0.041 0.237 0.405 0.242 0.043 0.266 0.506 0.281
CSSF 0.055 0.211 0.328 0.190 0.038 0.233 0.401 0.237 0.041 0.265 0.505 0.280
BiaSTF 0.056 0.212 0.323 0.189 0.042 0.237 0.406 0.243 0.044 0.270 0.508 0.288
DMNet 0.114 0.429 0.347 0.254 0.056 0.329 0.411 0.254 0.061 0.350 0.508 0.291
EDCSTFN 0.121 0.393 0.374 0.259 0.057 0.321 0.408 0.254 0.061 0.333 0.510 0.298
GANSTFM 0.060 0.219 0.338 0.198 0.039 0.220 0.405 0.217 0.046 0.249 0.505 0.274
MOST 0.056 0.220 0.332 0.204 0.037 0.220 0.399 0.221 0.045 0.250 0.502 0.279
SSTSTF 0.048 0.207 0.296 0.205 0.038 0.233 0.396 0.252 0.046 0.259 0.493 0.288

Table 12. Average nSSIM/ndEdge/ndLBP evaluation on the L8JX (LandSat-8) dataset.

target row 41, 3 October 2018 row 42, 3 October 2018 row 43, 3 October 2018
reference row 41, 1 November 2017 row 42, 1 November 2017 row 43, 1 November 2017
metric nSSIM ndEdge ndLBP nSSIM ndEdge ndLBP nSSIM ndEdge ndLBP

STARFM 0.196 0.204 0.053 0.151 0.174 0.045 0.154 0.183 0.050
Fit−FC 0.195 0.076 0.002 0.150 0.055 −0.001 0.153 0.055 −0.000
VIPSTF 0.176 0.035 −0.001 0.131 0.066 −0.003 0.146 0.035 −0.002
FSDAF 0.179 0.132 −0.003 0.138 0.118 −0.004 0.145 0.148 −0.008
SFSDAF 0.197 0.153 −0.001 0.148 0.110 −0.003 0.152 0.122 −0.002
SPSTFM 0.204 0.171 −0.002 0.138 0.141 −0.004 0.173 0.159 −0.003
EBSCDL 0.206 0.168 −0.000 0.160 0.138 −0.003 0.161 0.154 −0.003
CSSF 0.181 0.166 −0.001 0.136 0.135 −0.003 0.154 0.153 −0.003
BiaSTF 0.163 0.169 −0.001 0.139 0.139 −0.003 0.160 0.155 −0.003
DMNet 0.203 −0.000 −0.004 0.143 0.052 −0.004 0.168 0.113 −0.004
EDCSTFN 0.229 0.029 −0.006 0.138 0.032 −0.004 0.170 0.106 −0.006
GANSTFM 0.200 0.155 −0.004 0.137 0.130 −0.003 0.162 0.115 −0.006
MOST 0.189 0.168 −0.003 0.135 0.121 −0.004 0.161 0.117 −0.005
SSTSTF 0.122 0.103 −0.003 0.120 0.098 −0.003 0.133 0.102 −0.005

Table 13. RMSE evaluation on the L7STARFM (LandSat-7) dataset.

target 11 July 2001 12 August 2001 12 August 2001
reference 24 May 2001 24 May 2001 11 July 2001
band green red NIR green red NIR green red NIR
mean 477.5 354.4 2160.9 400.0 291.5 2030.9 400.0 291.5 2030.9
CC 0.487 0.520 0.823 0.826 0.774 0.855 0.528 0.611 0.932

STARFM 181.5 199.3 323.9 61.7 93.8 276.9 170.3 174.2 246.6
Fit-FC 186.9 196.7 308.8 53.6 69.8 261.4 73.8 81.9 198.1
VIPSTF 177.8 187.7 299.9 54.2 70.1 254.1 76.6 86.1 218.8
FSDAF 180.6 193.6 317.5 58.0 86.5 266.6 157.2 159.4 236.9
SFSDAF 186.4 199.7 333.0 59.4 85.4 273.3 161.3 163.7 258.2
SPSTFM 164.7 184.5 345.9 64.7 107.1 307.4 157.9 161.3 226.0
EBSCDL 173.5 190.6 311.3 62.7 99.4 264.5 161.5 163.7 242.2
CSSF 176.3 193.9 311.8 61.8 98.7 262.3 158.7 160.7 234.0

uncertainty * 12.5% 35.4% 11.0% 10.8% 21.1% 18.8% 9.9% 17.8% 8.8%

* The uncertainty values are the lowest values across all fusion results.
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Table 14. Spectral consistency evaluation on the L7STARFM (LandSat-7) dataset.

target 11 July 2001 12 August 2001 12 August 2001
reference 24 April 2001 24 April 2001 11 July 2001
metric SAM RASE ERGAS nQ4 SAM RASE ERGAS nQ4 SAM RASE ERGAS nQ4

STARFM 0.051 0.244 0.401 0.265 0.054 0.190 0.220 0.152 0.048 0.221 0.429 0.167
Fit-FC 0.048 0.238 0.401 0.249 0.046 0.175 0.175 0.132 0.037 0.144 0.202 0.078
VIPSTF 0.047 0.229 0.382 0.229 0.047 0.171 0.175 0.119 0.038 0.157 0.213 0.089
FSDAF 0.051 0.239 0.393 0.258 0.052 0.182 0.205 0.143 0.040 0.207 0.394 0.142
SFSDAF 0.052 0.249 0.406 0.283 0.053 0.186 0.205 0.149 0.044 0.220 0.406 0.166
SPSTFM 0.067 0.246 0.372 0.295 0.073 0.211 0.248 0.197 0.042 0.203 0.398 0.131
EBSCDL 0.054 0.234 0.384 0.244 0.058 0.184 0.229 0.140 0.044 0.212 0.405 0.143
CSSF 0.054 0.236 0.390 0.250 0.057 0.183 0.227 0.140 0.043 0.207 0.398 0.136

Table 15. Average nSSIM/ndEdge/ndLBP evaluation on the L7STARFM (LandSat-7) dataset.

target 11 July 2001 12 August 2001 12 August 2001
reference 24 April 2001 24 April 2001 11 July 2001
metric nSSIM ndEdge ndLBP nSSIM ndEdge ndLBP nSSIM ndEdge ndLBP

STARFM 0.313 0.218 0.003 0.314 0.248 −0.010 0.207 0.235 0.008
Fit−FC 0.291 0.163 −0.054 0.269 0.120 −0.076 0.151 0.060 −0.076
VIPSTF 0.266 0.165 −0.041 0.242 0.162 −0.064 0.245 0.006 −0.062
FSDAF 0.285 0.185 −0.058 0.275 0.201 −0.081 0.108 0.178 −0.083
SFSDAF 0.332 0.187 −0.061 0.279 0.231 −0.082 0.144 0.216 −0.083
SPSTFM 0.287 0.180 0.010 0.288 0.222 −0.046 0.095 0.198 −0.028
EBSCDL 0.284 0.180 −0.044 0.286 0.222 −0.071 0.121 0.197 −0.065
CSSF 0.283 0.180 −0.024 0.278 0.221 −0.048 0.103 0.196 −0.047

Table 16. Evaluation on the FY4ASRcolor dataset (reference is 5:30 and target is 6:30).

Metric RMSE SAM RASE ERGAS nQ4 nSSIM ndEdge ndLBPBand Blue Green–Red VNIR

STARFM 2864.6 3065.1 2695.6 0.157 0.350 0.356 0.085 0.365 0.432 0.087
Fit−FC 2750.3 2964.6 2578.2 0.146 0.336 0.342 0.080 0.330 0.364 −0.027
VIPSTF 4435.2 4572.0 4125.8 0.184 0.532 0.541 0.187 0.633 0.428 0.001
FSDAF 2909.6 3127.0 2714.7 0.148 0.355 0.361 0.089 0.365 0.416 −0.019
SFSDAF 2735.6 2983.1 2519.5 0.164 0.334 0.341 0.078 0.280 0.411 −0.024
SPSTFM 4434.9 4568.3 4109.4 0.192 0.532 0.541 0.187 0.635 0.428 0.008
EBSCDL 4309.0 4456.2 4004.4 0.177 0.518 0.526 0.178 0.601 0.428 −0.022
CSSF 3685.4 3610.6 3282.8 0.182 0.429 0.437 0.124 0.452 0.446 −0.004
BiaSTF 2753.2 3009.7 2548.0 0.163 0.337 0.343 0.078 0.206 0.420 −0.011
DMNet 2566.0 2775.4 2403.1 0.154 0.314 0.320 0.069 0.225 0.272 −0.039
EDCSTFN 2039.0 2241.0 1894.0 0.132 0.251 0.255 0.044 0.129 0.375 −0.043
GANSTFM 2043.3 2246.5 1901.2 0.131 0.251 0.256 0.045 0.132 0.317 −0.048
MOST 1982.3 2177.0 1842.8 0.129 0.244 0.248 0.041 0.098 0.046 −0.044
SSTSTF 2382.6 2565.2 2230.0 0.137 0.291 0.296 0.059 0.218 0.173 −0.043

Table 17. Evaluation on the FY4ASRcolor dataset (reference is 6:30 and target is 11:30).

Metric RMSE SAM RASE ERGAS nQ4 nSSIM ndEdge ndLBPBand Blue Green–Red VNIR

STARFM 1913.6 2161.6 2159.1 0.372 0.581 0.590 0.068 0.781 0.642 −0.113
Fit−FC 1230.1 1495.9 1623.7 0.252 0.407 0.417 0.033 0.424 0.237 −0.032
VIPSTF 9217.2 9451.0 10261.0 0.556 2.696 2.735 0.887 0.959 0.713 −0.211
FSDAF 1830.8 2116.4 1864.8 0.358 0.542 0.547 0.060 0.631 0.508 −0.075
SFSDAF 1866.9 2013.1 2032.5 0.362 0.551 0.558 0.063 0.759 0.645 −0.103
SPSTFM 8065.0 7849.5 7527.7 0.427 2.183 2.192 0.864 0.974 0.703 0.031
EBSCDL 8793.3 9020.6 9797.1 0.539 2.573 2.610 0.851 0.955 0.713 −0.215
CSSF 2485.9 2764.1 2588.6 0.275 0.730 0.738 0.109 0.846 0.653 −0.012
BiaSTF 1838.5 2017.0 1710.1 0.285 0.519 0.521 0.055 0.674 0.561 −0.047
DMNet 682.1 693.3 667.2 0.295 0.190 0.191 0.007 0.500 −0.045 −0.185
EDCSTFN 653.1 665.3 621.3 0.246 0.181 0.182 0.006 0.265 −0.007 −0.170
GANSTFM 613.7 591.5 548.3 0.236 0.163 0.164 0.005 0.097 −0.006 −0.218
MOST 973.6 1166.9 1225.6 0.253 0.315 0.321 0.019 0.328 −0.047 −0.202
SSTSTF 1188.1 1451.8 1580.0 0.304 0.395 0.405 0.031 0.574 0.116 −0.212
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Table 5 presents several indicators of spectral consistency. Weight-based methods yield
all the best spectral results. In particular, Fit-FC and STARFM hit the highest scores among
the metrics for almost all of the data. Neural-network-based algorithms also perform well
in preserving spectral consistency, among which the SSTSTF method achieves excellent
results.

The structural consistency of the CIA dataset is assessed and shown in Table 6. Except
for the first image, the structural scores are too poor to account for reasonable reconstruction
quality. FSDAF received the highest SSIM score for the first image, while Fit-FC won
the second, third, and fifth competitions. Neural-network-based methods outperform
dictionary- and weight-based methods, where EDCSTFN and DMNet are better than
GANSTFM and SSTSTF. As for the ndEdge scores, neural-network-based methods show
outstanding advantages. These methods produce results that are less oversharpened
compared to other types.

4.2. LGC Results

Four images from the LGC dataset were evaluated and demonstrated. In terms of
the RMSE in Table 7, the neural-network-based methods rank first for most of the bands.
Among them, GANSTFM, MOST, and SSTSTF achieve the best scores for the blue, green,
and NIR bands, respectively. The weight-based methods perform better than the hybrid and
dictionary-learning-based methods, where Fit-FC scores are higher than those of FSDAF
and EBSCDL.

In terms of spectral consistency, GANSTFM, MOST, and SSTSTF exhibit higher scores,
as shown in Table 8. To sum up, neural-network-based algorithms demonstrate superior
performance for the LGC dataset where SSTSTF ranking first.

In terms of structural similarity, Table 9 shows that the image structures predicted by
the neural-network-based methods are the closest to the real image, in which SSTSTF and
GANSTFM achieve the best structural similarity. The lowest ndEdge scores convinced us
once again that neural-network-based methods tend to produce less oversharpening. The
hybrid methods also performs well, as FSDAF achieves the highest structural score on the
fourth image.

4.3. L8JX Results

Three images in the L8JX dataset were tested and evaluated. All algorithms run the
one-pair fusion without offline training. Since the images are larger, the results are much
different from those of CIA and LGC.

Table 10 presents the RMSE scores on the L8JX dataset. Except for the first NIR band
of the first image and the red band of the third image, the first places are all won by the
neural-network-based algorithms. Among the neural networks, the SSTSTF algorithm
achieves the best scores. A similar performance is also observed for the SSIM in Table 12.
The scores of ndEdge and ndLPM for L8JX are much smaller than those of CIA and LGC,
but the advantages of neural-network-based algorithms are diminished.

In the spectral consistency evaluation for L8JX, Table 11 shows that the hybrid and
neural-network-based algorithms perform well, with VIPSTF achieving the best results for
almost half of the metrics. CNN-based methods work well, too. Generally, the scores are
close to each other.

By combining the results of Tables 10–12, it is concluded that the performance of
the neural network algorithms are the best for L8JX, and the SSTSTF algorithm best suits
this dataset. A similar conclusion can be observed by a detailed comparison between
Figures 3 and 4, where two local blocks of the reconstructed images on row 42, October 3,
2018, are shown.
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STARFM Fit-FC VIPSTF FSDAF SFSDAF

SPSTFM EBSCDL ground truth CSSF BiaSTF

DMNet EDCSTFN GANSTFM MOST SSTSTF

Figure 3. Local manifestation of the red, green, and blue bands of the first L8JX image block (extracted
from row 42, 3 October 2018).

Loss of details and colors can be observed directly from Figure 3. STARFM produces
noticeable speckles. By introducing residual correction for STARFM, the image recon-
structed by Fit-FC is blurry. The details of VIPSTF are similar to Fit-FC. Contrarily, the color
and detail of both FSDAF and SFSDAF are superior. There are significant differences in the
results of algorithms based on CNNs. The color deviations of DMNet and EDCSTFN are
severe, although the details are rich and distinguishable. GANSTFM and SSTSTF present
the best colors. SSTSTF gives the richest details which are the closest to the ground truth.
When it comes to the details in the upper left corner, most neural network algorithms can
reconstruct them well, while weight-based and hybrid algorithms fail.

The conclusions in Figure 4 are similar to those in Figure 3. Excluding DMNet,
EDCSTFN, and MOST, the colors of the other algorithms are natural. VIPSTF has more
details than Fit-FC. Among all the images, the results produced by SSTSTF present the
richest details. The conclusions of the visual evaluation of Figures 3 and 4 are consistent
with the quantitative scores, except for the spectral continuity of MOST, which is evaluated
as having a small spectral loss.
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STARFM Fit-FC VIPSTF FSDAF SFSDAF

SPSTFM EBSCDL ground truth CSSF BiaSTF

DMNet EDCSTFN GANSTFM MOST SSTSTF

Figure 4. Local manifestation of the red, green, and blue bands of the second L8JX image block
(extracted from row 42, 3 October 2018).

4.4. L7STARFM Results

Three images from the L7STARFM dataset were tested. Tables 13–15 show the scores
for radiation deviation, spectral fidelity, and structural similarity on the L7STARFM dataset,
respectively. It is evident that the reconstructed spectral consistency of the L7STARFM
dataset is significantly higher than that of the other three datasets. Additionally, the
structural similarity is also much higher compared to CIA and LGC.

In terms of the radiometric deviation in Table 13, Fit-FC and VIPSTF outperform other
algorithms significantly on the second and third images. In terms of spectral consistency in
Table 14, Fit-FC and VIPSTF perform the best. In terms of structural similarity, VIPSTF and
CSSF have the highest scores. Generally, the weight-based methods perform the best for
this dataset despite the weak superiority. The dictionary-learning-based algorithms also
perform well for this dataset. This conclusion is quite different from the conclusions for
other datasets.

4.5. FY4ASRcolor Results

Three pairs of images from the FY4ASRcolor dataset were tested, which were captured
at 5:30, 6:30, and 11:30, respectively. The large image size enables neural networks to be
fully trained. Other images from nine moments were used for training, and they formed
eight groups.

Table 16 presents the first measured results on the FY4ASRcolor dataset, where images
at 5:30 are used as references to predict the high-resolution image at 6:30. Although the
RMSE scores are large, the structural similarity is good, and the spectral consistency is
acceptable when Q4 is considered. The huge RMSE errors may come from the fact that
the scene is dark at 5:30. Although the scores are poor, neural-network-based algorithms
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perform better than weight-based and hybrid methods. Among the neural networks, the
MOST algorithm achieves the best scores for all metrics.

Table 17 presents the second set of measured results on the FY4ASRcolor dataset,
where images taken at 6:30 serve as references to predict the high-resolution image at
11:30. Compared to Table 17, the RMSE scores become smaller, but the spectral consistency
deteriorates. Neural-network-based algorithms win the comparison, as they perform far
better than weight-based and hybrid methods. Among the neural networks, GANSTFM
achieves the best scores for all metrics.

By combining the results of Tables 16 and 17, it is concluded that neural networks
are best suited for FY4ASRcolor. SSTSTF and BiaSTF are the only algorithms that model
the sensor difference explicitly, but they do not achieve the best results, which is partially
addressed by the negligible sensor discrepancy in FY4ASRcolor. Temporal difference is the
main challenge for this homogeneous dataset.

5. Experiments for Change Detection

The results of spatiotemporal fusion can be used in downstream applications. It was
mentioned in Section 2 that the results have been used for land use classification and
quantitative applications such as biomass and surface temperature. Change detection is an
important downstream application, but it has not been tested in existing spatiotemporal
fusion work. Therefore, an experiment is conducted to evaluate the performance of the
reconstructed images for change detection.

5.1. Experimental Scheme for Change Detection

Standard change detection is challenging due to the use of continuous labels and
long time sequences.Alternatively, a simplified classification strategy is adopted to avoid
the time-consuming cost of continuous labels. In the experiment, labels were manually
assigned to a small number of discontinuous pixels in the reference and ground truth
images. Then, a Support Vector Machine (SVM) classifier was used to classify the reference
image, the ground truth image, and the spatiotemporal fusion results with the given labels.
It is noted that the parameters of the SVM are trained individually for each image. In
the SVM, the radius basis function is used as the kernel, the gamma value is 0.1, and
the regularization parameter (C) is 100. After the pixel-wise classification, the superpixel
post-processing technique presented in [68] was harnessed to smooth the label fragments
for better accuracy. After all pixels were given labels using the SVM and superpixel post-
processing, changes can be detected by comparing the pixel types at different moments.
The workflow is given in Figure 5.

Figure 5. Work flow of change detection with incomplete labels.

The first two image pairs for the test are from the CIA dataset. The reference time is
18 April 2002. The check dates are 9 November 2001 and 25 November 2001, respectively.
These images are selected to illustrate the significant change from farmland to barren land.
The image sizes are 512 × 512 with the blue, green, red, and NIR bands. The categories
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are set as farmland and non-farmland, so any changes in farmland can be detected. In the
common reference image, 101,447 pixels were labeled. In the target ground truth images,
83,733 and 81,916 pixels were labeled, respectively.

The last image pair is from the LGC dataset. The location was prone to flooding,
causing some areas to alternate between farmland and water area. The reference time is
28 December 2004, which was during a flood. The check day is 13 January 2005, when the
flood had receded. The spatiotemporally fused images on the check day are classified for
change detection. The image size is 500 × 1200 with the blue, green, red, and NIR bands.
The categories are divided into water areas and non-water areas, allowing for the detection
of changes in water areas. In the reference image, 63,764 pixels were labeled. In the target
ground truth image, 79,548 pixels were labeled.

The results of the detected changes are presented in Figures 6–8. The results are
evaluated using metrics such as the intersection over union (IOU), F1-score, precision,
recall, and overall accuracy (OA). The scores are presented in Tables 18 and 19.

Table 18. Change detection for spatiotemporally fused images of the CIA dataset.

target 9 November 2001 25 November 2001
reference 18 April 2002 18 April 2002
metric IOU F1-score precision recall OA IOU F1-score precision recall OA

STARFM 0.800 0.889 0.880 0.898 0.945 0.699 0.823 0.900 0.758 0.926
Fit-FC 0.262 0.416 0.662 0.303 0.792 0.402 0.574 0.680 0.496 0.832
VIPSTF 0.277 0.434 0.612 0.337 0.785 0.515 0.680 0.802 0.590 0.873
FSDAF 0.442 0.613 0.793 0.500 0.846 0.632 0.775 0.868 0.700 0.907
SFSDAF 0.514 0.679 0.796 0.592 0.863 0.581 0.735 0.808 0.674 0.889
SPSTFM 0.306 0.468 0.731 0.345 0.809 0.484 0.652 0.887 0.516 0.875
EBSCDL 0.484 0.652 0.802 0.550 0.857 0.606 0.755 0.847 0.681 0.899
CSSF 0.530 0.693 0.858 0.581 0.874 0.608 0.756 0.867 0.670 0.901
BiaSTF 0.429 0.600 0.750 0.501 0.837 0.551 0.710 0.825 0.624 0.884
DMNet 0.330 0.496 0.726 0.377 0.813 0.476 0.645 0.867 0.514 0.871
EDCSTFN 0.360 0.530 0.743 0.412 0.821 0.529 0.692 0.770 0.628 0.872
GANSTFM 0.167 0.286 0.403 0.221 0.729 0.382 0.552 0.746 0.438 0.838
MOST 0.271 0.426 0.636 0.320 0.789 0.534 0.696 0.784 0.626 0.876
SSTSTF 0.211 0.348 0.374 0.326 0.702 0.399 0.571 0.603 0.542 0.814

Table 19. Change detection for spatiotemporally fused images of the LGC dataset.

target 28 December 2004
reference 13 January 2005
metric IOU F1-score precision recall OA

STARFM 0.815 0.898 0.938 0.861 0.938
Fit-FC 0.843 0.915 0.945 0.887 0.948
VIPSTF 0.894 0.944 0.966 0.923 0.966
FSDAF 0.888 0.940 0.964 0.918 0.963
SFSDAF 0.827 0.905 0.954 0.862 0.943
SPSTFM 0.425 0.596 0.812 0.471 0.799
EBSCDL 0.833 0.909 0.953 0.869 0.945
CSSF 0.812 0.896 0.955 0.845 0.938
BiaSTF 0.887 0.940 0.944 0.936 0.962
DMNet 0.875 0.933 0.932 0.935 0.958
EDCSTFN 0.800 0.889 0.961 0.826 0.935
GANSTFM 0.868 0.929 0.960 0.900 0.957
MOST 0.807 0.893 0.917 0.871 0.934
SSTSTF 0.821 0.902 0.907 0.896 0.938
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reference ground truth STARFM predicted labeled reference labeled ground truth

STARFM Fit-FC VIPSTF FSDAF SFSDAF

SPSTFM EBSCDL ground truth CSSF BiaSTF

DMNet EDCSTFN GANSTFM MOST SSTSTF

Figure 6. Change detection between 18 April 2002 and 9 November 2001 (white for changes). The ref-
erence and ground truth images are from the CIA dataset, while others are from the spatiotemporally
fused images.

5.2. Results for the CIA dataset

In Table 18, STARFM outperforms other algorithms for the CIA image. The best
accuracy can approach about 0.9. CSSF ranks second, but there is a big gap between is
and STARFM. Overall, the effects of all methods are not good. Figures 6 and 7 show
that most algorithms ignore the obvious change areas, while STARFM covers the most
changes. The poor scores on the CIA image result from the difficulty of identifying bare
land. In addition, SVM uses only spectral information to distinguish land features, such
that the rich structures synthesized by neural network algorithms lose effect. However,
neural-network-based methods are not suitable due to the small scale of the data.

5.3. Results for the LGC Dataset

Table 19 shows that VIPSTF gives the best result for the LGC image. All algorithms
present higher scores than for CIA images, indicating that to recognize the change in water
area is much easier than that of farmland. Except for SPSTFM, the accuracy scores for the
other algorithms all exceed 0.9. Figure 8 confirms that the majority of the water area can
be checked effectively. The optimal scores on various datasets demonstrate the feasibility
of using spatiotemporal fusion results for change detection. Since VIPSTF and STARFM
both use the weighted combination strategy, it is reasonably inferred that weight-based
spatiotemporal algorithms are more suitable for detecting changes at small image sizes.
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reference ground truth STARFM predicted labeled reference labeled ground truth

STARFM Fit-FC VIPSTF FSDAF SFSDAF

SPSTFM EBSCDL ground truth CSSF BiaSTF

DMNet EDCSTFN GANSTFM MOST SSTSTF

Figure 7. Change detection between 18 April 2002 and 25 November 2001 (white for changes). The ref-
erence and ground truth images are from the CIA dataset, while others are from the spatiotemporally
fused images.

reference ground truth VIPSTF predicted labeled reference labeled ground truth

STARFM Fit-FC VIPSTF FSDAF SFSDAF

SPSTFM EBSCDL ground truth CSSF BiaSTF

DMNet EDCSTFN GANSTFM MOST SSTSTF

Figure 8. Change detection between 28 December 2004 and 13 January 2005 (white for changes). The
reference and ground truth images are from the LGC dataset, while others are from the spatiotempo-
rally fused images.
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6. Discussion

The motivation of this work is to address the questions raised in the first section, which
are the upper performance boundaries, the stability of the algorithms, and the possibility
of using CNN for one-pair fusion. Answers to these questions can be inferred from the
comparison of the experimental results.

6.1. Performance Analysis

When the digital scores are concerned in the popular CIA dataset, the RMSE perfor-
mance of the current algorithms is not significantly improved by comparing them with the
STARFM algorithm that was proposed in 2006. When considering uncertainty, the relative
uncertainties for the first image of the CIA dataset obtained by STARFM are 2.87%, 2.25%,
4.45%, 2.54%, 7.78%, 4.43%, 9.32%, 20.70%, 4.98%, 2.22%, 4.24%, 8.05%, 0.00%, 0.00%, 0.00%,
0.00%, 0.76%, 1.99%, 2.91%, and 6.46% higher than the best scores, respectively. For the
fourth image of the CIA dataset, STARFM even achieves the best scores for all bands.

However, when considering the structural quality, the results obtained using STARFM
are not as good as state-of-the-art methods because it tends to predict blurry images with a
large number of speckles in smooth regions, which can be observed in Figures 3 and 4. The
neural-network-based algorithms produce acceptable images only when they are given
sufficient training data. In this case, the results by SSTSTF show admirable spectral color
and structural details. In summary, although the digital evaluation shows small improve-
ment, the existing spatiotemporal fusion algorithms have made significant advancements
in fusion quality. These algorithms have been able to remove speckles and adapt to abrupt
changes or heterogeneous regions.

The best uncertainties show that the reconstruction accuracy of the NIR bands is
generally higher than that of the red, green, and blue bands. In the L8JX and LGC datasets,
the best uncertainties of NIR are all below 12%. The uncertainty scores over 20% are only
observed in the CIA dataset.

More conclusions can be drawn from Table 20. It can be seen that the average un-
certainty scores of LGC and L8JX are both less than 15%, indicating that the current
spatiotemporal fusion methods are practically feasible. However, the best performance
of LGC and L8JX are produced with CNN-based algorithms. When the training data are
insufficient to effectively train the CNNs (e.g., L7STARFM), the least error of some in the
red band is 35.4%, which is too large to be accepted. Therefore, the scale of the training data
is possibly the most important factor that determines the outcome of the fusion, followed
by the algorithms.

Table 20. Performance boundaries for tested Landsat datasets.

Maximum Minimum Average Band for Band for
Largest Errors Least Errors

CIA 31.10% 10.80% 19.70% red green
LGC 14.00% 9.20% 11.30% red green
L8JX 18.40% 9.10% 13.70% red NIR
L7STARFM 35.40% 8.80% 16.20% red NIR

It is observed that among the four bands, the red band is the most difficult to recon-
struct. The reason may be attributed to the rich structure and high temporal sensitivity
of the red band. Surface reflectance is generally used in spatiotemporal fusion, where the
amplitude of the red band is negatively correlated with vegetation density. Limited by scale,
a typical fusion scene can include woodland, farmland, and grassland, resulting in rich
structures in the red band. The red spectrum of vegetation varies greatly with the changing
of the seasons, resulting in a significant shift in the red band. In contrast, the blue band has
a small intensity and less detail, and the green band is less sensitive to seasonal variations
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than the red band. Although the NIR band is also susceptible to temporal variations, it is
spatially smooth.

6.2. Threshold of Uncertainty for Practical Use

When the popular uncertainty metric is used to assess the feasibility of spatiotemporal
fusion to practical applications, a threshold helps to judge the fusion quality conveniently.
The radiometric standards of the ground processing systems can be referenced. In terms of
radiometric calibration targets, the uncertainty is uniformly set to 5% for the multispectral
sensors of MODIS, Landsat-5 TM, Landsat-7 ETM+, and Landsat-8 OLI in terms of the blue,
green, red, and NIR bands. As for the actual uncertainty, it is within 2% for MODIS [69],
5% for Landsat-5 TM [70], 5% for Landsat-7 ETM+ [71], and 4% for Landsat-8 OLI [71].

Compared to radiometric calibration, the fusion problem is more similar to the cross-
calibration problem, which has been widely investigated. Based on the radiometric values
of MODIS as the baseline, the differences are 4% for Landsat-5 TM [72], 7% for Landsat-7
ETM+ [73], and 4% for Landsat-8 OLI [72]. In these studies, MODIS is commonly adopted
as the calibration reference in the reflective solar spectral range due to its exceptional
radiometric accuracy.

A simple criterion is needed to evaluate the practicality of fusion tasks. Due to the
unavailability of high-resolution images at the target time, the error in spatiotemporal
fusion is usually greater than that of cross-calibration. Consequently, it seems not practical
to set the uncertainty threshold to 5% for spatiotemporal fusion.

As a result, this paper suggests a 10% uncertainty as the common threshold to deter-
mine the uniform availability of fusion results. Scores show that the best fusion results
can reach to about 10%. Furthermore, several practices have proved the feasibility of the
fusion results in its present form. The ideal threshold may vary depending on the type
of downstream tasks. Quantitative applications such as surface temperature may pursue
small uncertainty. Interpretive tasks, such as classification and segmentation, are less
sensitive to uncertainty if the structures are rich.

6.3. Stability

An algorithm is considered stable in this paper when it consistently outperforms other
algorithms. As the quality of fusion is influenced by image content and time intervals, it is
unrealistic to expect an algorithm to perform equally well in all scenarios. Instead, certain
algorithms may outperform others in specific scenarios, allowing us to choose the most
suitable algorithm accordingly.

Table 21 shows that CNN-based algorithms achieved the best performance for three
out of the five datasets. The weight-based algorithms rank first for CIA and L7STARFM.
Although the hybrid algorithms failed to win first place, they performed much more stably,
ranking second in four competitions. To conclude, hybrid algorithms handle all cases
steadily in spite of their training scales. However, when the training data are sufficient,
neural networks can work stably.

Table 21. Relationship between best categories and training scales.

Image Size Rank First Rank Second Offline Training Pairs

CIA 1408 × 1824 weight hybrid 9
LGC 3200 × 2720 CNN hybrid 8
L8JX 5792 × 5488 CNN hybrid 0
L7STARFM 1200 × 1200 weight dictionary 0
FY4Acolor 10,992 × 4368 CNN hybrid 0

When considering the stability of each algorithm, things are much different. The
conclusion can be drawn from the results of the datasets where neural networks have
advantages. In LGC, GANSTFM ranked first and SSTSTF ranked second. In L8JX, SSTSTF
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ranked first and DMNet ranked second. In FY4A, GANSTFM and MOST both ranked
first. This shows that GANSTFM and SSTSTF are superior in performance and stability
compared to other neural-network-based algorithms.

The remaining two datasets can be analyzed for other types of algorithms. In CIA,
Fit-FC ranked first and FSDAF ranked second. In L7STARFM, Fit-FC ranked first and
VIPSTF ranked second. This shows that Fit-FC is more stable among the weight-based
algorithms that were tested.

6.4. CNN for One-Pair Spatiotemporal Fusion

It can be concluded from Table 21 that the performance of CNN-based spatiotemporal
fusion algorithms is greatly affected by the size of the single input image. An image has to
be cropped into patches before being fed into the networks, so a larger single image size
yields a higher number of patches from the same moment. The algorithms can only show
better performance with sufficient training, such as with many groups of small reference
images for offline training as in CIA and LGC or a group of large reference images for
online one-pair fusion as in L8JX and FY4ASRcolor.

The data scales are similar between CIA and L8JX, but there is a significant difference
in the ranks of CNN-based methods. By comparing their results, it can be concluded that
the quality of CNN-based algorithms is more influenced by the image size. Larger image
sizes train algorithms better for modeling spatial differences and recognizing land covers.
A larger number of image pairs can lead to better training for modeling time differences.
If spatiotemporal fusion is understood as an aggregation of various categories, such as in
the unmixing-based methods, the accurate extraction of ground features with an encoder
forms the foundation for learning temporal differences.

Therefore, we can conclude that CNN-based algorithms can perform one-pair spa-
tiotemporal fusion only when the image size is sufficiently large. If this condition is not
satisfied, hybrid algorithms are alternative choices. On the other hand, when there are large
images with long time series, CNN-based algorithms can further improve performance
by learning temporal differences. When the amount of data becomes even larger, neural
networks can possibly be constructed with a transformer or a diffusion model.

The results of weight-based methods are independent of image size. The unmixing-
based or unmixing-involved hybrid methods are extremely slow when clustering large
images, so the images of L8JX have to be divided into four blocks and fused separately.
CNN-based methods perform the best on both LGC, L8JX, and FY4ASRcolor, which is
consistent with their large image size. In particular, in the FY4ASRcolor dataset, which has
the largest image size, neural-network-based algorithms achieve the optimal values for all
bands. Therefore, the ability of neural networks to learn from big data makes them more
promising than other types of algorithms.

6.5. Similarity and Content for Fusion

To further clarify the key factors influencing fusion quality, Tables 22 and 23 are
presented, which illustrate the relationship between the average results of Fit-FC and
FSDAF and the input image pairs. These two algorithms were chosen because they suffer
less performance loss from small image sizes. NIR is not used because its amplitudes are
not in line with other bands.

Tables 22 and 23 demonstrate that the time interval between the reference time and
the predicted time has the first-place influence on the reconstruction results. The smallest
error occurs for the 16-day interval of LGC. The second smallest error occurs for the 32-day
interval of LGC. The third smallest error occurs for the CIA’s 32-day interval. The maximum
error occurs for the CIA’s 176-day interval, which is the actual maximum interval when
considering a cycle of four seasons. The errors of the 32-day interval are significantly larger
than those of the 16-day interval, but the average uncertainty remains less than 15%. The
small time interval indicates that the similarity between the reference image and the target
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image is the main factor influencing the reconstruction performance. This finding has been
validated in all five datasets.

Table 22. Average scores of Fit-FC and FSDAF for the CIA (homogeneous) dataset.

Image 1 2 3 4 5

Interval (days) 32 103 176 160 144
Average CC 0.829 0.418 0.237 0.341 0.365

Average RMSE Fit-FC 156.7 187.7 206.7 176.6 206.6
FSDAF 179.8 232.0 231.3 203.2 224.6

Note: Averages are from the values of blue, green, and red bands.

Table 23. Average scores of Fit-FC and FSDAF for the LGC (heterogeneous) dataset.

Image 1 2 3 4

Interval (days) 336 96 16 32
Average CC 0.550 0.465 0.780 0.747

Average RMSE Fit-FC 187.6 188.2 125.1 164.8
FSDAF 166.4 185.4 137.5 169.6

Note: Averages are from the values of blue, green, and red bands.

Besides the time interval, the correlation coefficient is another available indicator
that is useful when the time intervals are the same. For the CIA dataset, the correlation
coefficient of the first image pair is significantly higher than that of the other four images,
and its uncertainty is the lowest. The same conclusion can be found in the third image
of LGC, the first image of L8JX, and the second image of L7STARFM. By comparing the
results of images 1 and 4 of LGC in Table 23, which have the same 32-day interval, we can
expect better performance from higher correlated coefficients.

In terms of heterogeneity, CIA is considered a homogeneous region and LGC is a
heterogeneous region. It is evident from Tables 22 and 23 that Fit-FC performs better on
CIA while FSDAF wins LGC. This conclusion is consistent with their motivations. To
conclude, FSDAF focuses on heterogeneous or changing land covers, while Fit-FC works
well for homogeneous areas. Similar conclusions have been drawn in [42].

6.6. Ranking the Algorithms and Metrics

Ranks could be given for each class of spatiotemporal algorithms. Among the neural-
network-based methods, SSTSTF achieves the highest scores on both the CIA dataset
and the L8JX dataset. Among the weight-based methods, Fit-FC performs the best as it
outperforms the other weight-based algorithms on datasets, with the exception of L8JX.
Among the dictionary-based algorithms, CSSF is the best for LGC, L7, and FY4ASRCOLOR.
Among the hybrid methods, FSDAF consistently outperforms SFSDAF.

As far as the metrics are concerned, RMSE and SSIM are classical and accurate, which
evaluate the radiometric and structural errors, respectively. Among the spectral criteria,
ERGAS shows the best stability. In the change detection experiment, the IOU and F1-score
show similar results with admirable stability.

7. Conclusions

In the face of the wide application of deep learning for spatiotemporal fusion, there
is a growing demand to reveal practical application scenarios. To identify the feasibility
of CNN for one-pair spatiotemporal fusion, a new dataset is designed with large single
image sizes for both training and testing purposes. The potential of change detection with
fused images is also being investigated. These issues are addressed by preparing fourteen
fusion algorithms and five datasets for comparison. A comprehensive experiment was
conducted to illustrate the variety in the performance of spatiotemporal fusion algorithms
in relation to various sensors and image sizes. The reconstruction results are assessed in
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terms of radiometric, spectral, and structural loss. Some results are tested to identify the
feasibility of change detection. The experiment shows that convolutional neural networks
can be used for one-pair spatiotemporal fusion if the single image’s size is sufficiently large
(e.g., 6000 × 6000). It also confirms that the spatiotemporally fused images can be used for
change detection in certain scenes.
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