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Abstract: Stand age is a significant factor when investigating forest resource management. How to
obtain age data at a sub-compartment level on a large regional scale conveniently and in real time
has become an urgent scientific challenge in forestry research. In this study, we established two
strategies for stand-age estimation at sub-compartment and pixel levels, specifically object-based and
pixel-based approaches. First, the relationship between canopy height and stand age was established
based on field measurement data, which was achieved at the Mao’er Mountain Experimental Forest
Farm in 2020 and 2021. The stand age was estimated using the relationship between the canopy
height, the stand age, and the canopy-height map, which was generated from multi-resource remote
sensing data. The results showed that the validation accuracy of the object-based estimation results
of the stand age and the canopy height was better than that of the pixel-based estimation results, with
a root mean squared error (RMSE) increase of 40.17% and 33.47%, respectively. Then, the estimated
stand age was divided into different age classes and compared with the forest inventory data (FID).
As a comparison, the object-based estimation results had better consistency with the FID in the region
of the broad-leaved forests and the coniferous forests. In addition, the pixel-based estimation results
had better accuracy in the mixed forest regions. This study provided a reference for estimating stand
age and met the requirements for stand-age data at the pixel and sub-compartment levels for studies
involving different forestry applications.

Keywords: object based; pixel based; canopy height; GEDI; RF algorithm

1. Introduction

The primary component of an ecosystem, forests contain the largest carbon pool of
terrestrial ecosystems and significantly contribute to the world's carbon sinks [1]. A forest
ecosystem, defined as a carbon source or carbon sink, is determined by its structure [2].
To account for and assess the carbon stocks of forest ecosystems, the spatial distribution
mapping of the structure of the forest ecosystem was determined to be essential [3].

Stand age is defined as the mean of the tree age in one stand, and it is an important
factor when investigating the factors involved in forest resource management [4]. The
structure of the age has been considered the structure of the forest ecosystem, which may
reflect the temporal and spatial changes in the carbon intensity in a forest ecosystem [5]. In
general, younger forests are useful as carbon sinks while middle-aged forests are typically
stronger carbon sinks, and mature forests are considered weaker or neutral carbon sinks [6].
In particular, some of the overly mature forests have even played a role as carbon sources [7].
The carbon exchange between a forest and its atmosphere changes with forest age [8]. To
quantify the carbon pool, as well as the exchange capacity, of a forest ecosystem and to
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estimate the potential carbon strength of that ecosystem at both regional and global scales,
it is crucial to understand the age structure and its geographical distribution [9].

The traditional method of obtaining a forest’s age has traditionally been labor and
time intensive [10]. At the same time, traditional surveying methods could not obtain the
spatial age distribution on a large scale, and carrying out a survey in remote areas with
complex topography has been challenging [10]. Therefore, the issue of how to obtain age
data on a large regional scale conveniently and in real time has become an urgent scientific
challenge in forestry research. As compared to the limitations of traditional investigation
methods, remote sensing technology has advantages for macro-scale investigations and has
obtained ecological parameters of forests on both localized and large scales [11,12]. Remote
sensing data, such as optical satellite images and radar data, have frequently been used to
infer information related to forest stand age and structure [13].

Currently, two methods have been developed to estimate stand age using remote
sensing data. One approach was to monitor any disturbances via remote sensing imagery.
When a disturbance occurred, the forest structure and its function would be significantly
changed [14,15]. For example, when clear-cutting or a forest fire transpired, the forest age
was then defined as zero [16]. The age could then be recorded wherever forest management
activities and forest fire events were frequently reported [17]. However, the recording of
disturbances has not been well-documented in most regions. Therefore, long-time-series re-
mote sensing data were used instead to detect changes and identify forest disturbances [18].
Once the long-term Landsat time-series stacks (LTSS) were opened for free access, distur-
bance detection methods were able to be rapidly developed based on these data [19]. A
number of studies used a change-detection algorithm to extract various parameters based
on different vegetation indices, and the results indicated that age information could be
estimated by quantifying the parameters related to forest disturbance [20].

The second method of stand-age estimation was established by linking the stand
age to the vertical parameters of a forest. It was challenging to reverse stand age since
it was not directly sensitive to a remote sensing signal [21]. Therefore, an intermediate
variable between the stand age and a remote sensing signal was required. The vertical
structure was an important variable that had a strong correlation to age and, therefore,
has frequently been used as an intermediate variable [22]. Canopy height was the most
common and available structure, and this variable could be closely linked to stand age,
particularly in even-aged forests [23]. Johannes et al. developed a regression model for
the forest age estimation of Norwegian forests. Their findings showed that the site index
and canopy height, which were obtained via airborne laser-scanning, were the most crucial
factors in age modeling [24]. Zhang et al. obtained the forest-age mapping of China at a
spatial resolution of 1 km using remote sensing and observational data. In addition, the
connection between tree height and age was used to estimate the forest age using remote
sensing. [14]. Yang et al. developed an approach for age estimation based on multi-resource
remote sensing data, and the age was obtained using tree height, which had been estimated
through optical satellite images and radar data [21]. Previous studies had indicated that
the tree height could be directly acquired using remote sensing data [25,26], as it could be
considered an intermediate parameter for age estimation. Although optical remote sensing
technology had emerged earlier and had a rich spatiotemporal dataset, obtaining the
vertical information of forests directly from the data was difficult [27]. The light detection
and ranging (LiDAR) method, which is an active remote sensing technology acquiring
global surface and target 3D information, has had an obvious advantage when extracting
vertical information [28]. Combining the advantages of active and passive remote sensing
data could overcome their individual limitations and provide an effective approach for
forest age estimation.

In addition to the aforementioned challenges in forest age estimation, the research
using remote sensing data has concentrated on matched measurements of individual pixels
to develop a stand-age-estimation model and generate a stand-age map at the pixel level
because the minimum unit of optical imagery is a pixel. However, in reality, the stand
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age of a patch, sub-compartment, or region would be more useful. Reyes-Palomeque et al.
used the SPOT-5 multi-spectral images to carry out the segmentation process in order to
generate a map of age classes, and the overall accuracy was 88.4–91.0% [29]. Moreover,
they proposed that object-based classification allowed for better spectral separation.

The forest sub-compartment is the minimum object for information statistics and
forest resource management, and it is also a basic unit of forest inventory. In addition,
the natural characteristics within each sub-compartment, such as the condition of the
stand, stand type, forest-age group, and species composition, were always similar but
were significantly different from adjacent sub-compartments [30]. In addition, there were
similar image features in the remote sensing imagery of a single sub-compartment, such as
reflectance and texture features [31]. Establishing stand age at the sub-compartment level,
which was considered the minimum unit to estimate, could reduce the remote sensing
errors. Furthermore, forest managers would be more interested in the age estimation of
sub-compartments and compartments, rather than a single stand.

To achieve this aim, we used an object-based approach based on multiple remote
sensing datasets to estimate the stand age, and we compared the results between object-
based and the pixel-based approaches. The objectives were as follows:

(1) Establish the growth curves of broad-leaved, coniferous, and mixed forests, using the
canopy height and stand age;

(2) The generation of canopy-height maps from GEDI- and Landsat-extracted parameters;
(3) Extract the remote sensing parameters according to object-based and pixel-based

approaches;
(4) Estimate stand age according to the canopy height and growth curves generated by

the two approaches;
(5) Compare the accuracy of the approaches for estimating stand age and canopy height.

2. Study Area and Remote Sensing Data
2.1. Study Area

The Mao’er Mountain Experimental Forest Farm in Shangzhi City, Heilongjiang
Province, Northeast China, was the study site (127◦29′–127◦44′E, 45◦14′–45◦29′N) (Fig-
ure 1a). The research region was about 26.457 km2, and the forest land area was 22.694
km2. The landform of the research area was a low-mountain and hilly region. The average
elevation was 300 m. The terrain gradually rose from south to north. The local climate zone
belonged to the mid-temperate continental monsoon climate zone. The average forest cover
was 83.29%, and the total forest volume was 3.5 million m3. The main tree species were
birch (Betula spp.), Mongolica oak (Quercus spp.), larch (Larix spp.), Korean pine (Pinus
koraiensis), Sylvestris pine (Pinus sylvestris), and poplar (Populus spp.) [32,33].

2.2. Remote Sensing Data and Pre-Processing
2.2.1. GEDI Data

The global ecosystem dynamics investigation (GEDI) LiDAR altimetry mission was
launched in December 2018 [34]. The first multi-beam linear laser altimeter in the world
was installed on the GEDI for measuring vertical structures globally with high quality,
specifically for global-scale forest mapping [35]. The GEDI on the International Space
Station was orbiting on board and measured canopy height, vertical structure, and elevation
between 51.6◦ S and 51.6◦ N [34]. GEDI offered four different types of products, which
included raw waveforms; footprint-level ground and canopy heights; grid-form heights;
and biomass [34,36]. The raw GEDI waveform data were a Level-1 product [36]. Recently
released on the Google Earth Engine (GEE), the GEDI Level-2A data offered canopy-relative
height (RH) metrics, RH0-RH100 [37].
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and field measurement data.

The GEDI Level-2A data contained 2 versions (Version 1 and Version 2). The recently
released GEDI V2 significantly improved the precision and the validation of footprints [38],
so the GEDI V2 available on GEE was used in this study (Figure 1b). The RH90 was
extracted as RH data from GEDIL2A for each study location. All GEDI data from April to
October was from 2019 to 2021 (the period of acquired leaf-on data, which was beneficial
for the canopy height) was downloaded, and 30298 footprint points were obtained. To
select the higher-quality canopy-height data, the footprint points were screened according
to four rules:

1© Footprint points acquired only using full-strength lasers [39,40];
2© Beam sensitivity ≥0.9 [39];
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3© Slope less than 30 degrees [20];
4© Footprint point must be located in forest land.

In the end, 7354 footprint points were retained according to these conditions. In
addition, the footprint points were selected for the stand-age estimation. Data visualization
was performed in Python (Version: 3.8).

2.2.2. Landsat 8 Data

The Landsat-8 Operational Land Imager (OLI) was an instrument of the Landsat series
satellite, which was launched on February 11, 2013. The Landsat-8 OLI built on the Landsat
series' history by adding 2 bands for cirrus clouds and a coastal/aerosol (CA) band for
more accurate measurements [41]. Landsat-8 OLI images consisted of 11 spectral bands
with a spatial resolution of 30 m. The images of the Landsat-8 data were obtained in June
2020 (Figure 1c). The pre-processed images and extracted variables were obtained from the
GEE platform.

2.2.3. Field Data

Field data included forest inventory data and field measurement datasets. For-
est inventory data (FID), which were collected in 2020, had 2271 broad-leaved forest
sub-compartments, 569 coniferous forest sub-compartments, and 123 mixed forest sub-
compartments (Figure 1d).

Field measurement data were obtained from 269 forest sample plots in 2020 and 2021,
and these included 177 samples of broad-leaved forests, 65 samples of coniferous forests,
and 27 samples of mixed forests. These samples were used to establish the growth model.
The plot size was 0.06 ha. Field measurements included forest structural information, such
as canopy height, stand age, forest type, etc. To reduce the variability in the survey data
and the survey approach used on the sample sites, the stand-age data were corrected using
the site–class index-oriented curve-fitting method by Li [42]. The statistical information of
field measurements is shown in Table 1.

Table 1. Statistical information of field measurements.

Forest Type No. of Plots
Stand Age (yr) Canopy Height (m)

Max. Min. Mean Max. Min. Mean

Broad-leaved forests 177 100 6 51.5 20.92 4.30 14.59
Coniferous forests 65 54 10 24.1 16.95 3.42 9.36

Mixed forests 27 48 3 26.8 18.64 5.01 12.97

2.2.4. DEM Data

In order to extract terrain data, the SRTMGL1 digital elevation model (DEM) of the
research area was acquired via the GEE platform. The data were extracted from version
3.0 at a 30 m spatial resolution, and the data were in HGT format. The slope data were
extracted from the DEM data using ArcGIS (version 10.8.1, ESRI, Redlands, CA, USA).

3. Methodology

To estimate the stand age from the canopy height using remote sensing data, the
following information was required: the definition of the growth model that compared
the canopy height and stand age, the variable selection, and the retrieval algorithm for the
canopy-height estimation. A technical flowchart of this research is shown in Figure 2.
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3.1. Canopy-Height–Stand-Age Modeling

Vertical structure information has been highly correlated with stand age. Therefore,
canopy height has often been considered a proxy for stand age. To infer the age, the
growth curves of the three forest types (broad-leaved, coniferous, and mixed forests) were
generated by the relationship between stand age (t) and canopy height (H). The models
are shown in Table 2. In this study, we fitted both the base logistic-growth model [43]
(H = f(t) and t = g(H) models) and a dummy model, where the dummy variable indi-
cated the forest types (F). In the dummy model, the broad-leaved forests were set as
X1 = 1, X2 = 0; the coniferous forests were set as X1 = 0, X2 = 1; and the mixed forests were
set as X1 = 0, X2 = 0. The field-measured 269 sample plots were used to fit the base model
and the dummy model of the Mao’er Mountain Experimental Forest Farm, using SPSS
statistics software (SPSS 26.0, SPSS Inc., Chicago, IL, USA). Then, the determination coeffi-
cient (R2) and the root-mean-square error (RMSE) were calculated to assess the accuracy of
the modeling.

Table 2. The base model and the dummy model used to fit the relationship between stand age (t) and
canopy height (H).

Type Model Formula

Base model Logistic H = a/ (1 + b exp (c t))

Dummy model

M1 (F is added to the first
parameter) t = ((b1 + b2 × X1 + b3 × X2) − LN (a/H − 1))/c

M2 (F is added to the second
parameter) t = (b − LN ((a1 − a2 × X1 − a3 × X2)/H − 1))/c

M3 (F is added to the third
parameter) t = (b − LN (a/H − 1))/(c1 − c2 × X1 − c3 × X2)

(Note: In Table 2, the formula defined the model between stand age (t, year) and canopy height (H, m), and the
parameters of the formula were fitted using the field measurement data.)
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3.2. Variable Selection for Canopy-Height Estimation from Remote Sensing Data

To achieve the canopy-height inversion, the first significant step was selecting the
variables extracted from optical remote sensing data. To improve the independence of the
variable dataset, the extracted parameters from Landsat-8 and the terrain factors extracted
from DEM were selected as candidate characteristics [44]. A total of 67 variables were
extracted from the satellite image data, which included 6 bands of Lansat-8 satellite data,
3 tassel-cap transformed components, 15 vegetation indices, 1 slope, and 42 texture features.
These can be found in the supplementary material (Table S1).

Based on the methods of Yu et al., the correlation coefficient and variable importance
were used to screen the candidate variables [45]. The correlation coefficient between the
candidate variables and the canopy heights was used to screen the candidate variables.
The value of the candidate variables could then be screened using the variable importance,
which was used to evaluate the significance of the variables [46]. The importance values
of the remaining variables, as determined by the previous step, were then calculated.
The results varied according to the variable’s importance, and they also indicated the
independent variables. In the end, eight remote sensing variables were found to be optimal
for establishing the canopy-height estimation model. The details of these eight variables
are shown in Table 3.

Table 3. Selected variables for canopy-height modeling.

Variable Formular Description

ND563 [45] (B5 + B6 − B3) × (B5 + B6 + B3) normalized difference vegetation index
ND25 (B5 − B2) × (B5 + B2) normalized difference vegetation index

B3 Green, 525 nm–600 nm reflectance of the Landsat-8 green
light band

ME3 N−1
∑

i,j=0
iPij

mean of the four directional textural
features of Landsat-8 band 3

EVI 2.5 × (B5 − B4)/(B5 + 6.0 × B4 − 7.5 × B2 + 1) enhanced Vegetation Index

Wetness 0.1509 × B2 + 0.1973 × B3 + 0.3279 × B4 +
0.3406 × B5 − 0.7112 × B6 − 0.4572 × B7

Tasseled Cap (KT)
transformation wetness

Cor4 N−1
∑

i,j=0
iPij

[
(i−ME)(j−ME)√

VAiVAj

] the correlation texture between the grey
levels and those neighboring pixels of

band 4
Slope - slope extracted from DEM data

Note: The P (i, j) refers to the DN value of the position of (i, j) in a gray-level co-occurrence matrix, where i and j
are the number of the rows and columns. The variable of N is the number of rows or columns of the gray-level
co-occurrence matrix. ME and VA are the mean and variance of the four directional textural features, respectively.

3.3. Random Forest Algorithm for Canopy-Height Modeling

The random forest (RF) algorithm was used to invert the canopy height in this study.
RF is a non-parametric statistical estimation algorithm that did not depend on any assump-
tions about the relationship between the responses and the explanatory factors [47]. The
advantages of RF included an insensitivity to noise, its ability to estimate the variable
importance of the input sources, and its ability to handle a large amount of input [45]. As
compared to other algorithms, the RF algorithm was insensitive to the values of its free
parameters [48]. It has been widely used as a machine-learning technique for canopy-height
estimation [38,49]. After repeated testing, the random state of the RF algorithm was set
at 5, and the number of the regression trees was set at 200 [40,48]. The accuracy of the RF
algorithm was calculated using a 10-fold cross-validation to eliminate overfitting. The RF
algorithm was implemented using the Python scikit-learn package [50].

3.4. Object-Based/Pixel-Based Canopy-Height Estimation

In this study, the canopy height was estimated using both object-based and pixel-
based approaches, as the latter approach had been the most commonly used method in the
literature. In addition, the size of the pixel, or footprint, was the smallest unit of estimation
(Figure 3). For the pixel-based estimation method, the pixels and the footprints of the forest
lands were selected. First, the rasterized pixels and footprints were matched by spatial
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location information. Usually, there were two types of relationships between the pixels and
the footprints, post-matching. For the first relationship, the footprint was converted into
pixels, and then the DN values of the pixels could be extracted. The other relationship was
formed when the footprint covered more than one pixel, which required the DN value to
be recalculated. The DN value of the footprint was then determined by the weight of the
area in each pixel. In addition, the DN value was equal to the sum of the proportional area
of every pixel in the footprint, multiplied by the DN value of each pixel. Finally, the data
pairs of the pixel features extracted from variable selection and the GEDI footprints were
used to establish the canopy-height estimation method, using the RF algorithm.
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Figure 3. Schematic flowchart of the pixel-based approach. DN (i=1,2,. . .,8) is the DN value of selected
variables from remote sensing data; H (i=1,2) is the canopy height of the GEDI footprint.

For the object-based approach, the smallest unit was the sub-compartment (Figure 4).
Therefore, the first step was to extract the image feature information at the sub-compartment
scale. When the rasterized image and the GEDI footprint were matched with a sub-
compartment, the multiple GEDI footprints would be classified as that sub-compartment.
The mean information of these footprints was considered a representative value of the sub-
compartment object. Similarly, the average of the pixel DN values in one sub-compartment
was also considered a representative value of the sub-compartment. Then, the data pairs of
the extracted variable selection and the canopy height could be established using the RF
algorithm of the object-based method.
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3.5. Validation

The following indices were applied for the accurate evaluation of the canopy-height
model and stand age, which included the mean absolute error (MAE), the R2, and the
RMSE. The equations were as follows [51]:

MAE =
1
n
×

n

∑
i=1
|yi − ŷi| (1)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (2)

RMSE =

√
1
n
×∑n

i=1(yi − ŷi)
2 (3)

where yi is the measured value, y is the mean of the measurement, ŷi is the estimated value,
and n is the number of samples.

4. Results
4.1. Fitting the Growth Curve between Stand Age and Canopy Height

The functions of the base model (the logistic-growth model (H = f(t) and t = g(H)
models)) and the dummy model were fitted by forest type. The results of the base models
are shown in Table 4. The functions of the dummy model and the accuracy verification are
shown in Table 5.

Table 4. The results of the canopy-height–stand-age base model and the accuracy verification.

Model Type Function R2 RMSE

H = f(t)

Broad-leaved
forests H = 17.87/(1 + exp(−0.06288 × t + 1.241))) 0.82 2.77 m

Coniferous forests H = 13.84/(1 + exp(−0.1183 × t + 1.952))) 0.73 2.32 m
Mix forests H = 18.27/(1 + exp(−0.01845 × t + 1.023))) 0.80 3.21 m

t = f(H)

Broad-leaved
forests t = (1.351 − LN (23.81/H − 1))/0.03680 0.77 9.7 yr

Coniferous forests t = (2.445 − LN (18.61/H − 1))/0.1032 0.64 7.5 yr
Mix forests t = (1.396 − LN (21.33/H − 1))/0.07692 0.78 8.4 yr

Table 5. The results of the canopy-height–stand-age dummy model and the accuracy verification.

Model Function R2 RMSE (yr)

M1 t = ((0.8761 + 0.7982 × X1 + 0.5854 × X2) − LN (22.21/H − 1))/0.04621 0.82 9.2
M2 t = (1.604 − LN ((31.87 − 9.572 × X1 − 6.586 × X2)/H − 1))/0.04568 0.81 9.1
M3 t = (1.549 − LN (22.69/H − 1))/(0.06827 − 0.02691 × X1 − 0.01756 × X2) 0.83 8.8

The higher R2 values and the lower RMSE values of the growth curve showed that the
method used could produce more accurate estimates. Compared to the base model, we
found that the regression model results of the dummy variable model M3 (T was added
to the third parameter) had higher accuracy. Therefore, the dummy variable model M3
was used to establish the relationship between the canopy height and the stand age of the
different forest types (Figure 5).
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Figure 5. X-axis for stand age, and Y-axis for canopy height; the growth was calculated by the dummy
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(c) Mixed forest: X1 = 0, X2 = 0.

4.2. Object-Based and Pixel-Based Canopy-Height Modeling Result and Accuracy Assessment

In this paper, the GEDI data were linked to selected remote sensing variables using
the RF algorithm to create a continuous canopy-height dataset in space. In addition,
the canopy-height estimation results using object-based and pixel-based methods were
calculated. Table 6 shows a comparison of the results between the two different approaches.

Table 6. The comparison of the results for the 2 different approaches.

Approach No. of Samples Set R2 RMSE (m)

Object-based 1636
Training set 0.68 2.61

Test set 0.57 2.87

Pixel-based 6878
Training set 0.59 3.34

Test set 0.51 3.57

A total of 1636 samples were available for object-based modeling and validation. The
R2 and RMSE of the object-based approach of the training set were 0.68 and
2.61 m, respectively, and the R2 and RMSE of the test set of the object-based approach were
0.57 and 2.87 m, respectively. A total of 6878 footprint points of the GEDI Lidar were used
to build the RF model of the pixel-based approach. The R2 and RMSE of the training set of
the object-based approach were 0.59 and 3.34 m, respectively, and the R2 and RMSE of the
test set of the object-based approach were 0.51 and 3.57 m, respectively.

The estimated canopy heights from the two approaches were compared with the
measured heights (Figure 6). According to the results of the object-based approach, the
average canopy-height estimation was agreeable with the measured results at the sub-
compartment scale. The R2, RMSE, and MAE were 0.72, 2.83 m, and 2.12 m, respectively
(Figure 6a). According to the results of the pixel-based approach, the canopy-height
estimation was obviously overestimated with the measured results. The R2, RMSE, and
MAE were 0.63, 4.73 m, and 3.54 m, respectively (Figure 6b).

The canopy height was estimated using the RF algorithm and based on two approaches,
and the canopy-height estimation results in the study area are shown in Figure 7. Then, the
canopy-height estimation results were classified into five levels for a better comparison with
the pixel-based results. In addition, the results estimated using the pixel-based methods
were usually higher than those of the object-based methods (Figure 7a,b). To compare the
differences between the two approaches, the pixel-based estimates were divided according
to the boundaries of the sub-compartments (Figure 7c). In addition, the results were also
not expected to be comparable to the results of the object-based estimation. This indicated
that the object-based approach was valuable for applications on a sub-compartment scale.
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4.3. Stand-Age-Estimation Results

The stand ages were mapped according to the canopy-height–stand-age model (Table 5-
M3) and the object-based and pixel-based canopy-height estimation results. The calculated
results are shown in Figure 8. In addition, the stand ages of different types and origins
were classified into age classes according to the standards of the National Forestry and
Grassland Administration of China, published in 2017 [52].
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Figure 8. Estimated stand-age results: (a) stand-age estimated result by object-based approach;
(b) stand age divided into age class by object-based approach; (c) stand-age estimated result by
pixel-based approach; (d) stand age divided into age class by pixel-based approach.

The estimated stand ages by object- and pixel-based approaches were compared to
the measured values (Figure 9). Using the object-based approach, the R2, RMSE, and MAE
were 0.67, 16.1 yr, and 12.1 yr, respectively (Figure 9a). For the pixel-based approach, the
R2, RMSE, and MAE were 0.59, 24.2 yr, and 18.8 yr, respectively (Figure 9b). In addition,
there was an obvious overestimation trend for the results of the pixel-based approach.
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Figure 9. Scatter plot of estimated and measured stand age: (a) scatter plot of estimated stand age
by object-based approach and the measured stand age; (b) scatter plot of estimated stand age by
pixel-based approach and the measured stand age.

In order to evaluate the estimated age class of the two approaches, we compared
the results with the FID. There were 2963 sub-compartments in the study area, including
513 young sub-compartments, 1006 middle-aged sub-compartments, 693 near-mature sub-
compartments, 617 mature sub-compartments, and 134 over-mature sub-compartments.
The proportions were 17.31%, 33.95%, 23.39%, 20.82%, and 4.52%, respectively. Over-
all, the estimated results of the stand-age class were consistent with the forest survey
results. The object-based estimated stand-age classification included 442 young forest
sub-compartments, 1016 middle-aged forest sub-compartments, 734 premature forest
sub-compartments, 658 mature forest sub-compartments, and 113 over-mature forest
sub-compartments. The proportions were 14.92%, 34.29%, 24.77%, 22.21%, and 3.81%,
respectively. The estimated results of the pixel-based approach were significantly overesti-
mated, compared to the results of the resource survey (3.24%, 17.58%, 32.74%, 30.41%, and
16.03%, respectively). Moreover, the estimation accuracy of the pixel-based approach for all
the class ages was lower than the object-based estimation accuracy (Figure 10).
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5. Discussion
5.1. Evaluation of the Stand-Age Estimation

Regression analysis has been a popular approach for fusing remote sensing data and
biophysical factors in order to produce continuous estimations of features. Previous studies
have indicated that many remote sensing parameters were significantly correlated with
stand age [53,54]. However, the established relationship between stand age and remote
sensing parameters varied with different research [55]. Additionally, stand age had been
calculated using the inverted site index formulae that had previously been used to predict
the expected height growth at various ages, as provided by foresters [24,56]. However,
the site index curves were data-dependent, less robust, and associated with uncertainty.
The canopy-height–stand-age curve, which had been defined by site-index equations, had
also ignored the effects of disturbance information and species richness. To determine
the relative relationship between canopy height and stand age using field measurement
data, a nonlinear growth model was applied in this study. All the sample data were
classified as either broad-leaved, coniferous, or mixed forests, and a nonlinear model was
fitted. The fitted results showed that the models established by different forest types
had higher accuracy than those using all samples. Next, the fitted models were used to
estimate the canopy height, which was estimated using multi-resource remote sensing
data, and the stand age was estimated using object-based and pixel-based approaches. This
study demonstrated that the object-based stand-age-estimation model for the study area
performed well during development and validation. The R2, RMSE, and MAE values were
0.67, 16.1 yr, and 12.1 yr, respectively. The accuracy of the pixel-based approach was lower
than the object-based approach, and the R2, RMSE, and MAE were 0.59, 24.2 yr, and 18.8 yr,
respectively. To further compare the results of the two approaches, the estimated stand ages
of three different forest types were divided into young, middle-aged, premature, mature,
and over-mature forests and then compared with the FID (Figure 11). The results indicated
that the accuracy of the object-based approach was better than that of the pixel-based
approach; the former had similar results with the stand age provided by the FID. The
pixel-based approach had significant overestimations. There were two possible reasons
for the overestimation. The first was that the noise from the bare-soil background land
cover had influenced the spectral features of the young, open-canopy stands. The results
demonstrated that accommodating the local spectral features (the object-based approach)
mitigated the noise effect. The second reason was the overfitting of the RF algorithm,
despite using a 10-fold cross-validation method to minimize this problem. Overfitting had
caused higher canopy-height estimations that exceeded the boundary conditions of the
canopy-height–stand-age curve, which had been set as the maximum value of the stand age.
For these canopy heights, the stand ages were given values based on the upper-boundary
canopy-height estimates. Because of this simplicity, the stand age of the higher-canopy-
height forests might have been overestimated. In addition, the classification of the forest
types could have been improved. In this study, the forest types were only divided into
coniferous, broad-leaved, and mixed forests. If a more precise categorization of the tree
species had been done, then the accuracy of the canopy-height estimation could have been
improved significantly.
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5.2. Comparison of Stand-Age Estimation at Pixel Scale and Sub-Compartment Scale

The object-based approach was commonly used to identify stand types [57]. Studies
have used an object-based approach for classifications using satellite-imagery segmentation
techniques and visual interpretations [29,58]. Lv et al. used a multiple-scale, object-based
approach to estimate the above-ground carbon of stock bamboo forests, which obtained
satisfactory results [59]. However, the basis of object segmentation remained focused on
image segmentation. In this study, both object-based and pixel-based approaches were
used to estimate stand age. The results indicated that the accuracy of the former was
higher than that of the latter. There were two possible reasons for the high precision of
the object-based estimation. The differences among the factors of one sub-compartment
were a limitation when the minimum unit was one sub-compartment. In addition, the
sub-compartments had similar natural characteristics and similar image features as well.
Therefore, the differences among single pixels would have a cumulative effect on stand-age
estimation. In addition, a nonlinear model of canopy-height–stand-age also increased the
accuracy of the stand-age estimation. However, this effect could not be ignored in the
pixel-based approach. Furthermore, the pixel-based approach estimated the individual
pixels directly from the spectral information, but the accuracy had been reduced by the
“same objects with different spectra” and “different objects with the same spectra” [59].

The results showed that the pixel-based approach performed better for the stand-
age estimation of mixed forests. In this study, GEDI RH90 as the canopy height was
input into the RF algorithm; GEDI RH90 has been regarded as the mean canopy height of
footprints [40]. However, in the process of dividing the classes into age groups, the basis of
the classification was the dominant species of the stands. Using the object-based approach,
the canopy height of the dominant tree was smoothed, and the result of this approach
showed underestimation. However, using a pixel-based approach, the estimations of the
dominant species and the other species were mutually independent, so the estimated
results had no influence. Therefore, the estimation of the object-based approach was more
accurate. However, the results indicated lower precision when the pixels were unable
to represent the objects adequately, especially at the boundaries of forested areas, where
pixels included both forest canopy and land [29]. To confirm this conclusion, 27 samples of
broad-leaved and coniferous forests were randomly extracted 10 times from the stand-age
comparison data, as shown in Figure 9, and the results were compared with 27 samples of
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mixed forests by averaging the precision of the 10 extractions. The results are shown in
Table 7. The object-based method had higher precision when estimating the stand age of
broad-leaved and coniferous forests, and the pixel-based method performed better when
estimating the stand age of mixed forests.

Table 7. The result of the canopy-height–stand-age dummy model and the accuracy verification.

Type Method R2 RMSE (yr) MAE (yr)

Broad-leaved
forests

Object-Based 0.53 16.6 13.5
Pixel-Based 0.44 24.0 25.4

Coniferous
forests

Object-Based 0.81 10.2 8.6
Pixel-Based 0.68 23.4 26.9

Mixed forests
Object-Based 0.66 10.4 8.8
Pixel-Based 0.89 6.6 7.5

5.3. Uncertainty of Forest-Stand-Age Estimation

Though the stand-age-estimation approach indicated preferable potentialities, there
were still uncertainties. First, the stand age was only developed by substituting spatial
differences for time differences, which could have resulted in higher uncertainty regarding
the stand-age estimates. This study did not consider the forest disturbances, and the
estimated stand age only represented a normal forest. The temporal sequences of spectral
values could be utilized to precisely identify when forest disturbances occurred in the
satellite record; combining the two aforementioned methods could increase the estimation
accuracy. Second, the canopy height was estimated according to the RF model, which
was a black-box model with poor interpretability, leading to significant uncertainty. Third,
a significant amount of field measurement data was needed to fit the growth curves of
the different forest types; therefore, limiting the number of samples had an impact on the
findings and the correctness of the fit. In addition, the GEDI footprints were sparse, which
also affected the accuracy of the estimation results. If the ICESat-2 data could be integrated
or advanced interpolation methods could be employed, the accuracy of the canopy height
could be increased.

6. Conclusions

In this study, we estimated stand age using object-based and pixel-based approaches
using canopy-height maps, which were generated via multi-resource remote sensing data.
The following were the primary conclusions:

The base and dummy models were established to fit the relationship between the
canopy height and the stand age. As a comparison, the results of the dummy variable
model had a higher accuracy. With the help of the canopy-height–stand-age model, a map
of the stand age was generated. The validation accuracy of the object-based estimation
results was better than that of pixel-based estimation results, with RMSE improvements of
40.17% and 33.47%, respectively. The estimated stand age was then divided into age classes
(young, middle-aged, premature, mature, and overmature forests) and compared with the
FID. The object-based method had similar results regarding the stand age, as compared
to the FID, but the results of the pixel-based approach were significantly overestimated.
When comparing different forest types, the object-based method had higher accuracy in the
stand-age estimations of broad-leaved forests (R2 = 0.53, RMSE = 16.6 yr, MAE = 13.5 yr),
followed by coniferous forests (R2 = 0.81, RMSE = 10.2 yr, MAE = 8.6 yr). However, the
pixel-based method performed better when estimating the stand age of mixed forests
(R2 = 0.89, RMSE = 6.6 yr, MAE = 7.5 yr). This study provides a reference for estimating
stand age and meets the requirements for stand-age data for studies on different forestry
applications at pixel and sub-compartment levels.
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