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Abstract: Photovoltaic (PV) panels convert sunlight into electricity, and play a crucial role in energy
decarbonization, and in promoting urban resources and environmental sustainability. The area of
PV panels in China’s coastal regions is rapidly increasing, due to the huge demand for renewable
energy. However, a rapid, accurate, and robust PV panel mapping approach, and a practical PV panel
classification strategy for large-scale applications have not been established. Here, we developed a
new approach that uses spectral and textural features to identify and map the PV panels there were in
coastal China in 2021 using multispectral instrument (MSI) and synthetic aperture radar (SAR) images,
and the Google Earth Engine (GEE), to differentiate PV panels according to their underlying surface
properties. Our 10-m-spatial-resolution PV panel map had an overall accuracy of 94.31% in 2021.
There was 510.78 km2 of PV panels in coastal China in 2021, which included 254.47 km2 of planar
photovoltaic (PPV) panels, 170.70 km2 of slope photovoltaic (SPV) panels, and 85.61 km2 of water
photovoltaic (WPV) panels. Our resultant PV panel map provides a detailed dataset for renewable
layouts, ecological assessments, and the energy-related Sustainable Development Goals (SDGs).

Keywords: renewable energy; photovoltaic panel; satellite images; decarbonized electricity; China’s
coastal regions

1. Introduction

Since the onset of the Industrial Revolution, global population growth and rapid
productivity development have resulted in an increase in demand for energy in human
activities [1,2]. Unfortunately, fossil fuel energy consumption has accelerated global warm-
ing through greenhouse gas emissions, which has substantially harmed human wellbeing
and ecological security [3]. However, renewable energy sources offer an effective solution
to reduce carbon emissions [4,5]. In the age of electrical engineering and the information
era, decarbonized electricity is the primary form of clean energy supply [6]. The 2030
Agenda for Sustainable Development aims to ensure universal access to affordable, reli-
able, sustainable, and modern energy, with solar energy being an optimal choice to meet
future energy demands, due to its usability, capacity, cost, and efficiency advantages [7].
Photovoltaic (PV) technology is an effective means of converting sunlight into electricity
and reducing greenhouse gas emissions [8]. The cost of photovoltaic panel installation has
gradually decreased with improvements in photovoltaic materials and the expansion of
the photovoltaic industry.

Countries worldwide are making significant efforts to implement photovoltaic power
generation projects, to achieve sustainable development goals. As of 2021, the global photo-
voltaic installed capacity exceeded 175 gigawatts (GW), and the cumulative photovoltaic
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installed capacity surpassed 942 GW, which substantially contributes to energy decar-
bonization. Despite being the world’s largest developing country, and having the highest
carbon emissions [9], China has implemented various policies and measures to address this
issue. In September 2020, China set the ambitious target to achieve carbon peak by 2030, by
promoting energy conservation, emission reduction, economic transformation, and energy
structure adjustments [10,11]. Notably, China’s photovoltaic industry has experienced
an impressive growth in the past five years, with the annual power generation having
increased by over 20%. Consequently, China has become the fastest-growing country in this
area, with a photovoltaic installed capacity of 54.9 GW, and a cumulative installed capacity
of 308.5 GW in 2021, which accounted for almost one-third of the world’s photovoltaic
installed capacity.

Photovoltaic power generation converts solar radiation into electrical energy using
crystalline silicon panels. The layout of these panels is closely related to the intensity of
solar radiation and the duration of sunshine. There are two main installation methods:
centralized and distributed. Centralized photovoltaic panels are typically installed in
sunny areas, such as low hills, deserts, water surfaces, and abandoned mines. In contrast,
distributed photovoltaic panels are usually installed on the surfaces of buildings, including
greenhouses and factories. The construction of photovoltaic power stations has given rise
to new models, such as agriculture–photovoltaic complementarity, fishery–photovoltaic
complementarity, and forestry–photovoltaic complementarity. These stations have alle-
viated energy-based poverty, and promoted economic development [12]. However, the
large-scale distribution of photovoltaic panels can occupy a substantial area of the land
surface. Photovoltaic panel installation in inland waters may influence flood control ability.
Photovoltaic panel construction on a sunny slope may destroy native vegetation, and may
increase the risk of fire disasters [13]. In China, the installation of photovoltaic panels
in riverways, lakes, and reservoirs is prohibited, and it is not permitted for photovoltaic
hybrid projects to occupy cultivated or forest lands. Additionally, distributed photovoltaic
installation in population-dense areas may cause noise, light pollution, and other issues.
On the other hand, installing photovoltaic panels on water surfaces created by abandoned
mines and mining subsidence areas can effectively restore ecology, and promote economic
development. As the photovoltaic power generation industry continues to rapidly develop,
there is an urgent need for the precise monitoring of these panels [14].

The current research on photovoltaic power generation primarily focuses on the de-
velopment of photovoltaic materials [15], the potential assessment of photovoltaic power
generation [16,17], photovoltaic panel monitoring [18], and analyses of the effects of pho-
tovoltaic power generation [19]. Common methods used to identify photovoltaic pan-
els include participatory cartography [20], deep learning [21,22], and the random forest
method [23]. The photovoltaic indexes were reported in the latest study [24]. The data
types mainly include aerial RGB images [25], multispectral images [26], hyperspectral im-
ages [27], and thermal infrared images [28]. The area of solar panels is small and distributed.
Low-spatial-resolution images result in a high level of error in recognizing distributed
photovoltaic panels. High-spatial-resolution images, such as UAV thermal infrared images,
can be used to accurately detect photovoltaic panels, but they are disadvantageous in the
large-scale mapping of photovoltaic panels. Visual interpretation achieves high accuracy,
but its time and labor consumption hinder its extensive implementation in the recognition
of photovoltaic panels. Additionally, the speed of data updates is frequently sluggish. Deep
learning methods, such as convolutional neural networks (CNNs) and recurrent neural net-
works (RNNs), have been employed in the extraction of high-resolution photovoltaic panel
images, but they demand significant computational resources [29,30]. The combination of
the random forest method and Sentinel satellite images has significant advantages in the
recognition accuracy and calculation efficiency regarding photovoltaic panels. Limited by
the spatial resolution, large-scale photovoltaic panel mapping is presently mainly domi-
nated by the Landsat series data. The spatial resolution of Landsat is 30 m, and the pixel
width is larger than the width of the photovoltaic panel, which may lead to an overesti-
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mation of the photovoltaic panel area. Currently, there is a notable mismatch between the
spatial distribution of electricity consumption and solar energy resources. The research on
photovoltaic panel classification has predominantly concentrated on regions with ample
solar energy resources, while regions characterized by a high electricity demand and a
pressing need for energy structure adjustments have received limited attention.

The environmental impact of photovoltaic panels varies according to latitude and
altitude [31]. Installing photovoltaics in arid areas reduces the solar radiation absorbed by
the surface under the PV panels, which creates a cold island effect that affects the surround-
ing area of the photovoltaic power station [32], reduces water evaporation, and increases
vegetation growth [33]. Different underlying surfaces have different natural conditions
that alter the environmental effects of the photovoltaic panels. Currently, few studies exist
on the classification of photovoltaic panels on different underlying surfaces, and there is
no secondary classification system for photovoltaic panels. The environmental impact of
photovoltaic panels has not been a focus, and this is not conducive to environmental effect
analysis and illegal installation monitoring.

The objectives of our study were to: (1) map the photovoltaic panels in China’s coastal
regions at a high spatial resolution, by integrating spectral information and textural features;
(2) differentiate PV panels, using their underlying surface properties; and (3) analyze the
spatial distribution characteristics of PV panels, and their impact on vegetation, in China’s
coastal regions.

2. Materials and Methods
2.1. Study Area

China’s coastal regions encompass 14 provincial administrative regions, spanning
approximately 1.34 × 106 km2 and crossing multiple climate zones, including tropical,
subtropical, and temperate regions. These regions are among the most economically
developed areas in China, with dense populations, industrial clusters, and a high electricity
consumption (Figure 1a). From north to south, these regions are home to four traditional
industrial bases: South Central Liaoning, Beijing–Tianjin–Tangshan, the Yangtze River
Delta, and the Pearl River Delta. They also comprise three high-tech industrial belts: Beijing–
Tianjin–Shijiazhuang, Shanghai–Nanjing–Hangzhou, and the Pearl River Delta. In 2020, the
total population of China’s coastal regions was about 46.25% of the national population, the
GDP was about 56.15% of the national GDP, and the power consumption was about 53.45%
of the nation’s demand. Except for in Fujian and Taiwan, the power consumption of the
regions was higher than the supply, and the power gap was 691.95 billion kWh (Figure 1c).
China’s coastal regions have some photovoltaic power generation potential (Figure 1b).
The traditional industrial base of these regions, and the widespread high-tech enterprises
create a promising market demand for renewable energy.

2.2. Data Sources
2.2.1. Satellite Datasets

The remote sensing images were obtained exclusively from the Google Earth Engine
(GEE) platform. The Sentinel-1 synthetic-aperture radar (SAR) is a dual-polarization SAR
C-band instrument operating at 5.405 GHz (C band) with a spatial resolution of 10 m and
a repeat cycle of 6 days at the equator. The data acquisition was not affected by cloud
coverage, and the monitoring data were effectively acquired continuously, irrespective of
the weather. The GEE platform has eliminated thermal noise, and implemented radiometric
calibration and terrain correction for the SAR ground range detected images. On the other
hand, the Sentinel-2 multispectral instrument (MSI) dataset is a high-spatial-resolution
multispectral dataset with a repeat cycle of 5 days at the equator, and a highest spatial
resolution of 10 m. However, the quality of the data collected was sensitive to cloud
coverage. Nevertheless, the GEE platform implemented geometric calibration, radiometric
calibration, and atmospheric calibration to improve the data quality. We collected all the
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available 3801 SAR images, and 35,358 MSI images from 1 January 2021 to 31 December
2021 in GEE, to map the coastal PV panels (Figure 2a).

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 22 
 

 

 
Figure 1. (a) The location of the study area and the brightness of the night light; (b) the long-term 
yearly average of the potential PV electricity production period from 2007 to 2018, with data sourced 
from https://globalsolaratlas.info/map (accessed on 6 August 2022); and (c) the electricity production 
and consumption in different regions. 

2.2. Data Sources 
2.2.1. Satellite Datasets 

The remote sensing images were obtained exclusively from the Google Earth Engine 
(GEE) platform. The Sentinel-1 synthetic-aperture radar (SAR) is a dual-polarization SAR 
C-band instrument operating at 5.405 GHz (C band) with a spatial resolution of 10 m and 
a repeat cycle of 6 days at the equator. The data acquisition was not affected by cloud 
coverage, and the monitoring data were effectively acquired continuously, irrespective of 
the weather. The GEE platform has eliminated thermal noise, and implemented radio-
metric calibration and terrain correction for the SAR ground range detected images. On 
the other hand, the Sentinel-2 multispectral instrument (MSI) dataset is a high-spatial-
resolution multispectral dataset with a repeat cycle of 5 days at the equator, and a highest 
spatial resolution of 10 m. However, the quality of the data collected was sensitive to cloud 
coverage. Nevertheless, the GEE platform implemented geometric calibration, radio-
metric calibration, and atmospheric calibration to improve the data quality. We collected 
all the available 3801 SAR images, and 35,358 MSI images from 1 January 2021 to 31 De-
cember 2021 in GEE, to map the coastal PV panels (Figure 2a). 

Figure 1. (a) The location of the study area and the brightness of the night light; (b) the long-term
yearly average of the potential PV electricity production period from 2007 to 2018, with data sourced
from https://globalsolaratlas.info/map (accessed on 6 August 2022); and (c) the electricity production
and consumption in different regions.

Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 22 
 

 

 
Figure 2. (a) The spatial distribution of the cloudless Sentinel-2 image frequency, and (b) the spatial 
distributions of the photovoltaic panel and non-photovoltaic panel sample points. 

2.2.2. Other Auxiliary Data 
To differentiate slope photovoltaic panels (SPV), water photovoltaic panels (WPV), 

and planar photovoltaic panels (PPV), DEM data and historical water body data are es-
sential. NASA Digital Elevation Model (NASADEM) filled in missing data using the Shut-
tle Radar Topography Mission (SRTM), which improved both the accuracy and coverage 
of the original data, and enabled the more precise calculation of the slope data. The China 
Land Cover Dataset (CLCD) was created by extracting stable sample features and time-
series data from all the available Landsat images on the GEE platform. Using the random 
forest classifier and spatial–temporal filtering and logical reasoning, the first annual land-
cover dataset of China was extracted for the period between 1990 and 2021, with a spatial 
resolution of 30 m. This dataset shows good spatial–temporal consistency, and is useful 
in spatial–temporal change detection [34]. 

2.3. Methods 
We have developed a pixel-based approach for mapping PV panels. The processing 

workflow comprised four steps (Figure 3): (a) the preprocessing of the satellite images and 
the calculation of the characteristic bands; (b) the building of a classifier by selecting the 
sample points and performing post-classification processing; (c) the distinction of photo-
voltaic panels using the underlying surface properties; and (d) the random selection of 
verification points, to assess the accuracy of the approach. 

Figure 2. (a) The spatial distribution of the cloudless Sentinel-2 image frequency, and (b) the spatial
distributions of the photovoltaic panel and non-photovoltaic panel sample points.

https://globalsolaratlas.info/map


Remote Sens. 2023, 15, 3712 5 of 20

2.2.2. Other Auxiliary Data

To differentiate slope photovoltaic panels (SPV), water photovoltaic panels (WPV), and
planar photovoltaic panels (PPV), DEM data and historical water body data are essential.
NASA Digital Elevation Model (NASADEM) filled in missing data using the Shuttle Radar
Topography Mission (SRTM), which improved both the accuracy and coverage of the
original data, and enabled the more precise calculation of the slope data. The China Land
Cover Dataset (CLCD) was created by extracting stable sample features and time-series
data from all the available Landsat images on the GEE platform. Using the random forest
classifier and spatial–temporal filtering and logical reasoning, the first annual land-cover
dataset of China was extracted for the period between 1990 and 2021, with a spatial
resolution of 30 m. This dataset shows good spatial–temporal consistency, and is useful in
spatial–temporal change detection [34].

2.3. Methods

We have developed a pixel-based approach for mapping PV panels. The processing
workflow comprised four steps (Figure 3): (a) the preprocessing of the satellite images
and the calculation of the characteristic bands; (b) the building of a classifier by selecting
the sample points and performing post-classification processing; (c) the distinction of
photovoltaic panels using the underlying surface properties; and (d) the random selection
of verification points, to assess the accuracy of the approach.
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2.3.1. Preprocessing of Satellite Images and Calculation of Characteristic Bands

The satellite images were screened on the GEE platform, using the study area scope
and time. The MSI images were pre-processed to eliminate clouds and shadows, using
the quality assessment (QA) bands and cloud-mask algorithm. We separately synthesized
the medians of all the SAR and MSI images in 2021, as the imagery. The reflectivity of the
solar array at the near-infrared bands and visible bands is relatively low, but its reflectivity
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at the far-infrared band is relatively high [35]. Photovoltaic panels are typically arranged
in matrices, separated by roads, which forms specific textures [36]. Therefore, combining
spectral information and textural characteristics can improve the recognition accuracy of
photovoltaic panels.

To extract the spectral features, the Blue (B2), Green (B3), Red (B4), and Shortwave
Infrared 1 (B11) bands were selected from the MSI. We calculated the normalized difference
vegetation index (NDVI) [37], normalized difference built-up index (NDBI) [38], and
normalized difference water index (NDWI) [39]. The backscattering coefficient in the
Sentinel SAR images can reflect the texture information of surface objects. Textural features
were extracted from Sentinel SAR images through the selection of the VH band and
calculation of the gray co-occurrence matrix. The sum average (VHsavg) was chosen for
the texture characteristic bands [36].

2.3.2. Build Classifier and Make Post-Classification Processing

The random forest (RF) classifier generates multiple decision trees through the ran-
dom selection of training samples and variable subsets [40]. This approach yields a high
classification accuracy, computational efficiency, and stability when processing multidi-
mensional data [41]. The quantity and area of the sample points can significantly affect the
classification results of the random forest. To ensure optimal results, the area of training
samples should account for about 0.25% of the total study area [42]. For our study, we
labeled 10,526 vector polygons from Google images and MSI RGB images, using the visual
discrimination method, as samples, of which 8053 were photovoltaic sample points, and
2473 were non-PV (NOPV) sample points. The total area covered by the PV samples was
approximately 2701.86 km2, which accounted for about 0.2% of the total study area. The
NOPV sample area was approximately 2639.83 km2. We collected the central points of
the sample vector polygons, and plotted the sample distribution map (Figure 2c). The
classification results of the RF were found to be insensitive to the number of trees [43]. To
enhance the computational efficiency, we constructed a random forest classifier on the GEE
platform with 200 trees, while retaining the default values for the other parameters.

During the identification process, photovoltaic panels can be subject to interference
from materials of the same spectrum but a different composition, as well as materials of
different spectra but an identical composition. This interference can manifest as salt-and-
pepper noise in the potential photovoltaic panels. To address this issue, we employed
the Smoothing and Aggregation techniques in ENVI for the morphological processing of
the classified data. Specifically, we set the Smooth Kernel Size to three, which effectively
removed speckling noise during the cleanup. Additionally, we filtered out regions with
fewer than nine clustered pixels, to ensure the accuracy of our results.

2.3.3. Differentiation of PV Panels

Photovoltaic panels installed on various underlying surfaces may result in disparate
ecological and environmental effects. To categorize the photovoltaic panels using the prop-
erties of the underlying surface, those installed on slopes greater than 5◦ were classified as
SPV, while those installed on water surfaces were designated as WPV. The remaining panels
were classified as PPV. WPV panels have the potential to alter the spectral characteristics of
the water body, leading to the misinterpretation of the water surface as a non-water body.
To mitigate the impact of land-cover interpretation errors on WPV panels, the water bodies
in CLCD products from 2015 and 2021 were superimposed as the underlying surfaces
for the SPV assessment. Furthermore, we performed manual visual calibration of the
secondary classification of photovoltaic panels, by superimposing Google images in QGIS.
Figure 4 illustrates the diverse processing outcomes of photovoltaic panels on different
underlying surfaces.
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2.3.4. Accuracy Assessment

The photovoltaic panel map of China’s coastal regions in 2021 was extracted by
combining machine learning and manual visual interpretation. To verify the accuracy
of the extraction results, 7000 verification points were produced randomly, including
2754 NOPV verification points, 1074 WPV verification points, 1173 SPV verification points,
and 1999 PPV verification points (Figure 5). We calculated the classification results of
the various processing stages based on the confusion matrix, as well as the producer
accuracy, user accuracy, overall accuracy (OA), and kappa coefficient for the different PV
types. The producer accuracy measures the proportion of the actual positive instances
that are correctly identified by a classifier. The user accuracy measures the proportion
of the predicted positive instances that are actually true positives. The OA measures the
proportion of the correctly classified instances, out of the total number of instances [44,45].
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3. Results
3.1. Extraction Results and Precision Verification
3.1.1. Accurate Assessment of the Different Processing Maps

The overall accuracies of the potential photovoltaic panels, post-classification process-
ing, and reclassifying were 95.07%, 93.07%, and 94.31%, respectively. The kappa coefficients
were 0.86, 0.88, and 0.89, respectively. Due to the lack of morphological calculation for
potential photovoltaic panels, there is little overlap between the validation points and noise,
which resulted in a higher overall accuracy, but with obvious salt-and-pepper noise visually.
The accuracy decreased after the post-classification processing, with reduced noise, and the
accuracy improved after the visual interpretation correction (Table 1).
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Table 1. The accuracy of the different processing procedures.

NOPV PV Producer Accuracy

Potential
photovoltaic

NOPV 2697 288 97.93%
PV 57 3958 93.22%

User accuracy 90.35% 98.58% 95.07% (OA)

Post-classification
NOPV 2712 443 98.47%

PV 42 3803 89.57%
User accuracy 85.96% 98.91% 93.07% (OA)

Reclassification
NOPV 2736 380 99.35%

PV 18 3866 91.05%
User accuracy 87.80% 99.54% 94.31% (OA)

3.1.2. Accuracy of Different Types of PV

The classification accuracy of different photovoltaic types on different land surfaces
is primarily influenced by the slope and the water distribution. The four types of photo-
voltaic panels, namely NOPV, PPV, SPV, and WPV, have the respective user accuracies of
87.80%, 87.78%, 94.89%, and 89.16%. The overall classification accuracy of the four types
of photovoltaic panels is 89.06%. The inaccurate recognition of water bodies may cause
WPV panels to be mistakenly identified as non-water areas during land-use classification,
which results in a relatively lower user accuracy for PPV and WPV panels, compared to
SPV panels (Table 2).

Table 2. The accuracy for the different types of photovoltaic panels.

NOPV PPV SPV WPV Producer Accuracy

NOPV 2736 220 117 43 99.35%
PPV 12 1631 52 163 81.59%
SPV 6 44 1003 4 85.51%
WPV 0 104 1 864 80.45%

User accuracy 87.80% 87.78% 94.89% 89.16% 89.06% (OA)

3.2. Spatial Distribution of Photovoltaic Panels

The kernel density distribution map of photovoltaic panels in China’s coastal regions
is shown in Figure 6a. Given the spatial positions, the photovoltaic panels were concen-
trated in the western region of Liaoning, the western region of Hebei, the middle region
of Shandong, the southern region of Jiangsu, the northern region of Zhejiang, and the
southwestern region of Taiwan. Generally, there were more photovoltaic panels in northern
China, but fewer in southern China.

The total area of photovoltaic panels in China’s coastal regions in 2021 was about
510.78 km2, and the average PV panel density reached 378.77 m2 per km2. The photovoltaic
panel area in the different regions, and the cumulative grid-connected capacity in 2021 are
shown in Figure 6d. The photovoltaic panel areas in Hebei, Jiangsu, and Shandong were
relatively large (132.84 km2, 98.35 km2, and 93.63 km2), and accounted for about 63.71%
of total photovoltaic panel area in the coastal regions. Moreover, these three provinces
are the regions with the highest grid-connected capacity. Specifically, Shandong has the
highest grid-connected capacity (3.34 × 107 kW). The photovoltaic panel area of Hong
Kong and Macao was the smallest, which accounted for less than 1 km2. In 2021, the
photovoltaic cumulative grid-connected capacity and the photovoltaic panel area presented
a linear relationship. The grid-connected capacity per 1 km2 of photovoltaic panel area
was approximately 2.44 × 105 kW (Figure 6c). Among the three types of photovoltaic
panels, PPV, WPV, and SPV accounted for about 49.82%, 33.42%, and 16.76%, respectively
(Figure 6b). The PPV panels were mainly distributed in Hebei, Shandong, and Jiangsu. The
WPV panels were mainly distributed in Jiangsu, Zhejiang, and Shandong. The SPV panels
were mainly distributed in Hebei, Shandong, and Liaoning (Figure 6d). The composition of
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the three PV types was different in different regions. In Hebei, PPV and SPV accounted
for the largest area (89.97 km2 and 33.84 km2) in the study area. Jiangsu possessed the
largest area of WPV panels (61.17 km2), which accounted for 35.90% of the total area of
WPV panels. For Jiangsu, Zhejiang, Tianjin, Taiwan, and Hong Kong, WPV was the most
common panel type, and SPV was the most common in Liaoning. In other regions, PPV
was the major PV type.
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The provinces with the highest photovoltaic panel area per square kilometer, ranked
from highest to lowest, were as follows: Tianjin, Jiangsu, Hebei, Shandong, Zhejiang,
Taiwan, Guangdong, Liaoning, Shanghai, Hainan, Guangxi, Fujian, Hong Kong, and
Macao, respectively. The PV panel area per square kilometer (in square meters) was 1225.77,
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943.21, 703.25, 594.87, 408.42, 366.42, 242.99, 240.03, 219.83, 198.83, 75.25, 46.85, and 39.11,
respectively. Hebei has the highest density of both PPV and SPV panels, whereas Jiangsu
has the highest density of WPV panels.

The SPV panels were mainly found in mountainous and hilly regions. The WPV
panels were distributed in lakes, reservoirs, rivers, and tidal areas. SPV and WPV were
mainly concentrated types. The PPV panels were mainly located on plains and on building
surfaces, including some distributed types (Figure 7a). In different regions, photovoltaic
panels were concentrated at different positions. The photovoltaic panels in the western
region of Liaoning and the western region of Hebei were mainly concentrated on mountain
and hill surfaces. Some photovoltaic panels in the middle of Shandong were installed on
low-hill surfaces. Photovoltaic panels were installed on cultivated land and on greenhouses
in plains regions. Due to the low terrain and developed industries in the southern region
of Jiangsu and the northern region of Zhejiang, photovoltaic panels were mainly installed
on residential buildings, factories, and some water surfaces. The photovoltaic panels in
the southwest region of Taiwan were mainly installed on the water surface, flat areas, and
factory buildings.
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3.3. The Impact of Photovoltaic Panels on Vegetation

The installation of photovoltaic panels on various underlying surfaces causes different
environmental impacts, with the most significant being changes in the landscape. The
vegetation on the surface is most affected by the installation of photovoltaic panels. NDVI
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is an accurate gauge of vegetation biomass and growth status. Using statistical data, there
were relatively few photovoltaic installations in the study area in the year 2010. To examine
the variations in the vegetation before and after photovoltaic installation, we selected the
Landsat dataset, and synthesized the annual NDVI averages for 2010 and 2021 using Google
Earth Engine. To reduce the effects caused by differences in the vegetation type, we divided
the photovoltaic panels of the coastal regions of China into six subsets using China’s climate
division, and compared and analyzed the impacts of photovoltaic installation on different
underlying surfaces under different climates. The climate zones from north to south are
the middle temperate zone, southern temperate zone, northern subtropical zone, middle
subtropical zone, southern subtropical zone, and middle tropical zone.

In China’s coastal regions, photovoltaic panels are primarily installed in the south
temperate, north subtropical, and middle temperate zones. The efficiency of photovoltaic
power generation is significantly affected by temperature and weather conditions, with
high temperatures resulting in a reduced efficiency. Thus, the environmental conditions
are crucial in determining the layout of PV power plants. The PV types underlying each
climate zone vary considerably, with PPV panels being primarily installed in the middle
and south temperate zones, SPV panels in the same zones, and WPV panels in the south
temperate and north subtropical zones (Table 3).

Table 3. The area of photovoltaic panels in different climate zones (km2).

Climate Zones PPV SPV WPV

Mid-temperate 68.04 21.64 9.65
South-temperate 107.88 46.28 64.58
North-subtropical 35.37 2.92 70.31
Mid-subtropical 13.14 7.91 8.75
South-subtropical 27.23 6.32 16.64
Mid-tropical 3.32 0.45 0.36

The NDVI values before the installation of photovoltaic panels varied in different
regions. Overall, the NDVI is higher on slopes than on planar ground and water surfaces.
The mean and median NDVI values of the PPV panels in the middle temperate zone are
higher than those of the SPV and WPV panels. In the south temperate zone, the mean
NDVI of SPV panels is higher than that of PPV panels, but the median is lower. In other
regions, the mean and median NDVI values of SPV panels are higher than those of PPV
and WPV panels. The vegetation level is lower in water bodies, and the NDVI of WPV
panels is the smallest. After the installation of photovoltaic panels, the range of NDVI
extremes becomes smaller, which indicates a reduction in NDVI differences (Figure 8).

The NDVI before and after the installation of PV panels varied among the climate
zones. After the installation of photovoltaic panels on planar ground and slopes in the mid-
dle temperate zone, the NDVI increased, while in other regions, the NDVI decreased after
the installation of photovoltaic panels on planar ground and slopes. After the installation
of WPV panels in water bodies in the north subtropical and central subtropical zones, the
NDVI of the water bodies decreased, while, in other regions, it increased. The PPV panels
in the north subtropical and south subtropical zones has distinct high and low value areas,
mainly because the PPV panels are mainly installed on flat ground with a slope less than 5◦,
including flat ground with vegetation and building surfaces. Many building surfaces in the
Yangtze River Delta region of the north subtropical zone, and in the Pearl River Delta and
Taiwan in the south subtropical zone have installed a large number of photovoltaic panels,
and the NDVI of building surfaces is relatively low, which results in the aggregation of
NDVI in low-value areas (Figure 8).
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3.4. Comparison of Different Data

The photovoltaic power generation station data (PV_China_2020) in China in 2020
were obtained from the GEE platform, using the random forest algorithm. The data sources
were Landsat images, and the spatial resolution was 30 m [46]. In contrast, our PV
map (2021_PV) had the higher spatial resolution of 10 m. The timing of the mapping
of PV_China_2020 and 2021_PV was different. The general trends of the two data types
were consistent. The area of PV_China_2020 was larger than 2021_PV in most coastal
regions, while the area of 2021_PV in Taiwan was larger than PV_China_2020 (Figure 9).
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We chose the photovoltaic panels installed before 2020 for comparison. The back-
ground images in Figure 10 were formed by combining the MSI RGB bands in 2020. Due
to differences in the image spatial resolution and extraction techniques, the two datasets
display varying degrees of precision for the same objects. The 2021_PV dataset has a higher
spatial resolution, and more accurately depicts the photovoltaic panel details. Additionally,
2021_PV exhibits an improved identification accuracy for these panels in China’s coastal
regions, because of differences in the study area. It is worth noting that the PV_China_2020
dataset underwent morphological operations during the post-classification processing,
which captured more photovoltaic panels on fragmented building surfaces. However, this
process may have overestimated the panel area (Figure 10a). Both datasets display varying
degrees of inaccuracies on building surfaces and hilly mountainous terrain (Figure 10c,e).
The 2021_PV dataset accurately depicts small and narrowly distributed photovoltaic panels
(Figure 10b,d). On flat terrain, both datasets exhibit a high identification accuracy, with the
2021_PV dataset providing more precise details (Figure 10f).
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4. Discussion
4.1. Reliability of the PV Panel Mapping

Here, we developed a mapping approach for China’s coastal photovoltaic panels,
using Sentinel-1 and Sentinel-2, on the GEE platform. This is the first study to differentiate
between types of photovoltaic panels at a 10-m spatial resolution along the coastal regions
of China. The successful implementation of this study was attributed to three factors,
including high0spatial-resolution cloud-free satellite imagery, robust classification methods,
and practical strategies for differentiating the photovoltaic panel types.

Firstly, photovoltaic panels are typically installed in areas with ample solar radiation.
The coastal regions of China are situated within monsoon climate zones, characterized by
abundant precipitation and distinct seasonal variations. Clouds, cloud shadows, and terrain
shadows can significantly impact the observation quality of optical imagery [47], with
notable differences between the study area’s northern and southern regions, and the surface
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reflectance is easily influenced by the phenological period. To address these issues, we
utilized median synthesis on all effective pixels in GEE, to avoid cloud-layer impacts on the
pixel spectra and textural features, while maintaining phenological period consistency [48].
During the sample-labeling process, we utilized a combination of high-resolution Google
images and MSI RGB images, to minimize the temporal disparities between the samples
and the images. This approach proved effective in reducing classification errors.

Secondly, we selected the random forest classifier, as its faster processing of multi-
source data, higher classification accuracy, and fewer required parameters made it the ideal
choice for photovoltaic panel extraction from the SAR and MSI images [49,50]. Additionally,
we visually selected 10,526 surface samples, and judged 7000 random verification points
visually. We also performed artificial visual correction with the classification results. The
combination of machine learning classification and visual interpretation achieved a higher
overall accuracy in the extraction of photovoltaic panels in China’s coastal regions.

Finally, different regions have different environmental conditions, and classifying
photovoltaic panel types according to the nature of the underlying surface was conducive
to analyzing changes in the environment before and after the photovoltaic panel installation.

4.2. Source of Errors in the PV Panel Map

Photovoltaic panels are installed in various ways across different regions. Major
sources of errors include different spectra of the same object, and the same spectra from
different objects. Differences in the installation direction and distance result in notable
variations in the photovoltaic panel matrix’s spectral and textural information, thereby
hindering full recognition. Figure 11(a1) demonstrates that photovoltaic panels installed
horizontally over vast distances exhibit different characteristics from those that are installed
at a slope with minimal row differentiation. In addition, the reflectivity of high-density
photovoltaic panels was higher for bands B2, VH, and VHsavg (Figure 11(a3)). The
spectral information of photovoltaic panels on complicated surface objects, such as those
on an agricultural greenhouse, was influenced by complicated background pixels, and
was thus significantly different from the NDVI and NDBI of surface photovoltaic panels
(Figure 11(b3)). Due to the large study area and the large number of pixels in the calculation,
the study area was divided into blocks under the limited calculation capacity. The spectra
and textural information varied significantly among different positions in the mining areas.
In a unit block, mining samples might be insufficient, and they might be recognized as two
surface objects, due to the great differences in characteristics. Thus, some mining samples
were wrongly classified as photovoltaic panels during interpretation (Figure 11(c3)).

Differences in feature bands can lead to incomplete photovoltaic identification (Figure 12(a1)),
and small photovoltaic panels that are identified may be eliminated during post-processing
(Figure 12(a2)). Manual visual interpretation can improve the accuracy of the results
(Figure 12(a3)). Although the distributed photovoltaic panels installed on buildings can
be recognized due to their small areas, they might be broken and removed as salt-and-
pepper noise during the morphological calculation and, thus, some photovoltaic panels on
buildings might be missed (Figure 12(d3)). Additionally, road edges might be recognized
as photovoltaic panels, but they were all removed during the post-classification processing
(Figure 12(c3)).
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4.3. Potential Applications of the Identification Approach, and Challenges Faced by
PV Development

To extract photovoltaic panels, we used a comprehensive approach that integrated
both cloud and local processing with machine learning and visual interpretation. Textural
features and spectral information are also integrated into this approach. Our method
established a framework for mapping high-spatial-resolution photovoltaic panels over
large areas, and produced data products that can be used to monitor the photovoltaic panel
area. Our classification method can distinguish between PPV, SPV, and WPV panels, using
the underlying surface type, which serves as a basis for exploring the ecological effects of
photovoltaic panels. This method can be applied to obtain large-scale and long-term spatial
data on PV panels, playing a pivotal role in the spatial layout and management of these
panels. Nevertheless, the interpretation accuracy of the distributed photovoltaic panels
installed on greenhouses, in residential areas, and on factories requires improvement,
as it is influenced by the image resolution and classification algorithms. Furthermore,
photovoltaic panels covering water bodies, farmland, grassland, and building surfaces are
often difficult to accurately differentiate, and can instead be identified as water bodies,
farmland, or grassland. The process of extracting photovoltaic panels can enhance the
accuracy of land-cover mapping.

Photovoltaic panels can be classified into centralized and distributed types, using their
installation scale. Centralized photovoltaic panels are larger in size, and produce electricity
that is connected to the grid. They are mainly distributed in desert areas, on water surfaces,
on mountain slopes, and in plains areas that have a substantial surface area, and they
serve as the primary source of photovoltaic power. The distributed photovoltaic panels
are mainly installed in regions close to residential areas, such as roofs and agricultural
greenhouses. The composite installation mode makes full use of stereoscopic spaces.
Distributed photovoltaic panels are primarily located near human settlements, including
homes and agricultural greenhouses. The combined installation fully exploits the vertical
space, with a smaller area for the photovoltaic panels. The generated electricity is mainly
for local consumption, while some of it is connected to the grid.

Despite their provision of substantial clean energy, we cannot ignore the ecological
and environmental issues that photovoltaic power generates during its production and op-
eration. The production of crystalline silicon photovoltaic components and cells produces
harmful substances and carbon emissions. Although the lifespan of these components is
long, it still poses economic and technical issues related to recycling and the non-harmful
treatment of waste photovoltaic modules [51]. The main challenge is to improve the photo-
electric conversion efficiency [52]. Photovoltaic panel installations can alter the humidity,
temperature, light, sound, and other factors that can directly or indirectly impact biodiver-
sity and ecosystem development, and even lead to fires and light pollution. Furthermore,
dust, solar radiation, and temperature have a considerable impact on the power generation
efficiency of panels. Therefore, sensible placement, better materials, and increased recycling
are ways to promote sustainable development in photovoltaic power [53,54].

5. Conclusions

Photovoltaic power generation is an effective way for China’s coastal regions to achieve
energy decarbonization and environmentally sustainable development. The accurate
mapping of photovoltaic panels provides visual spatial data for monitoring photovoltaic
panel layouts, and evaluating the effect of photovoltaic power generation on ecology
and the environment. Here, we used satellite surface reflectance data, a large-scale high-
resolution mapping method, a cloud computing platform, machine learning, and manual
visual interpretation to produce photovoltaic panel maps with high accuracy. We also
classified photovoltaic panels by type, according to their underlying surface properties.

We generated a detailed 10-m PV panel map of coastal China in 2021, and we found
that the total area of photovoltaic panels in China’s coastal regions was about 510.78 km2.
The PV panels could be classified into PPV, SPV, and WPV panels, according to their
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underlying surface properties. PPV panels accounted for the highest proportion of the
area. Photovoltaic panels were mainly concentrated in the northern regions of the study
area, and there were large-scale photovoltaic power generation sites in Hebei, Jiangsu,
and Shandong. After the morphological calculation and artificial visual correction, the
overall accuracy of our photovoltaic panel classification was 94.31%. The overall accuracy
of the different types of photovoltaic panels was 89.06%. The photovoltaic panels that
are interpreted at a high spatial resolution can describe details more thoroughly. When
photovoltaic panels are installed, they alter the original landscape, and can potentially
harm local vegetation. Different types of photovoltaic panels have varying impacts on the
vegetation in different climatic regions. Photovoltaic panels usually reduce the green cover
of the land surface, but installing photovoltaic panels in the middle temperate region will
promote vegetation growth.
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