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Abstract: Flood risk assessment and mapping are considered essential tools for the improvement of
flood management. This research aims to construct a more comprehensive flood assessment frame-
work by emphasizing factors related to human resilience and integrating them with meteorological
and geographical factors. Moreover, two ensemble learning models, namely voting and stacking,
which utilize heterogeneous learners, were employed in this study, and their prediction performance
was compared with that of traditional machine learning models, including support vector machine,
random forest, multilayer perceptron, and gradient boosting decision tree. The six models were
trained and tested using a sample database constructed from historical flood events in Hefei, China.
The results demonstrated the following findings: (1) the RF model exhibited the highest accuracy,
while the SVR model underestimated the extent of extremely high-risk areas. The stacking model
underestimated the extent of very-high-risk areas. It should be noted that the prediction results of
ensemble learning methods may not be superior to those of the base models upon which they are
built. (2) The predicted high-risk and very-high-risk areas within the study area are predominantly
clustered in low-lying regions along the rivers, aligning with the distribution of hazardous areas
observed in historical inundation events. (3) It is worth noting that the factor of distance to pumping
stations has the second most significant driving influence after the DEM (Digital Elevation Model).
This underscores the importance of considering human resilience factors. This study expands the
empirical evidence for the ability of machine learning methods to be employed in flood risk assess-
ment and deepens our understanding of the potential mechanisms of human resilience in influencing
urban flood risk.

Keywords: flood risk assessment; ensemble learning model; urban flood; remote sensing data;
machine learning

1. Introduction

As the most common natural disaster, floods cause a large number of casualties and
economic losses every year [1]. With urbanization and climate change, an increasing
number of cities are affected by flood disasters [2,3]. The large-scale construction of houses
and paving of roads in the process of urbanization have led to a significant increase in
surface imperviousness, a decrease in infiltration, and a continuous increase in urban
runoff, which increases the load on drainage facilities [4,5]. At the same time, climate
change has increased the frequency of extreme weather events. In its 2021 report, the
Intergovernmental Panel on Climate Change (IPCC) stated that climate change is effecting
global weather extremes and extreme climate events, causing an increase in the intensity
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and frequency of extreme precipitation in regions such as East Asia, Southeast Asia, and
South Asia. The serious situation of flood disasters has prompted people to take technical
and non-technical disaster prevention measures to build a flood protection system for
cities [6,7].

In recent years, non-engineering measures represented by flood risk assessment have
gradually ascended as the dominant approach to urban flood control [8,9]. The primary
methods of flood risk assessment are historical disaster mathematical and statistical meth-
ods, multi-criteria decision analysis, remote sensing image analysis, scenario simulation
analysis, and machine learning methods [10,11]. The historical disaster mathematical and
statistical methods refer to the collection of historical flood event disaster data and then the
analysis of these data using mathematical and statistical methods [12–15]. The multi-criteria
decision analysis method is used to evaluate flood risk in the study area by constructing
a system of flood risk assessment indicators and applying methods such as hierarchical
analysis and the fuzzy comprehensive evaluation method [16–19]. This method can visually
reflect the relationship between each indicator and flood risk. Most of the current indicator
weights are calculated based on expert knowledge and experience [20]. The remote sens-
ing image analysis method uses remote sensing technology to obtain information on the
inundation extent, inundation duration, and affected bodies in the disaster area and then
uses GIS and other tools to spatially analyze this remote sensing information [21–24]. The
scenario simulation analysis method, for different scenarios, uses hydrodynamic models to
simulate possible disaster events [25–27], and risk assessment is performed based on the
simulation results. With the continuous advances in artificial intelligence, remote sensing,
and computer technology, machine learning methods have started to be applied in flood
risk assessment [28] and provide a superior performance and more cost-effective solution
for flood disaster prediction [29].

However, the historical disaster mathematical and statistical method necessitates de-
tailed historical data, which limits its flexibility for risk assessment in rapidly changing
urban areas. The remote sensing image analysis method may inaccurately capture flood
dynamics due to constraints in temporal and spatial resolution, particularly for small-scale
incidents. The multi-criteria decision analysis method heavily relies on expert knowledge,
resulting in subjectivity and uncertainty in the evaluation outcomes. The scenario sim-
ulation analysis method requires a substantial amount of high-resolution geographical,
hydrological, and artificial facility data. The modeling process is complex and entails
significant computational resources [30].

Compared to traditional models mentioned above, the machine learning methods
exhibit higher performance and less complexity [31]. They offer notable advantages,
including: (1) the rapid extraction of features and information from extensive datasets,
(2) the utilization of interdisciplinary techniques for processing large amounts of data
from multiple sources, and (3) high speed in generating predictions, making them highly
promising for real-time flood modeling and risk prediction.

Thus far, numerous attempts have been made to apply machine learning models
for the purpose of flood risk assessment and zoning in both watersheds and urban areas.
Tehrany used a decision tree model for flood risk assessment in Kelantan, Malaysia [32].
Mojaddadi combined frequency ratios with support vector machines for flood risk analysis
in the Baisalot River Basin in Malasia [33]. Tehrany improved the support vector machine
model using weight of evidence (WoE) to improve the accuracy of flood risk assessment [34].
Pham used a method combining a deep learning network and hierarchical analysis to map
regional flood risk more accurately [35]. Wang used the random forest model for flood
risk assessment and used the support vector machine for comparison [36]. Zhao used a
semi-supervised support vector machine model to address the sparse sample size, which
led to some improvement in the accuracy of the prediction results [37]. Zhao and Wang
used a convolutional neural network for flood risk assessment, considering the influence
of the surrounding environment, and achieved superior results compared to traditional
machine learning methods [38,39].
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The main differences between this study and the previous published works are mainly
reflected in the following two aspects: Firstly, the majority of flood risk assessment research
has predominantly focused on meteorological, hydrological, and geographical environmen-
tal factors from a natural perspective, with some literature also considering the impact of
social vulnerability [40,41]. However, the impact of human resilience factors, such as urban
flood control measures, has received limited attention, despite their undeniable relevance
to urban flood risk. Therefore, this research aims to address this gap by considering factors
related to human resilience and integrating them with meteorological and geographical
factors, thus constructing a more comprehensive flood assessment framework.

Secondly, ensemble learning models, as machine learning models with superior algo-
rithms, have gradually started to be applied in the assessment of various natural disasters.
However, their applicability and generalization ability in urban flood assessment have
not been fully explored [42]. The authors will introduce and compare ensemble learning
models based on heterogeneous learners with the predictive performance of traditional
machine learning models.

Hence, the characteristics of the research domain and the availability of data were taken
into consideration in this study. Factors related to urban flooding from three perspectives,
namely, natural geography, meteorological hydrology, and human resilience, were selected.
The assessment of flood risk in the research area was conducted using multiple single
machine learning models and ensemble learning models. The training and testing datasets
for these models consisted of historical flood inundation hotspots. After optimizing the
hyperparameters of these models, predictions were made regarding the spatial distribution
of flood risk within the study area. The applicability of the different models was evaluated
by considering their accuracy and their alignment with the historical inundation areas,
and the underlying mechanisms between urban flood risk and its driving factors were
determined. The research outcomes can provide valuable references for flood management
in cities with similar geographical environments and levels of urbanization.

2. Study Area and Materials
2.1. Study Area

The study area is located in the central district of Hefei City, Anhui Province, China,
covering a total area of 514.37 km2. Geographically, it lies between a longitude of 116◦40′

to 117◦52′ east and latitude of 31◦30′ to 32◦32′ north. The underlying terrain in this region
is predominantly hilly, with higher elevations in the northwest and lower elevations in the
southeast. There are plains with a relatively flat topography along rivers and lakes, while
certain areas exhibit the presence of hills. The ground elevation ranges from approximately
12 to 45 m, with a few low-lying areas adjacent to the rivers, measuring around 10 to 12 m.
Hefei City is intersected by numerous rivers, including the Nanfei River, Shiwuli River, and
Tangxi River, flowing from west to southeast and ultimately converging with Chao Lake, as
shown in Figure 1. Hefei is in a subtropical monsoon humid climate zone, with an average
annual precipitation of 966 mm. Due to its location within a transitional zone between
humid and sub-humid regions, its precipitation distribution is uneven and influenced by
its topography and water vapor sources. The summer months (June to August) receive the
highest precipitation, accounting for 41.3% of the annual total. Historically, Hefei has been
susceptible to frequent flood disasters, and in recent years, rapid urban development has
further increased the potential for flood and waterlogging incidents in the area.

According to reports and data from the Water Conservancy Department, two short-
duration heavy rainstorms took place on 29 June and 18 July 2010, setting a record for
short-duration rainfall intensity and causing more than 30 waterlogged spots in the Hefei
urban area.

Furthermore, on 20 August 2012, a heavy rainstorm occurred in the southwest of
the urban area, with a maximum hourly rainfall of 90 mm, leading to waterlogging in
68 locations.
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Figure 1. Location of the study area in China.

From 20:00 on 17 July 2020 to 06:00 on 19 July 2020, Hefei experienced a heavy rainfall
process. The average rainfall in Hefei was recorded as 187 mm. The water level of Chao Lake
exceeded the historical extreme. According to a report released by the Meteorological Bureau,
the daily rainfall in Hefei has reached this standard once in 70 to 80 years. This flood disaster
affected 805,136 people in Hefei, resulting in a direct economic loss of CNY 5.06 billion.

2.2. Flooding Event Sample Dataset

The construction of historical flood event sample datasets is the key to machine
learning model training, which directly affects the rationality of the flood characteristics
captured by the model and the flood risk assessment results. In this study, the historical
flood inundation locations of Hefei City from 2017 to 2021 were obtained. On this basis,
combined with the regional flood risk map in the flood control and drainage planning of
Hefei City, 294 flood hotspots and 169 non-flood spots were finally determined as sample
points for the training and validation of the machine learning model, as shown in Figure 2.
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After normalizing and standardizing the data, the flood event sample dataset was
randomly split into two datasets for training (80% of data, n = 370) and testing (20% of data,
n = 93).

3. Methodology
3.1. Risk Assessment Framework

The risk assessment framework of this study is primarily divided into three aspects, as
shown in Figure 3. Firstly, nine indicators relevant to urban flood risk from the perspectives
of natural geography, meteorological hydrology, and human resilience are selected, and a
sample database required for machine learning is constructed using historical inundation
hotspots. Secondly, six machine learning models—SVM, RF, MLP, GBDT, voting, and
stacking—are chosen, and the spatial distribution of flood risk in the study area is predicted
after optimizing the hyperparameters of the models. Lastly, the predictive accuracy and
performance of the models are evaluated by combining the results from different models.
Furthermore, an analysis of the driving contributions of the influencing factors is conducted
to elucidate the dominant factors causing flooding disasters in the region.
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3.2. Factors Affecting Urban Flooding

The selection of appropriate impact factors is a crucial step in risk assessment. Urban
flooding is influenced by a variety of natural and social factors, and there are no universally
prescribed selection criteria. In this study, taking into account the local characteristics of the
study area and referencing the relevant literature, nine primary factors were determined
to influence flooding in terms of meteorological factors (daily precipitation during the
flood season), geographical environment factors (DEM, aspect, slope, topographic relief,
distance to rivers, land use), and human resilience factors (distance to pumping stations,
pipe network density).

The increasing availability of remote sensing technology has allowed for the devel-
opment of increasingly reliable data collection methods, and the source data for most of
the factors listed above can be obtained by processing the corresponding satellite remote
sensing imagery, as described in Table 1.

Table 1. Data and data sources.

Data Data Source

DEM Geospatial Data Cloud (https://www.gscloud.cn, accessed on 10
December 2022)

Land use Star Cloud Data Service Platform (http://data.starcloud.pcl.ac.cn/zh,
accessed on 10 December 2022)

Pump station, pipe network Flood control and drainage planning of Hefei City

Precipitation HRLT dataset (https://doi.org/10.1594/PANGAEA.941329, accessed on 6
March 2023)

(1) Digital Elevation Models (DEMs)

Elevation is the fundamental form of representation of terrain features [43,44]. In many
studies on flood risk assessment, Digital Elevation Models (DEMs) have been employed as
essential evaluation parameters [18]. A DEM with a 30 m spatial resolution was extracted
from geospatial data clouds. The elevation ranges from 5.01 m to 262.89 m, as shown in
Figure 4a.

(2) Slope, Aspect, and Topographic Relief (TR)

Slope and aspect have emerged as commonly selected evaluation factors owing to
their significant influences on water flow velocity and direction [45,46]. In this study, slope
and aspect data were derived from the DEM using ArcGIS, as shown in Figure 4b,c. As
a macroscopic indicator for describing regional terrain features, topographic relief was
calculated using ArcGIS based on the DEM, as shown in Figure 4d.

(3) Distance to Rivers (DR)

Many cities are located near mountains and rivers, and these areas tend to have rel-
atively low elevations. Riverbanks and flood-prone zones are more vulnerable to flood
impacts [47,48]. Distance to water bodies is an important factor in the analysis of waterlog-
ging risk. Utilizing ArcGIS, the Euclidean distance from each point in the research area to
water bodies was calculated, as shown in Figure 4e.

(4) Distance to pumping stations (DP), pipe network density (PND)

Urban drainage relies mainly on underground stormwater pipe networks, and the
drainage capacity of a region depends on the distance to the pumping station and the
density of the pipe network. In general, the denser the pipe network is, the stronger
the drainage capacity of the area closer to the pump station will be, and it will be less
susceptible to waterlogging. The pipe network density and distance to pumping station
layers were obtained through ArcGIS editing, as shown in Figure 4f,g.

(5) Land use

Runoff conditions vary widely between different land use and land cover patterns [49,50].
Land use data with a 30 m spatial resolution were obtained by downloading remote sensing

https://www.gscloud.cn
http://data.starcloud.pcl.ac.cn/zh
https://doi.org/10.1594/PANGAEA.941329


Remote Sens. 2023, 15, 3678 7 of 18

images from the Star Cloud Data Service Platform. As shown in Figure 4h, there are a large
number of impervious water surfaces in the study area, and the cultivated land is mainly
distributed along the banks of the Nanfei River, Pai River, and Chao Lake.

(6) Daily Precipitation during the Flood Season (FDP)

Urban flooding is predominantly induced by heavy precipitation [51,52]. The oc-
currence of heavy precipitation is concentrated during the flood season. To capture the
precipitation characteristics unique to this season, the average daily precipitation was
computed for the period from June to September between 2009 and 2019 using the HRLT
rainfall dataset [53]. Figure 4 illustrates the computed average daily precipitation for the
flood season.
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3.3. Selection of Machine Learning Models

Traditional single machine learning models have been extensively employed in flood
risk assessment; however, they are prone to overfitting. In this study, we tried to incor-
porate ensemble learning models for flood risk assessment. Six machine learning models
were selected for evaluation, including two traditional single machine learning models,
support vector machine and multilayer perceptron; two ensemble learning models based
on homogeneous learners, random forest and gradient boosting decision tree; and two
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ensemble learning models based on heterogeneous learners, voting and stacking ensemble
learning. The specific principles of the various methods are as follows:

(1) Support Vector Machine (SVM)

Support vector machine (SVM) is a machine learning technique developed based on
statistical learning theory. Its basic principle is to identify the best separation hyperplane in
the feature space to maximize the interval between positive and negative samples in the
training set [54,55]. By learning the two types of samples of flood occurrence and non-flood
occurrence, the optimal classification hyperplane is found in the high-dimensional feature
space, and the two types of data are correctly separated [56].

(2) Multi-layer sensor (MLP)

MLP is an artificial neural network (ANN) with a feedforward structure, mapping a
set of input vectors to a set of output vectors [57]. It is composed of an input layer, hidden
layer and output layer. The input layer receives the impact factors of the flood; the hidden
layers process the input and transform it into the output, while the output layer predicts
the flood risk value [58].

(3) Random Forest (RF)

The random forest algorithm is a bagging algorithm with a decision tree as the esti-
mator. It connects multiple tree models in parallel. The dataset of each tree is randomly
selected, and some features are randomly selected as inputs. Finally, all the trees’ results
are integrated as the final result [59]. For each tree, the flood risk value is finally obtained
through the binary tree classification, moving from top to bottom, of the selected flood
element index [60,61].

(4) Gradient Lifting Decision Tree (GBDT)

GBDT differs from random forest in that it adopts a boosting strategy as an ensemble
learning algorithm [62]. By iterating multiple regression trees to make joint decisions,
a learning device is constructed at each iteration step to reduce the loss of flood risk
predictions along the steepest gradient direction so as to compensate for the shortcomings
of the last iteration.

(5) Stacking ensemble learning

This is a heterogeneous learning technique that combines diverse base learners by
training a model, unlike the homogeneous bagging and boosting methods, which directly
aggregate the outputs of several learners to obtain the final prediction [63]. Generally,
stacking consists of several base learners (level 0) and a meta-learner (level 1), in which the
outputs of the base learners serve as the inputs of the meta-learner. Both the precision and
variety of base learners affect the performance of a stacking algorithm.

(6) Voting ensemble learning

The voting ensemble method involves the construction of several heterogeneous classi-
fiers, such as SVM, decision tree, logistic regression, and k-nearest neighbors (KNN). These
classifiers are then combined using majority voting or weighted averaging to achieve more
accurate classification results, significantly reducing model variance and improving overall
performance. In this study, a voting regression model was utilized, where the average of
the flood risk predictions from multiple base regressors served as the final prediction.

3.4. Model Construction and Hyperparameter Optimization

The optimization of hyperparameters in machine learning models aims to discover
the most optimal set of hyperparameters that yield a superior performance on the test
dataset. The choice of hyperparameters significantly affects the learning outcome of the
model. In this study, we performed hyperparameter optimization for the SVM model’s
epsilon, the number of trees and maximum tree depth for the RF model, and the number
of trees, maximum tree depth, and learning rate for the GBDT model. To carry out the
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hyperparameter optimization process, a rigorous 5-fold cross-validation strategy was
employed. The training dataset was partitioned into five subsets, and each subset was
iteratively employed as a validation set, while the remaining four subsets were utilized
for training and parameter tuning. This approach enables an unbiased evaluation of the
hyperparameters’ performance on data that are not used for training.

In the stacking ensemble model, we assembled the GBDT, RF, and SVM as the fun-
damental base regressors. The predictions from these three base models were further
combined using the RF algorithm. On the other hand, in the voting ensemble model, the
GBDT, RF, and SVM were also chosen as the base regressors, and the final prediction was
obtained by averaging the outputs of the three base models.

All machine learning models were implemented using the Scikit learn library in
Python. The hyperparameter optimization results of each model are shown in Table 2.

Table 2. Hyperparameters of machine learning models.

Model Hyperparameters

SVM epsilon = 0.3
MLP Default
RF n_estimators = 42, max_depth = 5

GBDT n_estimators = 53, learning_rate = 0.03, max_depth = 3

Stacking Base regressors: SVM, RF, GBDT,
Final regressor: RF

Voting Base regressors: SVM, RF, GBDT,
Finally, take the average

Note: The hyperparameters not indicated in the table are set to their default values.

4. Results
4.1. Evaluation of Model Performance

(1) Mean Squared Error

The Mean Squared Error (MSE) serves as a metric for assessing the deviation between
predicted and true values by measuring the square root of the ratio between the squared
deviations and the number of observations (n) [64]. It is known for its sensitivity to outliers
within a dataset. Table 3 presents the comparative results of the MSE for the various models
used in this study. The results indicate that the RF, stacking, and voting models have the
best performance in terms of the MSE on the training set, while on the testing set, the voting,
RF, and SVM models exhibit the lowest MSE values. In particular, the stacking model
exhibits the highest MSE on the testing set, suggesting its inferior generalization capability.

Table 3. MSE of the training and testing datasets for each model.

Model SVM MLP RF GBDT Stacking Voting

Training 0.396 0.387 0.310 0.375 0.332 0.355
Testing 0.432 0.451 0.429 0.440 0.459 0.428

(2) ROC curve

Receiver Operating Characteristic curve (ROC) is a tool used to evaluate the perfor-
mance of classification models. The ROC curve is a two-dimensional graph. The horizontal
coordinate is the false positive rate (FPR) and the vertical coordinate is the true positive rate
(TPR). The closer the ROC curve is to the upper left corner, the better the model performance
is. The closer the curve is to the diagonal, the worse the model performance is [65]. As
shown in Figures 5 and 6, the RF model results show a good performance for both the test
set and training set. Its ROC curve is closest to the upper right corner, and its AUC value is
very high (training set 0.97, test set 0.77). The results of the SVM model show that the ROC
curves of the test set and the training set are similar, and the AUC values are also similar,
indicating that the SVM model has a low degree of overfitting and strong generalization
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ability. Compared with the other models, the ROC curve of the MLP model is close to the
diagonal, and the model performance is unsatisfactory. Stacking, as an ensemble learning
model that integrates multiple models, does not exhibit a better performance.
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RF 0.886 0.688 0.949 0.774 0.869 0.707 0.907 0.739

SVM 0.792 0.710 0.835 0.754 0.839 0.793 0.837 0.773
STACKING 0.841 0.634 0.928 0.731 0.814 0.655 0.867 0.691
VOTIING 0.859 0.699 0.911 0.768 0.864 0.741 0.887 0.754

From the results, it is evident that the training set results demonstrate that the RF
model achieves optimal values across all four indicators. This finding aligns with the
MSE conclusion, indicating that the RF model yields the best prediction performance.
In the test set results, the SVM model demonstrates a strong performance on the three
indicators, which aligns with the ROC results and suggests that SVM possesses robust
generalization capabilities.

4.2. Spatial Distribution of Risk Prediction Results

The spatial distributions of flood risk predicted by the different machine learning
models are shown in Figure 7. It can be seen that the majority of high-risk and very-
high-risk areas are concentrated in low-lying areas, mainly along the banks of the Nanfei,
Shiwuli, and Tangxi Rivers and near Chao Lake. In addition, scattered high-risk areas
can be observed in the central urban zone. In particular, the result of the RF model
closely aligns with the high-risk distribution map of historical floods mentioned in the
“Comprehensive Planning of Urban Drainage (Rainwater) and Waterlogging Prevention in
Hefei City” report.

In Figure 8, it can be observed that the risk values obtained using each model are
primarily concentrated in the moderate- and high-risk categories, while the area classified
as low-risk is relatively small across all the models. Specifically, the SVM model predicts
a significantly smaller area in the very-high-risk category compared to the other models,
while the area classified as high-risk is noticeably larger. This indicates that the predictive
performance of the SVM model for the very-high-risk category is unsatisfactory, with a
tendency to underestimate the risk.
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Table 5 provides the statistics of inundation points in different risk categories for the
six models. In comparison to the other models, the SVM model exhibits significantly fewer
inundation points in the very-high-risk category, while having a higher number of points
in the high-risk category. This aligns with the results shown in Figure 8, further confirming
that the SVM model notably underestimated the extent of the very-high-risk range. The
voting ensemble learning model showed a notably lower number of inundation points in
the very-high-risk category compared to the other models, while the stacking ensemble
learning model exhibited a higher number of points in this category. These results indicate
that both ensemble learning models have an insufficient matching accuracy in predicting
the extent of the very-high-risk area.

Table 5. Spatial distribution of flood points.

Risk Level
Waterlogging Points

SVM MLP RF GBDT Stacking Voting

Very low 2 3 2 1 3 1
Low 5 11 5 2 18 4

Moderate 61 52 62 69 67 63
High 208 106 100 118 75 134

Very high 18 122 125 104 131 92

4.3. Analysis of Impact Factor Contribution

The GBDT and RF models are both based on tree models. Tree models possess
interpretability, allowing for the determination of the contribution values (importance) of
various factors to the model’s predictive outcomes, as illustrated in Figure 9. For both
models, the top five factors in terms of importance were DEM, DP, slope, aspect, and FDP.
The importance of these indicators was roughly similar for both models. However, in the
case of the GBDT model, the importance of DP was approximately 4% higher than in the
case of the RF model.
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5. Discussion
5.1. Application Potential of Machine Learning Models

Theoretically, machine learning models with more advanced algorithms and supe-
rior performance should demonstrate better results in capturing flood characteristics and
learning capabilities. However, such expectations were not fully realized in the specific
application in this study. The results indicate that the RF model not only exhibits a higher
accuracy on both the training and testing datasets but also demonstrates a greater congru-
ence between the predicted spatial distribution of flood risk and the historical occurrence
of inundation events. It outperforms the voting and stacking ensemble models in terms
of prediction accuracy and performance. These outcomes align with those of analogous
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investigations in related domains. For instance, Chen et al. [66] found that GBDT outper-
formed XGBoost in a flood risk assessment of the Pearl River Delta urban agglomeration
in China, despite XGBoost generally being considered to have better learning capabilities.
Yao et al. [67] discovered that ensemble learning methods were not necessarily superior
to their base models in assessing flash flood sensitivity in Jiangxi, China. Stacking did
not always outperform SVM or RF in terms of performance. It is worth noting that the
applicability and generalizability of machine learning models across different research areas
remain uncertain. The two ensemble models used in this paper relied on three base models,
and the learning capabilities of the ensemble models were constrained by the abilities
of these base models. Future research could explore diverse combinations of alternative
foundational models, thus enhancing the performance of the ensemble models.

5.2. Factors Affecting Urban Flood Risk

Existing research on flood risk in watershed and urban areas has revealed that lower-
lying regions are more susceptible to inundation disasters [68]. The influence of geo-
graphical environment factors, with DEM often taking a prominent position, is widely
recognized [69]. Additionally, precipitation, as a factor triggering flooding, offers a sub-
stantial contribution [65]. However, this study considered the factor of human society’s
proactive resilience to flood disasters. The order of influence of various driving factors
on the risk outcomes slightly differs from that in other literature. Elevation, distance to
pumping stations, and slope emerge as the top three factors governing urban waterlogging
risk in the central district of Hefei City. The results further validate the strong correlation
between these indicators and waterlogging risk. The highest-risk areas are predominantly
concentrated in low-lying areas along the rivers, but there are also a few distributed within
the city center. These high-risk zones in the city center exhibit higher elevation than the
riverbanks. However, while on one hand, they are relatively far from the coverage of
pumping station control, on the other hand, the design standards of drainage networks in
these areas are insufficient to meet the needs of urban development, severely hindering
water drainage. It is evident that the vulnerability of human resilience measures has led to
certain areas in the city center becoming high-risk zones.

5.3. Limitations and Future Directions

There are still some limitations of this study. The rate determination of the hyperpa-
rameter values was carried out on the basis of limited sample data in the specific study area
examined in this paper and thus cannot be applied to cover various situations. With the
continuous development of human activities, such as urbanization, agricultural expansion,
and reservoir construction, human activities will have an increasing impact on flood risk.
More indicator factors of the social and economic dimensions need to be considered in
the assessment system, and the acquisition of this kind of high-resolution data will also
be challenging. In addition, the specific mechanisms of human activities with respect to
flood risk need to be studied in depth, including the different impacts of human activities
on floods of different types and scales, and the mechanisms of interaction between human
activities and natural factors. This will contribute to a more comprehensive understanding
of the impact of human activities on flood risk and provide more scientific guidance for
future flood risk management and decision making.

Currently, research on flood risk is predominantly focused on the urban or watershed
scale. Future studies could be conducted on more refined spatial and temporal scales. For
example, in-depth research could be conducted using high-resolution remote sensing data
and geographic information system (GIS) technology to investigate the details of different
land use types within cities and the interaction between cities and the natural environment.
This would provide a better understanding of the influence of human activities on flood
risk. Moreover, urban flood disaster research involves multiple disciplinary fields, includ-
ing meteorology, hydrology, urban planning, and social sciences. Future efforts should
further advance interdisciplinary research by integrating knowledge and methodologies
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from various fields to thoroughly explore the comprehensive mechanisms underlying the
combined impacts of climate change and human activities on urban flood disasters.

6. Conclusions

In this paper, nine factors were chosen from three aspects of natural geography, namely,
meteorological hydrology, and human resilience. Then, a comprehensive risk assessment
factor system and framework were constructed. Combined with the collected historical
flood inundation point data, six machine learning models were used to assess the urban
flood risk in Hefei City. The prediction results of each model were analyzed, and the
potential mechanism of flood risk in these urban areas was revealed. Finally, the following
main conclusions were drawn:

1. The results of the MSE analysis reveal that both the RF and voting ensemble models
exhibit an excellent performance on both the training and testing datasets. However,
it is worth noting that the stacking ensemble model only demonstrates a satisfactory
performance on the training dataset, indicating its limited generalization capability.
Additionally, based on the ROC curve analysis, the RF model stands out as the top-
performing model. These findings, collectively, suggest that the predictive efficacy
of ensemble models, which integrate heterogeneous learners, may not necessarily
surpass that of their constituent base models.

2. The prediction results of the SVR model underestimate the range of extremely high-
risk areas. Relatively speaking, the prediction results of the stacking ensemble model
underestimate the range of extremely high-risk areas.

3. The high-risk and very-high-risk areas are mainly concentrated low-lying areas along
rivers and near the Chao Lake region. The areas classified as medium- and high-
risk outnumber those classified as low-risk. The overall risk level in the study area
underscores the daunting challenge of urban flooding facing the city of Hefei.

4. The ranking results of factor importance indicate that geography-related factors constitute
the major contributors among the top five contributing factors. It is worth noting that the
factor of DP has the second most important driving influence after the DEM. This finding
emphasizes the necessity of considering human resilience factors when conducting flood
risk analysis in urban areas that are significantly impacted by human activities.
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